VWhat We lalk about
VWhen We lalk about
Formally Verified Systems

lya Sergey

Associate Professor, Yale-NUS College
Lead Language Designer, Zilliga

http://ilyasergey.net

http://ilyasergey.net

Formal Verification

Proving Correctness of algorithms or software artefacts
wWith respect to a given rigorous specification

using mathematical reasoning.

Formal Verification

Proving Correctness of algorithms or software artefacts
with respect to a given rigorous specification

using mathematical reasoning.

Correctness - critical software

* Implementations of textbook algorithms \f‘; _ “
Rﬂ‘\
e Operational Systems)\

e Distributed Systems and their Applications

Compilers

\ Principles, Techniques,
&4, and Tools

o Compilers

Formal Verification

Proving Correctness of algorithms or software artefacts
wWith respect to a given rigorous specification

using mathematical reasoning.

Formal Verification

Proving Correctness of algorithms or software artefacts
wWith respect to a given rigorous specification

using mathematical reasoning.

Formal Veritication = lesting

“Program testing can be used to show the presence of bugs,

but never to show their absence!”
Edsger W. Dijkstra

But the bugs are in the eye of the beholder!

specification

But the bugs are in the eye of the beholder!

Formal Verification

Proving correctness of algorithms or software artetacts
with respect to a given rigorous specification

using mathematical reasoning.

Correctness-critical software

* Implementations of textbook algorithms

e Operational Systems /\

* Distributed systems and their applications ¥

Compllers

Pnlcshnes

o Compillers

- Compilers

Compilers

Principles, Techniques,
&4, and Tools >

Alfred V. Aho
Ravi Sethi
Jeffrey D. Ullman

Specitying Compilers

Program in C

Finclude <stdio.h>

{

define IN 1 /# inside a word =/
define OUT 0 /# outside a word »/

/#+ count lines, words, and characters in input /|
ain()

int ¢, nl, nw, nc, state;

state = OUT;
nl = nw=nc = 0;

while ((c = getchar()) != EOF) {

++NC;

if (¢ == ’\n’)
++nl;

if (c==’ "’ || ¢ == '\n’ Il ¢ ==
state = OUT;

else if (state == OUT) {
state = IN;

++NW}
}

}
printf("%d %d %¥d\n", nl, nw, nc);

'\t’)

compile

Program in X836 Assembly

792415C0
792415C1
792415C3
792415C6
792415C8
792415CB
792415CD
792415CF
792415D2
79241504
792415D7
792415DA
792415DC

TA A AT -

55

89E>S
8B45
DB28
864D
DB29
DEC1
8B55
DB3A
DB68
DB69
DEC1
DB7A

™ o=

08

10

OA
OA

OA

push ebp

mov ebp, esp

mov eax, [ebp+0x08]
fld tword [eax]

mov ecx, [ebp+0x0C]
fld tword [ecx]
faddp

mov edx, [ebp+0x10]
fstp tword [edx]

fld tword [eax+0x0A]
fld tword [ecx+0x0A]
faddp

fstp tword [edx+0x0A]
pop ebp

ret 0x000C

Program P in C Program compile(P) in x86 Assembly

nclude <s o.n>
define IN 1 /# inside a word #/ | 792415¢0 >3 pUSh ebp
define OUT 0 /% outside a word »/ m / 792415C1 89E5 mov ebp’ €sp
/+ count lines, words, and characters in input #/ CO pl e F92445CS GE45 mov: €ax, [ebp+0x08]
bain() g ’ 792415C6 DB28 f1d tword [eax]
{ 792415C8 884D 0OC mov ecx, [ebp+0x0C]
108 S Why B 10, WEREES 792415CB DB29 f1d tword [ecx]
state = OUT; 792415CD DEC1 faddp
hily e = catiucll] s moxl | 792415CF 8855 10 mov edx, [ebp+0x10]
++nc; 792415D2 DB3A fstp tword [edx]
i 792415D4 DB68 OA f1d tword [eax+0x0A]
if (c ==’ * il ¢ == "\n’ |} ¢ == "\t’) 79241507 DB69 0A fld tword [ecx+0x0A]
elseszzt?s:aggris ouT) { 792415DA DEC1 faddp
state = IN; 792415DC DB7A OA fstp tword [edx+0x0A]
x el 792415DF 5D pop ebp
} 792415E0 C2 0c00 ret 0x000C
printf("%d %d %d\n", nl, nw, nc);
)

interpret-as-C Interpret-as-x86

(Result P input) = Re) = @xae — Result(compile(P), input)

SIGAPORE AIRLINES - somi

Compiler Specification:

For any program P, and any input,
the result of interpreting P with input in € Is the same as
the result of executing compilation of P with input in x86 Assembly.

or, equivalently

Correctness Theorem:

v P, input, interpretc(P, input) = executexss(compile(P, input))

Correctness Theorem:

v P, input, inferpretc(P, input) = executexss(compile(P, input))

Proof: 7?7/7?

Assumptions:

* Meaningful definition of interpretcis given and fixed

e Meaningful definition of executegsis given and fixed must be trusted

- | - | (i.e., better be “sane”)
e Specific Implementation of compile is given and fixed

e Considered programs P is are valid and written in C

Correctness Theorem:

once proven,

v B in, interpretc(P, In) = executexss(Compile(R, in)) does not have

Proof: 77?7 to be trustea

Formal Verification

Proving correctness of algorithms or software artetacts
wWith respect to a given rigorous specification

using mathematical reasoning.

Formal Verification

Proving correctness of algorithms or software artefacts
with respect to a given rigorous specification

using mathematical reasoning.

What Is a Proot”/

A proof Is sufficient evidence
or an argument for the truth of a proposition.

ok L‘v(‘??'s .
YOU WANT PROOF?
I'LL GIVE YOU PROOF!

Better Definition

A proof Is a sequence of logical statements,

each of which Is elther validly derived from those preceding It
or IS an assumption,

and the final member of which,
the conclusion, IS the statement
of which the truth is thereby established.

Deriving Valid Proofs

The proposition A Is true, and, moreover,
A being true implies that B Is true; then
we can derive that B s true.

—-A +FA=21B

— B

A +A=218

reasonable assumptions B
Socrates Is a man IS a man = is mortal

Socrates is mortal

Overall, this is a valid proof, hence the conclusion it true

Proofs don’'t have to be trusted!

Assumptions (System definition)

Theorem Statement (Specification)

Proof Derivation (Script)

Theorem Prover
(in fact it’s more of a Validator)

Viogern | heorem Provers
are Awesome

|>\'\ (\‘\ /'/ \\// | I K

BN
)
T

1THECO

| &

QO X 4« P Y ITEO & A

Ltac no_change can_bc can_bt can_n w F F' HExt ¢5 :=
case=><- <- /=; exists can_bc, can_bt, can_n; rewrite (upd_nothing F); spl
1t=>//;
by move=>n st'; rewrite/localState; simplw w=>-> _ F';
rewrite/blocksFor/inFlightMsgs; simplw w=>_ ->;
rewrite -catls filter_cat /=; case: 1fP; rewrite map_cat /=;
do? rewrite -(btExtend_withDup_noEffect (find_some (c5 _ _ F')));
move: (HExt _ _ F").

Lemma foldl_expand cbt bt bs :

valid bt ->

cbt = foldl btExtend bt bs -> exists q, cbt = bt \+ q.
Proof.
move=>V.
elim: bs cbt=>//=[Ib bs Hi]cbt E; first by by exists Unit; rewrite unitR.
rewrite -foldl_btExtend_last//= -catsl foldl_cat/= in E.
case: (Hi (foldl btExtend bt bs) (erefl _))=>q E'.
rewrite E' in E; subst cbt; rewrite /btExtend.
case:1fP=>X; first by exists q.
by exists (# b \\-> b \+ q); rewrite joinCA.
Qed.

(**)

(************* Invariant inductiVity proof *****#********************)
(**#****#***********#****************#********************#*******#**)

Lemma clique_inv_step w w' q |

clique_inv w -> system_step w w' q -> clique_inv w'.
Proof.
move=>Iw S; rewrite/clique_inv; split; first by apply (Coh_step S).
case: S; first by elim; move=>_ <-; apply Iw.
(* Deliver *)
move=> p st Cw. assert (Cw' := Cw). case (w'=>[cl ¢c2 ¢c3 ¢4 c5 c6] Al iF F.
case: Iw=>_ GSyncW.
case: GSyncW=>can_bc [can_bt] [can_n] []

HHold HGt [C] [HBc] HGood HCliq HExt.

move=>P; assert (P' := P).

U:**- InvCliqueTopology.v 30% (228,30) Git-master (Coq Script(1-) Holes company Spc Fill)

Zoom: 120%

® 00 Aguamacs

- 0%

State Context Goal Retract Undo Next Use Goto Qcd Home Find Info Command Prooftree Interrupt Restart Help

1 subgoal (ID 278)

- W, w' & World
- g : Qualifier

clique_inv w -> system_step w w' q -> clique_inv w'

U:%%- *goals* All (6,0)

| U:%%- *response*

Programming and proving
are the same things!

(Coq Goals company Spc Fill)

All (1,0) (Cog Response company Trunc Spc Fill)

Formal Verification

Proving correctness of algorithms or software artetacts
wWith respect to a given rigorous specification

using mathematical reasoning.

\Viechanised Formal Veritication

Proving correctness of algorithms or software artefacts
with respect to a given rigorous specification
Using mathematical reasoning,

whose validity IS machine-checked.

(assuming that you trust the checker)

Checkpoint

For a fully specified system, correctness is a mathematical theorem
't can be proven using rules of mathematical logic

Typically, the proofs rest on some unprovable assumptions,
which must be frusted

NMechanised proof checking ensures validity of the proof,
but requires to trust the checker implementation.

State of the Art
N Formally Verified Systems

CompCert (2006-now)

a mechanically verified C compiler

Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant

Xavier Leroy

INRIA Rocquencour t
Xavier.Leroy@inria.fr

o Specification: source and target programs are equivalent
o Assumptions: underlying hardware semantics, unverified parser

* Proof effort: 146 KLOC of specifications and proofs

Verdi (2015)

a formally verified Raft consensus implementation

Verdi: A Framework for Implementing and
Formally Verifying Distributed Systems

James R. Wilcox =~ Doug Woos Pavel Panchekha
Zachary Tatlock Xi Wang Michael D. Ernst Thomas Anderson

University of Washington, USA
{jrw12, dwoos, pavpan, ztatlock, xi, mernst, tom}@cs.washington.edu

o Specification: Raft provides transparent replication
e Assumptions: unlimited memory, TCP works atomically, ...

* Proof effort: 50 kKLOC of specifications and proofs

FSCQ (2015)

a crash-tolerant file system

Using Crash Hoare Logic for Certitying the FSCQ File System

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich
MIT CSAIL

o Specification: asynchronous disk writes are not affected by crashes
* Assumptions about semantics of extraction and linking with other drivers

e Proof effort: 81 kLOC of specifications and proofs

Does it really work?™

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing _
{jxyang, chenyang, eeide, regehr }@cs.utah.edu (|n PLDI 201 1)

The striking thing about our CompCert results is
that the middle-end bugs we found in all other
compilers are absent.

Compilers should be correct.

1o improve the quality of C_ compilers, we As of early 2011, the under-development version

created .Csmlth, a randomized test-case of CompCert is the only compiler we have tested

generation tool, and spent three years for which Csmith cannot find wrong-code errors.

using It to find compiler bugs. This is not for lack of trying: we have devoted
about six CPU-years to the task.

During this period we reported more than
325 previously unknown bugs to

| The apparent unbreakability of CompCert
compiler developers.

supports a strong argument that developing
compiler optimizations within a proof framework,
where safety checks are explicit and machine-
checked, has tangible benetfits for compiler users.

S0, bye-bye testing”

Formal Verification i1s Expensive

o CompCert
146 kLOC

e \erql
50 kKLOC

¢ FSCQ
81 kKLOGC

Formal Verification i1s Expensive

o CompCert
146 kLOC, 10+ person-years

e \erd
50 kLOC, 3+ person-years

e FSCQ
81 kLOC, 5+ person-years

Formal Verification i1s Expensive

o CompCert
146 kLOC, 10+ person-years

e \erd
50 kLOC, 3+ person-years

e FSCQ
81 kLOC, 5+ person-years

Assumptions Matter

Story 1: CompCert

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing
{jxyang, chenyang, eeide, regehr }@cs.utah.edu

The second CompCert problem we found was illustrated by two
bugs that resulted 1n generation of code like this:

stwu rl1, -44432(r1)

Here, a large PowerPC stack frame 1s being allocated. The problem
1s that the 16-bit d1sp1acement field 1s overflowed. -

semantics failed to specify a constraint on the v h1 -

ete value, on the assumption that the assembler would catch
out-of-range Va”ues In fact, this is what happened. We also found a

Wrong assumption
about compiled
assembly execution!

Story 2: Verd

An Empirical Study on the Correctness of
Formally Verified Distributed Systems

Pedro Fonseca Kaiyuan Zhang Xi Wang Arvind Krishnamurthy

University of Washington

Overall, 7 bugs are found

4.3 Resource Limits

This section describes three bugs that involve exceeding
resource limits.

Wrong assumption
N ' server hp 'd- ii ckets had a bug d b O UJ[J[h e Cras h Mo d e ‘ '

that could cause the server to crash under certain conditions.
The bug, due to an insufficiently small buffer in the OCaml
code, caused incoming packets to truncate large packets and
subsequently prevented the server from correctly unmarshal-
ing the message.

BugV6: Large packets cause server crashes.

Story 3: FSCQ

We found a bug in a verified file system!
We ran Crashmonkey's suite of tests on
MIT's FSCQ and found that it does not
persist data on fdatasync properly. We
emailed the authors, they have acked
and fixed the bug.

Come see our paper at #osdi18!

Details: github.com/utsaslab/crash...

Vijay Chidambaram @v|_chidambaram

Excited to share our #0sdi18 paper on finding crash-consistency bugs in
Linux file systems! | will explain the intuition behind our system in this
thread....

Show this thread

Story 3: FSCQ

We found a bug in a verified file system!
We ran Crashmonkey's suite of tests on
MIT's FSCQ and found that it does not
persist data on fdatasync properly. We
emailed the authors, they have acked
and fixed the bug.

Come see our paper at #osdi18! John Regehr @johnregehr . Oct 3

Details: github.com/utsaslab/crash Replying to @v|_chidambaram

Vijay Chidambaram @]_chidambaram | what was the root cause of their failure to find this bug during verification?
Excited to share our #0sdi18 paper on finding crash-consistency b

Linux file systems! | will explain the intuition behind our system in t

thread....

Show this thread Q 1 11 @ 3 ‘\:

Vijay Chidambaram @v|_chidambaram - Oct 3
Even verified file systems have unverified parts :) it due to a buggy
optimization in the Haskell-c bindings. R

Q) 1 (W O 4 ™M

Checkpoint

Costs of formal verification are high,
but so are the provided correctness guarantees

Realistic systems are always verified in the presence of
non-trivial assumptions about their usage

These assumptions mignt be broken in the real world,
thus invalidating the claims of theorems

lesting helps to validate the assumptions.

What about Blockchains
and their Applications®

What about Blockchains
and their Applications®

(application layer)

* We're at the stage of proving specifications of smart contracts

 We can also verity properties of executable protocols

(system layer)

Veritying Protocol Implementations

Mechanising Blockchain Consensus

George Pirlea Ilya Sergey
University College London, UK University College London, UK
george.pirlea.15@ucl.ac.uk i.sergey@ucl.ac.uk

Abstract 1 Introduction
We present the first formalisation of a blockchain-based dis- The notion of decentralised blockchain-based consensus is
tributed consensus protocol with a proof of its consistency a tremendous success of the modern science of distributed
mechanised in an interactive proof assistant. computing, made possible by the use of basic cryptography,

Our development includes a reference mechanisation of and enabling many applications, including but not limited
the block forest data structure, necessary for implementing to cryptocurrencies, smart contracts, application-specific
nrovablv correct ner-node nrotocol logic. We also define a arbitration. voting. etc.

e Specification: nodes, asynchronously exchanging blocks, reach agreement

* Assumptions clique topology, fork-chain rule properties,
no restrictions wrt. POW hardness of minting a block.

* Proof effort: 3 KLOC of specifications and proofs

Definitions * blocks, ledgers, block forests

* hashes are collision-free
* FCR imposes strict total order

Assumptions

 when all block messages are delivered,
Theorem J o

everyone agrees

» |ocal state + messages “in flight” £

INnvariant globa

iNnvariant I1Is INnguctive

4)

» Invariant holds

» Invariant holds

system step g>

» Invariant holds

system step >

system step $

» Invariant holds

» Invariant holds

system step g>

Invariant implies Quiescent Consistency (QC)

* QC: when all blocks delivered, everyone agrees

How:

* |ocal state + |M = global

e use FCR to extract “heaviest” chain out of local state

* SINCe everyone has same state & same FCR

>consensus
(more interesting properties are yet to be proven.. .)

Veritying smart Contract Properties

Ilya Sergey

1.sergey@ucl.ac.uk

SciLLA: a Smart Contract Intermediate-Level LAnguage

Automata for Smart Contract Implementation and Verification

University College London

Amrit Kumar Aquinas Hobor
National University of Singapore Yale-NUS College
amrit@comp.nus.edu.sg National University of Singapore

hobor@comp.nus.edu. sg

Principled model for computations System F with small extensions

Not Turing-complete
Explicit Effects

Communication

Only primitive recursion/iteration
State-transformer semantics

Contracts are communicating automata

Reasoning about Scilla Contracts

SCILLULA

- What can be specified and proven

o Local properties (e.q., 'fransition does not throw an exception’)
e |nvariants (e.q., ‘balance is always strictly positive")

* Temporal Properties (something good eventually happens)

lemporal Properties

Q since P as long R «
v conf conf’, conf —=gr" conf’, P(conf) = Q(conf, conf’)

P holds here Q holds here

R holds for intermediate messages

® “[oken price only goes up”
* “No payments accepted after the quorum is reached”
* “No changes can be made after locking”

e “Consensus results are irrevocable”

Assumptions for Scilla-enabled
Formal Veritication

SCILLA

* Jranslation from Scilla to Coq correct (in the compiler sense)

» future work: verified Scilla interpreter implemented in Coqg

 Formalised in Cog model of message-passing corresponds
porecisely to the blockchain back-end.

| ooking Aheao

* \What are the right properties of Blockchain systems to prove”
* Most of the interesting properties require probabilistic reasoning

 Chain-growth, common-prefix, etc. — none are proven for real code!

* \WWhat are the right specifications for smart contracts”
e Can we reason about incentives for interaction with smart contracts?
e Can we teach non-experts in FM to state them?

 \What should be the reusable libraries to make mechanised formal reasoning
about blockchains fractable and scalable’?

o lake Away

What We Talk about When We Talk about
Formally Verified Systems

Formal verification requires precise specification and cannot be conducted
without reasonable assumptions

Mechanically-checked proofs provide the best correctness guarantees
Yet, festing shouldn't be dismissed: it helps check the assumptions

Mechanised formal reasoning is expensive but might well worth it
for correctness-critical systems—especially blockchains and smart contracts

Thanks!

