Scilla

Foundations for Verifiable Decentralised Computations
on a Blockchain

lya Sergey

ilyasergey.net

Blockchain Consensus

{txq,txs, tas, txy, txs }

N\

| | transactions
* transforms a set of transactions into can be anything

a globally-agreed sequence
blockchain

-y . tocol
* “distributed timestamp server’ (Nakamoto 2008) PONIENEHS PIBIOED

v
txys, — txry — trxy — txy — txs

Blockchain Consensus

{txq,txs, tas, txy, txs }

v
txs,trsy| — (txy| — |[tx1,txs]

\ 4
txys, — txry — trxy — txy — txs

Blockchain Consensus

{txq,txs, tas, txy, txs }

v
tas,try| (txy| « [tx1,txs]

\ 4
txys, — txry — trxy — txy — txs

Blockchain Consensus

{txq,txs, tas, txy, txs }

| < |txs, txg| < |[txy| < |[txq,txs]

GB = genesis block

\ 4
txys, — txry — trxy — txy — txs

lransactions

e =Xxecuted /ocally, alter the replicated state.

o Simplest variant: transferring funds from A to B,
consensus: Nno double spending.

* More Interesting: deploying and executing replicated computations
%/_/

Smart Contracts

Smart Contracts

Stateful mutable objects replicated via a consensus protocol
State typically involves a stored amount of funds/currency
One or more entry points: invoked reactively by a client transaction

Main usages:
* crowdfunding and ICO
e multi-party accounting
* voting and arbitration
e puzzle-solving games with distribution of rewards

Supporting platforms: Ethereum, Tezos (?), ...

contract Accounting {

address owner; | - Mutable fields
mapping (address => uint) assets;

function Accounting(address _owner) { E——————(0NStryctor

owner = oOwnher;

}

function invest() returns (string) { e Entry pOiﬂt

if (assets[msg.sender].initialized()) { throw; }

assets[msg.sender] = msg.value; o tig it

return "You have given us your money' ; msg argument Is Implicl
} e funds accepted implicitly

} .
e can be called as a function

from another contract

contract Accounting {

address owner;
mapping (address => uint) assets;

function Accounting(address owner) {
owner = _owher;

}

function invest() returns (string) {
if (assets[msg.sender].initialized()) { throw; }
assets[msg.sender] = msg.value;
return "You have given us your money'";

function stealMoney() {
if (msg.sender == owner) { owner.send(this.balance) }

Misconceptions about Smart Contracts

Deployed In a low-level language Unitform compilation target
Must be Turing-complete Run arbitrary computations

Code is law What else if not the code?

Misconceptions about Smart Contracts

Deployed in a low-level language Infeasible audit and verification
Must be [uring-complete DoS attacks, cost semantics, exploits

Code is law Cannot be amended once deployed

What about High-Level Languages”

contract Accounting { Ethereumls SOIidity

address owner;
mapping (address => uint) assets;

e JavaScript-like syntax

function_AccountJ:.ng(address _owner) { ® Ca///ng 3 fUHCtiOﬂ — Sendlhg fUﬂdS
owner = _owner;
} .
e (3eneral recursion and loops
function invest() returns (string) { ' ' '
if (assets[msg.sender].initialized()) { throw; } ° /E\)eﬂeCt/On, dynamlc COﬂ’[raCt CreatIOn
assets[msg.sender] = msg.value; , o .
return "You have given us your money'; ¢ LOtS Of /m,O//C/t COHVGHUOHS
}

; e No formal semantics

Bernhard Mueller | Follow |

Security Engineer @ConsenSys

el Languages”?

What caused the latest $100 million
Ethereum smart contract bug l

On November 6th, a user playing with the Pari

contract “accidentally” triggered its kill() fun S()lldlty Optimizer bug

funds on all Parity multisig wallets linked to t

early estimates this might have made more th Martin Swende May 3rd, 2017
inaccessible (update: in the meantime, that n

million).

A bug in the Solidity optimizer was reported through the Ethereum Foundation Bounty program,

by Christoph Jentzsch. This bug is patched as of 2017-05-03, with the release of Solidity 0.4.11.

List of Known Bugs -

Below, you can find a JSON-formatted list of some of the known security-relevant bugs in the gptimizes on constants in the byte code. By "byte

Solidity compiler. The file itself is hosted in the Github repository. The list stretches back as far as ed on the stack (not to be confused with Solidity
version 0.3.0, bugs known to be present only in versions preceding that are not listed.

Sending a Message or Calling”

contract Accounting {

function invest() returns (string) {
if (assets[msg.sender].initialized()) { throw; }
assets[msg.sender] = msg.value;
return "You have given us your money';

}

function withdrawBalance() {
uint amount = assets[msg.sender];

if (msg.sender.call.value(amount) ()] == false) {

throw:

}

assets[msg.sender] = 0;

}

Sending a Message or Calling”

contract Accounting {

function invest() returns (string) {
if (assets[msg.sender].initialized()) { throw; }
assets[msg.sender] = msg.value;
return "You have given us your money';

}

function withdrawBalance() {
uint amount = assets[msg.sender];
if (msg.sender.call.value(amount) () == false) { E————— Can reenter and

throw; withdraw again

}
assets[msg.sender] = 0;

}

}

Smart Contracts in a Nutshell

Computations self-explanatory
State Manipulation changing contract's fields
Effects accepting funds, logging events

Communication sending funds, calling other contracts

Computations

State Manipulation Communication

Effects

Verified Specification

Communication

Verified Specification

State Manipulation Effects

Verified Specification

Computations

Verified Specification abstraction level

Communication

Verified Specification

State Manipulation Effects

Verified Specification

Computations

Scilla

Communication

Verified Specification

State Manipulation

Verified Specification

Computations

Scilla

Smart Contract Intermediate-Level Language

Principled model for computations System F with small extensions
Not Turing-complete Only primitive recursion/iteration
Explicit Effects State-transformer semantics

Communication Contracts are autonomous actors

lTypes

Primitive type P = Int Integer
String String
Hash Hash
BNum Block number
Address Account address
Type I,5 == P primitive type
Map P T map
Message message
T > S value function
D (Ty) instantiated data type
o type variable

forall «.T polymorphic function

EXpressions (pure)

Expression

Simple expression f

Selector
Pattern

Message entrry
Name

sel

pat

entry

b

f

let x (: T) = f in e
[

X
{ (entry)r }

fun (x : T) => e

builtin b (xp)

X (X)

tfun a => e

@x T

C C{Tx?>) (xx)

match x with (| sel) end
pat => e

X

C (paty)

(pat)

b:x

simple expression
let-form

primitive literal
variable

Message

function

built-in application
application

type function

type 1nstantiation
constructor instantiation
pattern matching

variable binding
constructor pattern
paranthesized pattern
wildcard pattern

identifier

Structural Recursion in Scilla

Natural numbers (not Ints!)

nat_rec: forall a.0 > (nat > a -> o) -> nat > «
[l — 1

Result type [number of

iterations

Value for O

constructing the next value final result

-xample: Fibonaccl Numbers

1 let fib = fun (n : Nat) =>

2 let iter_nat = @ nat_rec (Pair Int Int) 1in
3 let iter_fun =

4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with

6 | And x y => let z = builtin add x y 1in
7 And {Int Int} z X

8 end

9 1n

10 let zero = 0 1n

11 let one = 1 1n

12 let init_val = And {Int Int} one zero 1n

13 let res = 1iter_nat init_val 1iter_fun n 1in
14 fst res

-xample: Fibonaccl Numbers

1 let fib = fun (n : Nat) =>

2 let iter_nat = @ nat_rec (Pair Int Int) 1in

3 let 1ter_fun =

4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with

6 | And x y => let z = builtin add x y 1in

7 And {Int Int} z X

: _end Value for 0: (1, 0)
9 1N

10 let|zero = @ 1n

11 letjone = 1 1n

12 letlinit_val = And {Int Int} one zero]in

13 let res = i1ter_nat init_val 1iter_fun n 1n

fst res

—_
AN

-xample: Fibonaccl Numbers

1 let fib = fun (n : Nat) =>

2 let iter_nat = @ nat_rec (Pair Int Int) 1in

3 let i1iter_fun

4 fun (n: Nat) => fun (res : Pair Int Int) =>

5 match res with

6 | And x y => let z = builtin add x y 1in

7 And {Int Int} z X

8 end

9 1n

10 let zero = @ 1in |
11 let one = 1 1n lteration
12 let init_val = And {Int Int} one zero 1n

13 let res = i1ter_nat init_val 1iter_fun n 1n

14 fst res

-xample: Fibonaccl Numbers

1 let fib = fun (n : Nat) =>

2 let iter_nat = @ nat_rec (Pair Int Int) 1in

3 let 1ter_fun =

4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with

6 | And x y =>|let z = builtin add x y 1in

7 And {Int Int} z X

8 end

9 1N

10 let zero = 0 1n (X’ y) ~ (X
11 let one = 1 1n

12 let init_val = And {Int Int} one zero 1n

13 let res = i1ter_nat init_val 1iter_fun n 1n

14 fst res

Y, X)

-xample: Fibonaccl Numbers

1 let fib = fun (n : Nat) =>

3 let iter_fun =

4 fun (n: Nat) => fun (res : Pair Int Int) =>

5 match res with

6 | And x y => let z = builtin add x y 1in

7 And {Int Int} z X

2 ine"d The result of iteration
10 let zero = 0 in IS a pair of integers
11 let one = 1 1n

12 let init_val = And {Int Int} one zero 1n

13 let res = 1iter_nat init_val 1iter_fun n 1in

14 fst res

-xample: Fibonaccl Numbers

1 let fib = fun (n : Nat) =>

2 let iter_nat = @ nat_rec (Pair Int Int) 1in

3 let iter_fun =

4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with

6 | And x y => let z = builtin add x y 1in

7 And {Int Int} z X

8 end

9 1n .
" let vero = @ in lterate n times
11 let one = 1 1n

12 let init_val = And {Int Int} one zero 1n

fst res

—_
AN

-xample: Fibonaccl Numbers

1 let fib = fun (n : Nat) =>

2 let iter_nat = @ nat_rec (Pair Int Int) 1in

3 let iter_fun =

4 fun (n: Nat) => fun (res : Pair Int Int) =>

5 match res with

6 | And x y => let z = builtin add x y 1in

7 And {Int Int} z X

8 end

9 in return the first component
10 let zero = 0@ 1n of the result pair
11 let one = 1 1n

12 let init_val = And {Int Int} one zero 1n

13 let res = 1ter_nat init_val iter_fun n 1n

4

Structural Recursion with Lists

list_rec:foralla . f -> (a -> lista -> p > p) -> list a > p

/ [
Element type [argument list
lterator for non-empty list

Result type

Value for NIl argument list

Why Structural Recursion?

* Pros:

e Allprograms terminate

 Number of operations can be computed statically as a function of input size
e Cons:

 Some functions cannot be implemented efticiently (e.g., QuickSort)

e Cannot implement Ackerman function :(

n—+ 1 it m=20
Alm,n) = Am —1,1) if m>0andn=20
Alm —1,A(m,n—1)) ifm >0andn >0

Statements (eftecttul)

x <- f read from mutable field
f := x store to a field
X = e assign a pure expression

match x with (pat => s) end pattern matching and branching
X <- &B read from blockchain state
accept accept Incoming payment

send ms send list of messages

Statement Semantics

|s| : BlockchainState — Configuration — Configuration

BlockchainState Immutable global data (block number etc.)

Configuration = Env X Fields X Balance X Incoming X Emitted

Y | T

Contract's Messages

Immutable bindings own funds to be sent

Mutable fields Funds sent to contract

Global Execution Model

Global Execution Model

M-
e}
my

Contract D m3
m%

Contract C

Contract E

Global Execution Model

M M6
Confe: — Conf,
Mo
Confp Final contract states

Confg —[Conf >
#

Fixed MAX length of call sequence

Global Execution Model

&)

M-+
Confy —— Conf Conf",

)

Putting it All Together

Scilla contracts are (infinite) State-Iransition Systems

Interaction between contracts via sending/receiving messages
Messages trigger (eftecttul) transitions (sequences of statements)

A contract can send messages to other contracts via send statement
Most computations are done via pure expressions, no storable closures

Contract's state is immutable parameters, . balance

Contract Structure

Library of pure functions Transition
Immutable parameters

Working Example: Crowdfunding contract

 Parameters: campaign's owner, deadline (max block), funding goal
* Fields: registry of backers, ‘campaign-complete” boolean tlag
* Transitions:.

* Donate money (when the campaign is active)

* Get funds (as an owner, after the deadline, if the goal is met)

* Reclaim donation (after the deadline, if the goal is not met)

transition Donate (sender: Address, amount: Int)

blk <- & BLOCKNUMBER;
in time = blk leq blk max block;
match 1in time with
| True =>

bs <- backers;

res = check update bs sender amount;

match res with

| None =>

msg = {tag : Main; to : sender; amount :
msgs = one _msg msg;
send msgs
| Some bsl =>
backers := bsl;
accept;
msg = {tag : Main; to : sender; amount :
msgs = one _msg msg;
send msgs

end
| False =>

msg = {tag : Main; to : sender; amount : 0;

msgs = one_msg msg;

send msgs
end

end

0;

0;

code

code

code

already backed};

accepted code};

missed_dealine};

transition Donate |(sender: Address, amount: Int)

blk <- & BLOCKNUMBER;
in time = blk leq blk max block;
match in time with Structure of the incoming message
| True =>

bs <- backers;

res = check update bs sender amount;

match res with

| None =>

msg = {tag : Main; to : sender; amount : 0; code : already backed};
msgs = one_msg msg;
send msgs
| Some bsl =>
backers := bsl;
accept;
msg = {tag : Main; to : sender; amount : 0; code : accepted code};
msgs = one_msg msg;
send msgs

end
| False =>

msg = {tag : Main; to : sender; amount : 0; code : missed dealine};

msgs = one msg msg;

send msgs
end

end

transition Donate (sender: Address, amount: Int)
blk <- |& BLOCKNUMBER;

in time = blk leq blk max block;
match in_time with Reading from blockchain state
| True =>

bs <- backers;

res = check update bs sender amount;

match res with

| None =>
msg = {tag : Main; to : sender; amount : 0; code : already_ backed};
msgs = one_msg msg;

send msgs
| Some bsl =>
backers := bsl;
accept;
msg = {tag : Main; to : sender; amount : 0; code : accepted code};
msgs = one _msg msg;
send msgs
end
| False =>
msg = {tag : Main; to : sender; amount : 0; code : missed dealine};
msgs = one _msg msg;
send msgs
end
end

transition Donate (sender: Address, amount: Int)
blk <- & BLOCKNUMBER;

in time =|blk leq blk max block;

Ta;ch in_time with Using pure library functions
rue = . .
bs <- backers; (defined above In the contract)

res = |check update bs sender amount;

match res with
| None =>

msg = {tag : Main; to : sender; amount : 0; code : already_ backed};
msgs

send msgs

| Some bsl =>
backers := bsl;
accept;

msg = {tag : Maln; to : sender; amount : 0; code : accepted_code};
msgs =

send msgs

end
| False =>
msg = {tag : Main; to : sender; amount : 0; code : missed dealine};
msgs = jone_msg msg;
send msgs
end

transition Donate (sender: Address, amount: Int)
blk <- & BLOCKNUMBER;
in time = blk leq blk max block;
match in time with Manipulating with fields
| True =>
bs <- backers;
res = check update bs sender amount;
match res with
| None =>
msg = {tag : Main; to : sender; amount : 0; code : already backed};
msgs = one _msg msg;
send msgs
| Some bsl =>
backers := bsl;
accept;
msg = {tag : Main; to : sender; amount : 0; code : accepted code};
msgs = one _msg msg;
send msgs

end
| False =>
msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};

msgs = one _msg msg;
send msgs
end
end

transition Donate (sender: Address, amount: Int)

blk <- & BLOCKNUMBER;
in time = blk leq blk max block;
match 1in time with
| True =>

bs <- backers;

res = check update bs sender amount;

match res with

| None =>

msg = {tag : Main; to sender; amount
msgs = one _msg msg;
send msgs
| Some bsl =>
backers := bsl;
msg = {tag : Main; to sender; amount
msgs = one _msg msg;
send msgs

end
| False =>

msg = {tag : Main; to sender; amount 0;

msgs = one_msg msg;

send msgs
end

end

Accepting Incoming funds

0; code

0; code

code

already backed};

accepted code};

: missed dealine};

transition Donate (sender: Address, amount: Int)
blk <- & BLOCKNUMBER;
in time = blk leq blk max block;
match in time with Creating and sending messages
| True =>
bs <- backers;
res = check update bs sender amount;
match res with
| None =>
{tag : Main; : sender; amount : 0; code : already backed};
one msg msg;

| Some bs
backers
accept:

{tag : Main; : sender; amount : 0; code : accepted code};

bsl;

one _msg msg;
msgs

end

= {tag : Main; to : sender; amount : 0; code : missed dealine};

= one_msg msg;
msgs

end
end

transition Donate (sender: Address, amount: Int)
blk <- & BLOCKNUMBER;
in time = blk leq blk max block;

Ta;ch in_tine with Amount of own funds
rue = .
bs <- backers; transferred in a message

res = check update bs sender amount;
match res with
| None =>
msg = {tag : Main; to : sender; code : already backed};
msgs = one_msg msg;
send msgs
| Some bsl =>
backers := bsl;
accept;
msg = {tag : Main; to : sender; |amount : 0;| code : accepted code};
msgs = one_msg msg;
send msgs
end
| False =>
msg = {tag : Main; to : sender; code : missed dealine};
msgs = one msg msg;
send msgs
end
end

transition Donate

blk <- & BLOCKNUMBER:

in_ time

match 1in time with

| True

=>

bs <- backers;
check update bs sender amount;
match res with
| None

res =

msg
msg

S

send

| Some bsl =>
backers := bsl;
accept;

msg
msqg
sen

end

S
d

=>
= {tag : Main; to
= one_msg msg;
msgs

= {tag : Main; to
= one_msg msg;
msgs

| False =>

msg
msgs
send
end
end

{tag : Main; to
one msg msg;

msgs

(sender: Address,

blk leq blk max block;

amount: Int)

sender; amount

sender; amount

sender;

amount

Numeric code to inform the recipient

0; |code : already backed};

0; Jcode : accepted code}|;

O0; lcode : missed dealine};

Demo

>
I

S O oo~NO WUV A WN -

A b b

19

NN

N
oo ~NOOWULTLSESE WN M-

W N N N N IVINNIN

=
S

W W w W W
Vi H WIN -

36
37

39

49

4

4]

~ D H

b i
o~ O B W N

- P -

Scilla IDE

(‘i‘i.t‘tt.‘.‘.i.‘t.‘t‘#“t“‘t..““.t‘t‘l“#.#“‘#)

(* Associated library *)
(ttt#tt‘tt‘t#ttttttt‘tltttttt‘ttttttt‘tttttttttt#ttt)
library Crowdfunding
let andb =
fun (b : Bool) => fun (c : Bool) =>
match b with
| False => False
| True => match ¢ with
| False => False
| True => True
end
end

let orb =
fun (b : Bool) => fun (c : Bool) =>
match b with
| True => True
| False => match ¢ with
| False => False
| True => True
end
end

let negb = fun (b : Bool) =>
match b with
| True => False
| False => True
end

let one_msg =
fun (msg : Message) =>
let nil_msg = Nil {Message} in
Cons {Message} msg nil_msg

let check_update =
fun (bs : Map Address Int) =>
fun (sender : Address) =>
fun (_amount : Int) =>
let ¢ = builtin contains bs sender in
match ¢ with
| False =>
let bsl = builtin put bs sender _amount in
Some {Map Address Int} bsl
| True => None {Map Address Int}
end

let blk_leq =

About Zilliga © 2018

Add Node http:/flocalhost:4201 2 \l Z||||qa Exp|orer

Initialization Parameters

owner Address ¥

Address

Add Node http://localhost: 4201 ¢

490af4a007ce3d53d56
max_block
of Peers
800 :.: =
& 2 B4

goal
500

of DS Blocks — # of Tx Blocks

:2 DoD :Z

of
o9 00 :
e0 00 [Iransactions

0

[Deploy Contract J

Page Latency

0 pending transactions 53

& il

of Txns in DS # of Txns in Tx

% Epoch

0 0

Transaction

m—) Ratc (tps)
<‘III-.
0.00

0 confirmed transactions

Latest DS Blocks

BlockNu
m Hash

1 F32F5B999642AB767453F 1
31EC682885E24DAFACS90
D4A9927FEBC4EEF185908

0 D47631EFS571B848A8F17C7
O5E51F3C1575E22306CFB6
D45779CEEOB687BDB4FO8

See All

vy & M ¥ 5 O O About

L atest Tx Blocks

L atest Transactions

Transaction Hash

BlockNu
m Hash

1 87ECE66E2AD18709BF66576
29A0C295603A2BESF3DF33
S5AE7235DC31E7C5BDBC2

0 39A2343CFF2FASES612405
150968E026AD3310B773D5
424B4BADC144C5111E0C

See All |

Zilliga © 2018

Older

Veritying Scilla Contracts

Scilla «——>

Coqg Proof Assistant

» | ocal properties (e.q., ‘fransition does not throw an exception”)
e Invariants (e.q., ‘balance is always strictly positive"

* Temporal properties (something good eventually happens)

Coqg Proof Assistant

State-of-the art verification framework

Based on dependently typed functional language
Interactive — requires a human in the loop

Very small trusted code base

Used to implement fully verified

e compilers

e operating systems

e distributed protocols (including blockchains)

lemporal Properties

Q since P as long R «
v conf conf’, conf —=gr" conf’, P(conf) = Q(conf, conf’)

P holds here Q holds here

R holds for intermediate messages

® “[oken price only goes up”
* “No payments accepted after the quorum is reached”
* “No changes can be made after locking”

e “Consensus results are irrevocable”

lemporal Properties

Q since P as long R =
v conf conf’, conf —=gr" conf’, P(conf) = Q(conf, conf’)

Definition since as long
(P : conf » Prop)
(O ¢ conf » conft -» Prop)
(R : bstate * message - Prop) :=
vV sc conf conf',
P st »

(conf » conf' sc) A (V b, b e sc » R b) »
O conf conf'.

Specitying properties of Crowdfunding

 Lemma 1: Contract will always have enough balance to refund everyone.
 Lemma 2: Contract will not alter its contribution records.

 Lemma 3: Each contributor will be refunded the right amount,
if the campaign fails.

e Lemma 2: Contract will not alter its contribution records.

Definition donated (b : address) (d : amount) conf := b donated amount d
conf.backers(b) ==

Definition no claims from (b : address)
(g : bstate * message)
g.message.sender != b.

b didn’t try to claim

Lemma donation preserved (b : address) (d : amount):
since as long (donated b d) (fun ¢ ¢' => donated b d c¢')
(no claims from b).

b’s records are preserved by the contract

Demo

Modeling Crowdfunding
In COQ

Misconceptions, revisiteo

Need a language easy to reason about

Primitive recursion suffices in most cases

Code should abide by a specitication

o lake Away
Scilla: Smart Contract Intermediate-Level Language

 Small: builds on the polymorphic lambda-calculus with extensions.
* Principled: separates computations, effects, and communication.

* Verifiable: formal semantics and methodology tor machine-assisted reasoning.

Work In Progress

S
I

Compilation into an efticient back-end (LLVM) Z||||qa

Integrating with an existing blockchain solution

Certifications tfor Proof-Carrying Code (storable on a blockchain)
Automated Model Checking smart contract properties

PL support tor sharded contract executions

Thanks!

