
Ilya Sergey

What We Talk about  
When We Talk about  

Formally Verified Systems

http://ilyasergey.net

Associate Professor, Yale-NUS College 
Lead Language Designer, Zilliqa

http://ilyasergey.net

Formal Verification

Proving Correctness of algorithms or software artefacts

with respect to a given rigorous specification

using mathematical reasoning.

Formal Verification

Proving Correctness of algorithms or software artefacts

with respect to a given rigorous specification

using mathematical reasoning.

• Implementations of textbook algorithms

• Operational Systems

• Distributed Systems and their Applications

• Compilers

Correctness - critical software

Formal Verification

Proving Correctness of algorithms or software artefacts

with respect to a given rigorous specification

using mathematical reasoning.

Formal Verification

Proving Correctness of algorithms or software artefacts

with respect to a given rigorous specification

using mathematical reasoning.

Formal Verification ≠ Testing

“Program testing can be used to show the presence of bugs,
 but never to show their absence!”

Edsger W. Dijkstra

But the bugs are in the eye of the beholder!

But the bugs are in the eye of the beholder!

specification

Formal Verification

Proving correctness of algorithms or software artefacts

with respect to a given rigorous specification

using mathematical reasoning.

• Implementations of textbook algorithms

• Operational Systems

• Distributed systems and their applications

• Compilers

Correctness-critical software

• Implementations of textbook algorithms

• Operational Systems

• Distributed systems and their applications

• Compilers

Correctness-critical software

Specifying Compilers
Program in C Program in x86 Assembly

compile

Program P in C Program compile(P) in x86 Assembly

compile

interpret-as-C interpret-as-x86

Result(P, input) = Rc Rx86 = Result(compile(P), input)=

For any program P, and any input,
the result of interpreting P with input in C is the same as
the result of executing compilation of P with input in x86 Assembly.

Compiler Specification:

Correctness Theorem:

or, equivalently

∀ P, input, interpretC(P, input) = executex86(compile(P, input))

Correctness Theorem:

Proof: ???

∀ P, input, interpretC(P, input) = executex86(compile(P, input))interpretC executex86 compile

• Meaningful definition of interpretC is given and fixed

• Meaningful definition of executex86 is given and fixed

• Specific implementation of compile is given and fixed

• Considered programs P is are valid and written in C

Correctness Theorem:

Proof: ???

∀ P, in, interpretC(P, in) = executex86(compile(P, in))

Assumptions: } must be trusted

(i.e., better be “sane”)

} once proven,

does not have

to be trusted

Formal Verification

Proving correctness of algorithms or software artefacts

with respect to a given rigorous specification

using mathematical reasoning.

Formal Verification

Proving correctness of algorithms or software artefacts

with respect to a given rigorous specification

using mathematical reasoning.

What is a Proof?

A proof is sufficient evidence
or an argument for the truth of a proposition.

Better Definition

A proof is a sequence of logical statements,

each of which is either validly derived from those preceding it
or is an assumption,

and the final member of which,  
the conclusion, is the statement  

of which the truth is thereby established.

Deriving Valid Proofs

The proposition A is true, and, moreover,  
A being true implies that B is true; then

we can derive that B is true.

⊢ A ⊢ A ⇒ B
————————

⊢ B

is a man ⇒ is mortalSocrates is a man

⊢ A ⊢ A ⇒ B
————————

⊢ B

————————————————————————————————

Socrates is mortal

reasonable assumptions

Overall, this is a valid proof, hence the conclusion it true

Proofs don’t have to be trusted!
 Assumptions (System definition)

 Theorem Statement (Specification)
 Proof Derivation (Script)

Theorem Prover
(in fact it’s more of a Validator)

Modern Theorem Provers  
are Awesome

Modern Theorem Provers

Programming and proving  
are the same things!

Formal Verification

Proving correctness of algorithms or software artefacts

with respect to a given rigorous specification

using mathematical reasoning.

Mechanised Formal Verification

Proving correctness of algorithms or software artefacts

with respect to a given rigorous specification

using mathematical reasoning,

whose validity is machine-checked.

(assuming that you trust the checker)

Checkpoint

• For a fully specified system, correctness is a mathematical theorem

• It can be proven using rules of mathematical logic

• Typically, the proofs rest on some unprovable assumptions,  
which must be trusted

• Mechanised proof checking ensures validity of the proof, 
but requires to trust the checker implementation.

State of the Art  
in Formally Verified Systems

• Specification: source and target programs are equivalent

• Assumptions: underlying hardware semantics, unverified parser

• Proof effort: 146 kLOC of specifications and proofs

CompCert (2006-now)
a mechanically verified C compiler

Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant

Xavier Leroy
INRIA Rocquencourt
Xavier.Leroy@inria.fr

Abstract

This paper reports on the development and formal certification
(proof of semantic preservation) of a compiler from Cminor (a C-
like imperative language) to PowerPC assembly code, using the
Coq proof assistant both for programming the compiler and for
proving its correctness. Such a certified compiler is useful in the
context of formal methods applied to the certification of critical
software: the certification of the compiler guarantees that the safety
properties proved on the source code hold for the executable com-
piled code as well.

Categories and Subject Descriptors F.3.1 [Logics and meanings

of programs]: Specifying and verifying and reasoning about
programs—Mechanical verification.; D.2.4 [Software engi-

neering]: Software/program verification—Correctness proofs,
formal methods, reliability; D.3.4 [Programming languages]:
Processors—Compilers, optimization

General Terms Languages, Reliability, Security, Verification.

Keywords Certified compilation, semantic preservation, program
proof, compiler transformations and optimizations, the Coq theo-
rem prover.

1. Introduction

Can you trust your compiler? Compilers are assumed to be seman-
tically transparent: the compiled code should behave as prescribed
by the semantics of the source program. Yet, compilers – and espe-
cially optimizing compilers – are complex programs that perform
complicated symbolic transformations. We all know horror stories
of bugs in compilers silently turning a correct program into an in-
correct executable.

For low-assurance software, validated only by testing, the im-
pact of compiler bugs is negligible: what is tested is the executable
code produced by the compiler; rigorous testing will expose errors
in the compiler along with errors in the source program. The picture
changes dramatically for critical, high-assurance software whose
certification at the highest levels requires the use of formal meth-
ods (model checking, program proof, etc). What is formally verified
using formal methods is almost universally the source code; bugs
in the compiler used to turn this verified source into an executable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c� 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

can potentially invalidate all the guarantees so painfully obtained
using formal methods. In other terms, from a formal methods per-
spective, the compiler is a weak link between a source program
that has been formally verified and a hardware processor that, more
and more often, has also been formally verified. The safety-critical
software industry is aware of this issue and uses a variety of tech-
niques to alleviate it, such as conducting manual code reviews of
the generated assembly code after having turned all compiler opti-
mizations off. These techniques do not fully address the issue, and
are costly in terms of development time and program performance.

An obviously better approach is to apply formal methods to
the compiler itself in order to gain assurance that it preserves the
semantics of the source programs. Many different approaches
have been proposed and investigated, including on-paper and
on-machine proofs of semantic preservation, proof-carrying code,
credible compilation, translation validation, and type-preserving
compilers. (These approaches are compared in section 2.) For
the last two years, we have been working on the development of
a realistic, certified compiler. By certified, we mean a compiler
that is accompanied by a machine-checked proof of semantic
preservation. By realistic, we mean a compiler that compiles a
language commonly used for critical embedded software (a subset
of C) down to assembly code for a processor commonly used in
embedded systems (the PowerPC), and that generates reasonably
efficient code.

This paper reports on the completion of one half of this
program: the certification, using the Coq proof assistant [2], of
a lightly-optimizing back-end that generates PowerPC assembly
code from a simple imperative intermediate language called
Cminor. A front-end translating a subset of C to Cminor is being
developed and certified, and will be described in a forthcoming
paper.

While there exists a considerable body of earlier work on
machine-checked correctness proofs of parts of compilers (see
section 7 for a review), our work is novel in two ways. First, recent
work tends to focus on a few parts of a compiler, mostly opti-
mizations and the underlying static analyses [18, 6]. In contrast,
our work is modest on the optimization side, but emphasizes the
certification of a complete compilation chain from a structured im-
perative language down to assembly code through 4 intermediate
languages. We found that many of the non-optimizing translations
performed, while often considered obvious in compiler literature,
are surprisingly tricky to formally prove correct. The other novelty
of our work is that most of the compiler is written directly in
the Coq specification language, in a purely functional style. The
executable compiler is obtained by automatic extraction of Caml
code from this specification. This approach has never been applied
before to a program of the size and complexity of an optimizing
compiler.

• Specification: Raft provides transparent replication
• Assumptions: unlimited memory, TCP works atomically, …
• Proof effort: 50 kLOC of specifications and proofs

Verdi (2015)
a formally verified Raft consensus implementation

Verdi: A Framework for Implementing and

Formally Verifying Distributed Systems

James R. Wilcox Doug Woos Pavel Panchekha
Zachary Tatlock Xi Wang Michael D. Ernst Thomas Anderson

University of Washington, USA
{jrw12, dwoos, pavpan, ztatlock, xi, mernst, tom}@cs.washington.edu

Abstract

Distributed systems are difficult to implement correctly because they
must handle both concurrency and failures: machines may crash at
arbitrary points and networks may reorder, drop, or duplicate pack-
ets. Further, their behavior is often too complex to permit exhaustive
testing. Bugs in these systems have led to the loss of critical data
and unacceptable service outages.

We present Verdi, a framework for implementing and formally
verifying distributed systems in Coq. Verdi formalizes various net-
work semantics with different faults, and the developer chooses the
most appropriate fault model when verifying their implementation.
Furthermore, Verdi eases the verification burden by enabling the
developer to first verify their system under an idealized fault model,
then transfer the resulting correctness guarantees to a more realistic
fault model without any additional proof burden.

To demonstrate Verdi’s utility, we present the first mechanically
checked proof of linearizability of the Raft state machine replication
algorithm, as well as verified implementations of a primary-backup
replication system and a key-value store. These verified systems
provide similar performance to unverified equivalents.

Categories and Subject Descriptors F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]: Mechanical verification

Keywords Formal verification, distributed systems, proof assis-
tants, Coq, Verdi

1. Introduction

Distributed systems serve millions of users in important applications,
ranging from banking and communications to social networking.
These systems are difficult to implement correctly because they
must handle both concurrency and failures: machines may crash at
arbitrary points and networks may reorder, drop, or duplicate pack-
ets. Further, the behavior is often too complex to permit exhaustive
testing. Thus, despite decades of research, real-world implemen-
tations often go live with critical fault-handling bugs, leading to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’15 , June 13–17, 2015, Portland, OR, USA
Copyright c� 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00
DOI: http://dx.doi.org/10.1145/10.1145/2737924.2737958

data loss and service outages [10, 42]. For example, in April 2011 a
malfunction of failure recovery in Amazon Elastic Compute Cloud
(EC2) caused a major outage and brought down several web sites,
including Foursquare, Reddit, Quora, and PBS [1, 14, 28].

Our overarching goal is to ease the burden for programmers
to implement correct, high-performance, fault-tolerant distributed
systems. This paper focuses on a key aspect of this agenda: we de-
scribe Verdi, a framework for implementing practical fault-tolerant
distributed systems and then formally verifying that the implemen-
tations meet their specifications. Previous work has shown that
formal verification can help produce extremely reliable systems,
including compilers [41] and operating systems [18, 39]. Verdi en-
ables the construction of reliable, fault-tolerant distributed systems
whose behavior has been formally verified. This paper focuses on
safety properties for distributed systems; we leave proofs of liveness
properties for future work.

Applying formal verification techniques to distributed system im-
plementations is challenging. First, while tools like TLA [19] and Al-
loy [15] provide techniques for reasoning about abstract distributed
algorithms, few practical distributed system implementations have
been formally verified. For performance reasons, real-world imple-
mentations often diverge in important ways from their high-level
descriptions [3]. Thus, our goal with Verdi is to verify working code.
Second, distributed systems run in a diverse range of environments.
For example, some networks may reorder packets, while other net-
works may also duplicate them. Verdi must support verifying ap-
plications against these different fault models. Third, it is difficult
to prove that application-level guarantees hold in the presence of
faults. Verdi aims to help the programmer separately prove correct-
ness of application-level behavior and correctness of fault-tolerance
mechanisms, and to allow these proofs to be easily composed.

Verdi addresses the above challenges with three key ideas. First,
Verdi provides a Coq toolchain for writing executable distributed
systems and verifying them; this avoids a formality gap between
the model and the implementation. Second, Verdi provides a flex-
ible mechanism to specify fault models as network semantics.
This allows programmers to verify their system in the fault model
corresponding to their environment. Third, Verdi provides a com-
positional technique for implementing and verifying distributed
systems by separating the concerns of application correctness and
fault tolerance. This simplifies the task of providing end-to-end
guarantees about distributed systems.

To achieve compositionality, we introduce verified system trans-
formers. A system transformer is a function whose input is an
implementation of a system and whose output is a new system
implementation that makes different assumptions about its environ-
ment. A verified system transformer includes a proof that the new
system satisfies properties analogous to those of the original system.
For example, a Verdi programmer can first build and verify a system

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

PLDI’15, June 13–17, 2015, Portland, OR, USA

ACM. 978-1-4503-3468-6/15/06

http://dx.doi.org/10.1145/2737924.2737958

357

• Specification: asynchronous disk writes are not affected by crashes
• Assumptions about semantics of extraction and linking with other drivers
• Proof effort: 81 kLOC of specifications and proofs

FSCQ (2015)
a crash-tolerant file system

Using Crash Hoare Logic for Certifying the FSCQ File System
Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich

MIT CSAIL

Abstract
FSCQ is the first file system with a machine-checkable proof
(using the Coq proof assistant) that its implementation meets
its specification and whose specification includes crashes.
FSCQ provably avoids bugs that have plagued previous file
systems, such as performing disk writes without su�cient
barriers or forgetting to zero out directory blocks. If a crash
happens at an inopportune time, these bugs can lead to data
loss. FSCQ’s theorems prove that, under any sequence of
crashes followed by reboots, FSCQ will recover the file sys-
tem correctly without losing data.

To state FSCQ’s theorems, this paper introduces the Crash
Hoare logic (CHL), which extends traditional Hoare logic with
a crash condition, a recovery procedure, and logical address
spaces for specifying disk states at di↵erent abstraction levels.
CHL also reduces the proof e↵ort for developers through
proof automation. Using CHL, we developed, specified, and
proved the correctness of the FSCQ file system. Although
FSCQ’s design is relatively simple, experiments with FSCQ
running as a user-level file system show that it is su�cient
to run Unix applications with usable performance. FSCQ’s
specifications and proofs required significantly more work
than the implementation, but the work was manageable even
for a small team of a few researchers.

1 Introduction
This paper describes Crash Hoare logic (CHL), which allows
developers to write specifications for crash-safe storage sys-
tems and also prove them correct. “Correct” means that, if
a computer crashes due to a power failure or other fail-stop
fault and subsequently reboots, the storage system will recover
to a state consistent with its specification (e.g., POSIX [34]).
For example, after recovery, either all disk writes from a file
system call will be on disk, or none will be. Using CHL we
build the FSCQ certified file system, which comes with a
machine-checkable proof that its implementation is correct.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author.

Copyright is held by the owner/author(s).
SOSP’15, Oct. 4–7, 2015, Monterey, California, USA.
ACM 978-1-4503-3834-9/15/10.
http://dx.doi.org/10.1145/2815400.2815402

Proving that a file system is crash-safe is important, because
it is otherwise hard for the file-system developer to ensure
that the code correctly handles all possible points where a
crash could occur, both while a file-system call is running
and during the execution of recovery code. Often, a system
may work correctly in many cases, but if a crash happens at
a particular point between two specific disk writes, then a
problem arises [55, 70].

Current approaches to building crash-safe file systems fall
roughly into three categories (see §2 for more details): testing,
program analysis, and model checking. Although they are ef-
fective at finding bugs in practice, none of them can guarantee
the absence of crash-safety bugs in actual implementations.
This paper focuses precisely on this issue: helping developers
build file systems with machine-checkable proofs that they
correctly recover from crashes at any point.

Researchers have used theorem provers for certifying real-
world systems such as compilers [45], small kernels [43], ker-
nel extensions [61], and simple remote servers [30], but none
of these systems are capable of reasoning about file-system
crashes. Reasoning about crash-free executions typically in-
volves considering the states before and after some operation.
Reasoning about crashes is more complicated because crashes
can expose intermediate states.

Challenges and contributions. Building an infrastructure
for reasoning about file-system crashes poses several chal-
lenges. Foremost among those challenges is the need for a
specification framework that allows the file-system developer
to state the system behavior under crashes. Second, it is im-
portant that the specification framework allows for proofs to
be automated, so that one can make changes to a specifica-
tion and its implementation without having to redo all of the
proofs manually. Third, the specification framework must be
able to capture important performance optimizations, such
as asynchronous disk writes, so that the implementation of a
file system has acceptable performance. Finally, the specifica-
tion framework must allow modular development: developers
should be able to specify and verify each component in iso-
lation and then compose verified components. For instance,
once a logging layer has been implemented, file-system devel-
opers should be able to prove end-to-end crash safety in the
inode layer by simply relying on the fact that logging ensures
atomicity; they should not need to consider every possible
crash point in the inode code.

To meet these challenges, this paper makes the following
contributions:

1

Does it really work?

(in PLDI 2011)

Compilers should be correct. 

To improve the quality of C compilers, we
created Csmith, a randomized test-case
generation tool, and spent three years
using it to find compiler bugs.  

During this period we reported more than
325 previously unknown bugs to
compiler developers.

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr
University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-

ing]: Testing and Debugging—testing tools; D.3.2 [Programming

Languages]: Language Classifications—C; D.3.4 [Programming

Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction

The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c� ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 32nd ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), San Jose, CA,
Jun. 2011, http://doi.acm.org/10.1145/1993498.1993532

1 int foo (void) {
2 signed char x = 1;
3 unsigned char y = 255;
4 return x > y;
5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the

compilers they use” (emphasis ours). As another example, the front

1

The striking thing about our CompCert results is
that the middle-end bugs we found in all other
compilers are absent.
 
As of early 2011, the under-development version
of CompCert is the only compiler we have tested
for which Csmith cannot find wrong-code errors.
This is not for lack of trying: we have devoted
about six CPU-years to the task.
 
The apparent unbreakability of CompCert
supports a strong argument that developing
compiler optimizations within a proof framework,
where safety checks are explicit and machine-
checked, has tangible benefits for compiler users.

So, bye-bye testing?

Formal Verification is Expensive

• CompCert 
146 kLOC

• Verdi  
50 kLOC

• FSCQ 
81 kLOC

Formal Verification is Expensive

• CompCert 
146 kLOC, 10+ person-years

• Verdi  
50 kLOC, 3+ person-years

• FSCQ 
81 kLOC, 5+ person-years

Formal Verification is Expensive

• CompCert 
146 kLOC, 10+ person-years

• Verdi  
50 kLOC, 3+ person-years

• FSCQ 
81 kLOC, 5+ person-years

Assumptions Matter

Story 1: CompCert
Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr
University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-

ing]: Testing and Debugging—testing tools; D.3.2 [Programming

Languages]: Language Classifications—C; D.3.4 [Programming

Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction

The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c� ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 32nd ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), San Jose, CA,
Jun. 2011, http://doi.acm.org/10.1145/1993498.1993532

1 int foo (void) {
2 signed char x = 1;
3 unsigned char y = 255;
4 return x > y;
5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the

compilers they use” (emphasis ours). As another example, the front

1

GCC LLVM

Crash 2 10
Wrong code 2 9
Total 4 19

Table 2. Crash and wrong-code bugs found by Csmith that manifest
when compiler optimizations are disabled (i.e., when the –O0
command-line option is used)

3.1 Opportunistic Bug Finding

We reported bugs to 11 different C compiler development teams.
Five of these compilers (GCC, LLVM, CIL, TCC, and Open64)
were open source and five were commercial products. The eleventh,
CompCert, is publicly available but not open source.

What kinds of bugs are there? It is useful to distinguish between
errors whose symptoms manifest at compile time and those that
only manifest when the compiler’s output is executed. Compile-
time bugs that we see include assertion violations or other internal
compiler errors; involuntary compiler termination due to memory-
safety problems; and cases in which the compiler exhausts the RAM
or CPU time allocated to it. We say that a compile-time crash error

has occurred whenever the compiler process exits with a status other
than zero or fails to produce executable output. Errors that manifest
at run time include the computation of a wrong result; a crash or
other abnormal termination of the generated code; termination of a
program that should have executed forever; and non-termination of
a program that should have terminated. We refer to these run-time
problems as wrong-code errors. A silent wrong-code error is one
that occurs in a program that was produced without any sort of
warning from the compiler; i.e., the compiler silently miscompiled
the test program.

Experience with commercial compilers There exist many more
commercial C compilers than we could easily test. The ones we
chose to study are fairly popular and were produced by what we
believe are some of the strongest C compiler development teams.
Csmith found wrong-code errors and crash errors in each of these
tools within a few hours of testing.

Because we are not paying customers, and because our findings
represent potential bad publicity, we did not receive a warm response
from any commercial compiler vendor. Thus, for the most part, we
simply tested these compilers until we found a few crash errors and
a few wrong-code errors, reported them, and moved on.

Experience with open-source compilers For several reasons, the
bulk of our testing effort went towards GCC and LLVM. First and
most important, compiler testing is inherently interactive: we require
feedback from the development team in the form of bug fixes.
Bugs that occur with high probability can mask tricky, one-in-a-
million bugs; thus, testing proceeds most smoothly when we can
help developers rapidly destroy the easy bugs. Both the GCC and
LLVM teams were responsive to our bug reports. The LLVM team
in particular fixed bugs quickly, often within a few hours and usually
within a week. The second reason we prefer dealing with open-
source compilers is that their development process is transparent:
we can watch the mailing lists, participate in discussions, and see
fixes as they are committed. Third, we want to help harden the
open-source development tools that we and many others use daily.

So far we have reported 79 GCC bugs and 202 LLVM bugs—the
latter figure represents about 2% of all LLVM bug reports. Most of
our reported bugs have been fixed, and twenty-five of the GCC bugs
were marked by developers as P1: the maximum, release-blocking
priority for a bug. To date, we have reported 325 in total across all
tested compilers (GCC, LLVM, and others).

An error that occurs at the lowest level of optimization is
pernicious because it defeats the conventional wisdom that compiler
bugs can be avoided by turning off the optimizer. Table 2 counts
these kinds of bugs, causing both crash and wrong-code errors, that
we found using Csmith.

Testing CompCert CompCert [14] is a verified, optimizing com-
piler for a large subset of C; it targets PowerPC, ARM, and x86. We
put significant effort into testing this compiler.

The first silent wrong-code error that we found in CompCert was
due to a miscompilation of this function:

1 int bar (unsigned x) {
2 return -1 <= (1 && x);
3 }

CompCert 1.6 for PowerPC generates code returning 0, but the
proper result is 1 because the comparison is signed. This bug and five
others like it were in CompCert’s unverified front-end code. Partly
in response to these bug reports, the main CompCert developer
expanded the verified portion of CompCert to include C’s integer
promotions and other tricky implicit casts.

The second CompCert problem we found was illustrated by two
bugs that resulted in generation of code like this:

stwu r1, -44432(r1)

Here, a large PowerPC stack frame is being allocated. The problem
is that the 16-bit displacement field is overflowed. CompCert’s
PPC semantics failed to specify a constraint on the width of this
immediate value, on the assumption that the assembler would catch
out-of-range values. In fact, this is what happened. We also found a
handful of crash errors in CompCert.

The striking thing about our CompCert results is that the middle-
end bugs we found in all other compilers are absent. As of early 2011,
the under-development version of CompCert is the only compiler we
have tested for which Csmith cannot find wrong-code errors. This is
not for lack of trying: we have devoted about six CPU-years to the
task. The apparent unbreakability of CompCert supports a strong
argument that developing compiler optimizations within a proof
framework, where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.

3.2 Quantitative Comparison of GCC and LLVM Versions

Figure 3 shows the results of an experiment in which we com-
piled and ran 1,000,000 randomly generated programs using
LLVM 1.9–2.8, GCC 3.[0–4].0, and GCC 4.[0–5].0. Every pro-
gram was compiled at –O0, –O1, –O2, –Os, and –O3. A test case
was considered valid if every compiler terminated (successfully
or otherwise) within five minutes and if every compiled random
program terminated (correctly or otherwise) within five seconds. All
compilers targeted x86. Running these tests took about 1.5 weeks
on 20 machines in the Utah Emulab testbed [28]. Each machine had
one quad-core Intel Xeon E5530 processor running at 2.4 GHz.

Compile-time failures The top row of graphs in Figure 3 shows
the observed rate of crash errors. (Note that the y-axes of these
graphs are logarithmic.) These graphs also indicate the number of
crash bugs that were fixed in response to our bug reports. Both
compilers became at least three orders of magnitude less “crashy”
over the range of versions covered in this experiment. The GCC
results appear to tell a nice story: the 3.x release series increases
in quality, the 4.0.0 release regresses because it represents a major
change to GCC’s internals, and then quality again starts to improve.

The middle row of graphs in Figure 3 shows the number of
distinct assertion failures in LLVM and the number of distinct

internal compiler errors in GCC induced by our tests. These are the
numbers of code locations in LLVM and GCC at which an internal

6

Wrong assumption  
about compiled  

assembly execution!

Story 2: Verdi

Wrong assumption  
about the crash model!

328

An Empirical Study on the Correctness of

Formally Verified Distributed Systems

Pedro Fonseca Kaiyuan Zhang Xi Wang Arvind Krishnamurthy

University of Washington

{pfonseca, kaiyuanz, xi, arvind}@cs.washington.edu

Abstract

Recent advances in formal verification techniques enabled
the implementation of distributed systems with machine-
checked proofs. While results are encouraging, the impor-
tance of distributed systems warrants a large scale evaluation
of the results and verification practices.

This paper thoroughly analyzes three state-of-the-art, for-
mally verified implementations of distributed systems: Iron-
Fleet, Verdi, and Chapar. Through code review and testing,
we found a total of 16 bugs, many of which produce serious
consequences, including crashing servers, returning incor-
rect results to clients, and invalidating verification guaran-
tees. These bugs were caused by violations of a wide-range
of assumptions on which the verified components relied. Our
results revealed that these assumptions referred to a small
fraction of the trusted computing base, mostly at the inter-
face of verified and unverified components. Based on our
observations, we have built a testing toolkit called PK, which
focuses on testing these parts and is able to automate the de-
tection of 13 (out of 16) bugs.

1. Introduction

Distributed systems, complex and difficult to implement cor-
rectly, are notably prone to bugs. This is partially because
developers find it challenging to reason about the combina-
tion of concurrency and failure scenarios. As a result, dis-
tributed systems bugs pose a serious problem for both ser-
vice providers and end users, and have critically caused ser-
vice interruptions and data losses [58]. The struggle to im-
prove their reliability spawned several important lines of re-
search, such as programming abstractions [5, 38, 46], bug-
finding tools [27, 39, 55, 56], and formal verification tech-
niques [23, 30, 36, 54].

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

EuroSys ’17 April 23-26, 2017, Belgrade, Serbia

© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064183

Figure 1: An overview of the workflow to verify a distributed
system implementation.

Formal verification, in particular, offers an appealing ap-
proach because it provides a strong correctness guarantee
of the absence of bugs under certain assumptions. Over the
last few decades, the dramatic advances in formal verifica-
tion techniques have allowed these techniques to scale to
complex systems. They were successfully applied to build
large single-node implementations, such as the seL4 OS ker-
nel [28] and the CompCert compiler [35]. More recently,
they enabled the verification of complex implementations of
distributed protocols, including IronFleet [23], Verdi [54],
and Chapar [36], which are known to be non-trivial to im-
plement correctly.

At a high level, verifying these distributed system imple-
mentations follows the workflow shown in Figure 1. First,
developers describe the desired behavior of the system in a
high-level specification, which is often manually reviewed
and trusted to be correct. Developers also need to model
the primitives, such as system calls provided by the OS, on
which the implementation relies upon; we refer to this as the
shim layer. Finally, developers invoke auxiliary tools (e.g.,
scripts) to communicate with a verifier and print results. The
specification, the shim layer, and auxiliary tools, as well as
the components they glue together, are part of the trusted
computing base (TCB). If the verification check passes, it
guarantees the correctness of the implementation, assuming
the TCB is correct.

Overall, 7 bugs are found

334

Bug V5: System call error causes wrong results and data

loss.

This bug affected servers that were recovering and was
ultimately caused by the server not correctly distinguishing
between situations where there was both a log and snapshot
and those where there was only a log. The latter occurred if
the server crashed before it executed 1000 events (i.e., when
the first snapshot is created).

During recovery, the server tried to read the snapshot file
and if it failed to open it, the server wrongly presumed that
the snapshot file did not exist. In practice, this meant that
a transient error returned by the open system call, such as
insufficient kernel memory or too many open files, caused
the server to silently ignore the snapshot.

Our testing framework generated a test case that caused
the servers to silently return results as if no operations had
been executed before the server crashed, even though they
had. This bug could also lead to other forms of safety viola-
tions given that servers discard a prefix of events (the snap-
shot) but read the suffix (the log), potentially passing valida-
tion checks. Further, the old snapshot could be overwritten
after a sufficient number of operations were executed.

4.3 Resource Limits

This section describes three bugs that involve exceeding
resource limits.

Bug V6: Large packets cause server crashes.

The server code that handled incoming packets had a bug
that could cause the server to crash under certain conditions.
The bug, due to an insufficiently small buffer in the OCaml
code, caused incoming packets to truncate large packets and
subsequently prevented the server from correctly unmarshal-
ing the message.

More specifically, this bug could be triggered when a
follower replica substantially lagged behind the leader. This
could occur if the follower crashed and stayed offline while
the rest of the servers processed approximately 200 client
requests. Then, during recovery, the follower would request
the list of missing operations, which would all be combined
into a single large UDP packet that exceeded the buffer size
and crashed the server.

The fix to this problem was to simply increase the size
of the buffer to the maximum size of the contents of a
UDP packet. However, bugs Bug V7 and Bug V8, which we
describe next, were also related to large updates caused by
lagging replicas but these are harder to fix.

Bug V7: Failing to send a packet causes server to stop re-

sponding to clients.

Another bug we found prevented servers from responding
to clients when the leader tried to send large packets to
a lagging follower. The problem was caused by wrongly
assuming that there was no limit on the packet size and
by incorrectly handling the error produced by the sendto

let rec findGtIndex orig_base_params raft_params0

entries i =

match entries with

| [] -> []

| e :: es ->

if (<) i e.eIndex

then e :: (findGtIndex orig_base_params

raft_params0 es i)

else []

Figure 8: OCaml code, generated from verified Coq code, that
crashed with a stack overflow error (Bug V8). In practice, the stack
overflow was triggered by a lagging replica.

system call. This bug was triggered when a replica that
lagged behind the leader by approximately 2500 requests
tried to recover.

In contrast to Bug V6, this bug was due to incorrect code
on the sender side. In practice, the consequence was that
a recovering replica could prevent a correct replica from
working properly. The current fix applied by the developers
mitigates this bug by improving error handling, but it still
does not allow servers to send large state.

Bug V6 and Bug V7 were the only two that we did not have
to report to developers because the developers independently
addressed the bugs during our study.

Bug V8: Lagging follower causes stack overflow on leader.

After applying a fix for Bug V6 and Bug V7, we found that
Verdi suffered from another bug that affected the sender side
when a follower tried to recover. This bug caused the server
to crash with a stack overflow error and was triggered when
a recovering follower lagged by more than 500,000 requests.

After investigating, we determined that the problem was
caused by the recursive OCaml function findGtIndex()

that is generated from verified code. This function, which
constructed a list of missing log entries from the follower,
was executed before the server tried to send network data.
This was an instance of a bug caused by exhaustion of
resources (stack memory).

Figure 8 shows the generated code responsible for crash-
ing the server with the stack overflow. This bug appeared
difficult to fix as it would require reasoning about resource
consumption at the verified transformation level (§2.3). It
also could have serious consequences in a deployed setting
because the recovering replica could iteratively cause all
servers to crash, bringing down the entire replicated system.

4.4 Summary of Findings

Finding 1: The majority (9/11) of shim layer bugs caused

servers to crash or hang.

Bugs that cause servers to crash or stop responding are
particularly serious, especially for replicated distributed sys-
tems that have the precise goal of increasing service avail-
ability by providing fault-tolerance. Therefore, proving live-

Story 3: FSCQ

Story 3: FSCQ

Checkpoint
• Costs of formal verification are high,  

but so are the provided correctness guarantees

• Realistic systems are always verified in the presence of  
non-trivial assumptions about their usage

• These assumptions might be broken in the real world,  
thus invalidating the claims of theorems

• Testing helps to validate the assumptions.

What about Blockchains
and their Applications?

What about Blockchains
and their Applications?

• We’re at the stage of proving specifications of smart contracts

• We can also verify properties of executable protocols

(system layer)

(application layer)

Verifying Protocol Implementations

Mechanising Blockchain Consensus
George Pîrlea

University College London, UK
george.pirlea.15@ucl.ac.uk

Ilya Sergey
University College London, UK

i.sergey@ucl.ac.uk

Abstract
We present the �rst formalisation of a blockchain-based dis-
tributed consensus protocol with a proof of its consistency
mechanised in an interactive proof assistant.
Our development includes a reference mechanisation of

the block forest data structure, necessary for implementing
provably correct per-node protocol logic. We also de�ne a
model of a network, implementing the protocol in the form
of a replicated state-transition system. The protocol’s execu-
tions are modeled via a small-step operational semantics for
asynchronous message passing, in which packages can be
rearranged or duplicated.
In this work, we focus on the notion of global system

safety, proving a form of eventual consistency. To do so, we
provide a library of theorems about a pure functional im-
plementation of block forests, de�ne an inductive system
invariant, and show that, in a quiescent system state, it im-
plies a global agreement on the state of per-node transaction
ledgers. Our development is parametric wrt. implementa-
tions of several security primitives, such as hash-functions, a
notion of a proof object, a Validator Acceptance Function, and a
Fork Choice Rule. We precisely characterise the assumptions,
made about these components for proving the global system
consensus, and discuss their adequacy. All results described
in this paper are formalised in Coq.

CCS Concepts • Theory of computation ! Program
veri�cation; • Networks! Formal speci�cations;

Keywords blockchain, consensus, protocol veri�cation, Coq

ACM Reference Format:
George Pîrlea and Ilya Sergey. 2018. Mechanising Blockchain Con-
sensus. In Proceedings of 7th ACM SIGPLAN International Conference
on Certi�ed Programs and Proofs (CPP’18).ACM, New York, NY, USA,
13 pages. h�ps://doi.org/10.1145/3167086

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
CPP’18, January 8–9, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5586-5/18/01. . . $15.00
h�ps://doi.org/10.1145/3167086

1 Introduction
The notion of decentralised blockchain-based consensus is
a tremendous success of the modern science of distributed
computing, made possible by the use of basic cryptography,
and enabling many applications, including but not limited
to cryptocurrencies, smart contracts, application-speci�c
arbitration, voting, etc.
In a nutshell, the idea of a distributed consensus proto-

col based on blockchains, or transaction ledgers,1 is rather
simple. In all such protocols, a number of stateful nodes
(participants) are communicating with each other in an asyn-
chronous message-passing style. In a message, a node (a)
can announce a transaction, which typically represents a
certain event in the system, depending on the previous state
of the node or the entire network (we intentionally leave
out the details of what can go into a transaction, as they are
application-speci�c); a node can also (b) create and broad-
cast a block that contains the encoding of a certain vector
of transactions, created locally or received via messages of
type (a) from other nodes. Each recipient of a block message
should then validate the block (i.e., check the consistency of
the transaction sequence included in it), and, in some cases,
append it to its local ledger, thus, extending its subjective
view of the global sequence of transactions that have taken
place in the system to date. The process continues as more
messages are emitted and received.
In order to control the number of blocks in the system,

distributed ledger protocols rely on certain cryptographic
primitives, such as a hash-function hash de�ned both on
transactions and blocks, a notion of a proof object necessary
for de�ning the validity of a block, and an implementation of
a Validator Acceptance Function (VAF) that is used to ensure
that a blockb is validwrt. to a proof object pf . Having a block
b and a proof object pf , one can check very fast whether
VAF b pf is true or false. What appears to be di�cult is
to produce an instance of a proof object pf , as it requires
computing a pre-image of the hash function with respect
to the current state of the local ledger of a speci�c node.
The exact speci�cs of designing a VAF and a discipline for
minting blocks with VAF-valid proof objects, is a subject of
active research, which is far beyond the scope of this paper,
with the best known approaches being Proof-of-Work [9,
24] and Proof-of-Stake [3]. The computational hardness or

1Hereafter, wewill be using the terms “(transaction) ledger” and “blockchain”
interchangeably.

1

• Specification: nodes, asynchronously exchanging blocks, reach agreement
• Assumptions clique topology, fork-chain rule properties,  

 no restrictions wrt. PoW hardness of minting a block.
• Proof effort: 3 kLOC of specifications and proofs

• blocks, ledgers, block forestsDefinitions

• hashes are collision-free
• FCR imposes strict total orderAssumptions

• local state + messages “in flight” =
global Invariant

• when all block messages are delivered,
everyone agreesTheorem

Invariant is inductive
state

1

state
2

state
3

state
4

state
5

system step

invariant holds

invariant holds

system step invariant holds

system step invariant holds

system step invariant holds

Invariant implies Quiescent Consistency (QC)

•QC: when all blocks delivered, everyone agrees

How:
• local state + “in-flight” = global
• use FCR to extract “heaviest” chain out of local state

• since everyone has same state & same FCR
➢consensus

(more interesting properties are yet to be proven…)

Verifying Smart Contract Properties

Principled model for computations

Not Turing-complete

Explicit Effects

Communication

System F with small extensions

Only primitive recursion/iteration

State-transformer semantics

Contracts are communicating automata

S�����: a Smart Contract Intermediate-Level LAnguage
Automata for Smart Contract Implementation and Veri�cation

Ilya Sergey
University College London
i.sergey@ucl.ac.uk

Amrit Kumar
National University of Singapore

amrit@comp.nus.edu.sg

Aquinas Hobor
Yale-NUS College

National University of Singapore
hobor@comp.nus.edu.sg

Abstract
This paper outlines key design principles of S�����—an intermediate-
level language for veri�ed smart contracts.

S����� provides a clean separation between the communication
aspect of smart contracts on a blockchain, allowing for the rich
interaction patterns, and a programming component, which enjoys
principled semantics and is amenable to formal veri�cation. S�����
is not meant to be a high-level programming language, and we
are going to use it as a translation target for high-level languages,
such as Solidity, for performing program analysis and veri�cation,
before further compilation to an executable bytecode.

We describe the automata-based model of S�����, present its
programming component and show how contract de�nitions in
terms of automata streamline the process of mechanised veri�cation
of their safety and temporal properties.

1 Introduction
Smart contracts are a mechanism for expressing computations on a
blockchain, i.e., a decentralised Byzantine-fault-tolerant distributed
ledger. In addition to typical state of computations, a blockchain
stores a mapping from accounts (public keys or addresses) to quan-
tities of tokens owned by said accounts. Execution of an arbitrary
program aka a smart contract is done by miners, who run the com-
putations and maintain the distributed ledger in exchange for a
combination of gas (transaction fees based on the execution length,
denominated in the intrinsic tokens and paid by the account calling
the smart contract) and block rewards (in�ationary issuance of fresh
tokens by the underlying protocol). One distinguishing property of
smart contracts, not found in standard computational settings is
the transfer of tokens between accounts.

One of the challenges of writing smart contracts is that the
implemented operational semantics of smart contract languages
admit rather subtle behaviour that diverge from the “intuitive un-
derstanding” of the language in the minds of contract developers.
Some of the largest attacks on smart contracts, e.g., the attack on
the DAO [29] and Parity wallet [17] contracts, have turned on
such divergencies.1 Software development techniques that have
proven very e�ective in other domains such as app development
(e.g., “move fast and break things” [4]) have not translated success-
fully to smart contract development because it is nearly impossible
to patch a contract once deployed due to the anonymous Byzantine
execution environment of a public blockchain [29]. Moreover, soft-
ware engineering techniques, such as static and dynamic analysis
tools such as Manticore [6], Mythril [8], Oyente [9], Solgraph [13]
have not yet proven to be e�ective in increasing the reliability of
smart contracts.

1By sending money to a user-chosen address, the DAO actually called user-chosen
code, which in turn executed an unexpected callback into the original contract, which
was in a “dirty” state [48].

Formal methods, such as veri�cation and model checking, are
an attractive alternative for increasing the reliability of smart con-
tracts [12, 20, 33]. Formal methods can provide precise de�nitions
for operational behaviour, and therefore can illuminate and hope-
fully reduce subtle behaviour. Generally speaking, formal methods
can produce more rigorous guarantees about program behaviour:
mathematical proofs instead of summaries of accumulated ad-hoc
experience. Moreover, formal methods can provide static guaran-
tees, guaranteeing safety and liveness properties before contracts
are irrevocably committed to the blockchain.

In order to apply formal methods e�ciently in such a new setting
to reason about smart contracts and enable e�cient language-based
veri�cation [51], one must weigh several factors:

• Expressivity. There is a trade-o� between making a language
simpler to understand and making it more expressive. Bitcoin
script [3] occupies the “simpler” end of the spectrum: contracts ba-
sically specify validity conditions (simple expressions) that must
hold before coins can be transferred. Ethereum [54] occupies
the “expressive” end of the spectrum, with a Turing-complete in-
struction set. However, expressivity is not free. Turing-complete
languages are more complex to reason about, especially in an
automated manner. Moreover, in�nite computations are neither
possible nor desirable on a blockchain due to the use of gas to
compensate miners (an in�nite loop will happily consume as
much gas as one cares to feed it even if no progress is being
made). It is as yet unclear if the expressivity of a fully Turing-
complete instruction set is necessary to support a practical smart
contract ecosystem.

• State. Fundamentally, the blockchain is a stateful database due
to the necessity of maintaining and securely updating the map-
ping between accounts and tokens owned. Moreover, the “event-
driven” style of programming employed by many smart contracts
(which tend to wait for messages, act on them, and then return
to waiting for the next message) requires the storage of contract
state between calls. A contract implementing an Initial Coin Of-
fering (ICO) campaign, which records each contributor and the
size of their contributions is a standard example of such a stateful
event-driven contract. On the other hand, purely functional lan-
guages are less error-prone, harder to attack, easier to parallelise,
and easier to reason about, so there are good reasons to consider
approaches that use mutable state sparingly.

• Communication. Contracts are often used to allow multiple
mutually-distrusting parties to interact. This interaction can oc-
cur in several ways: by one contract calling another, by rais-
ing an event (to be seen and handled o�-chain), or by o�-chain
computations calling back into the blockchain in later blocks.
Communication is highly desirable, but can introduce both gen-
uine and faux-concurrent behaviour, especially in a Byzantine
environment, enabling attacks due to potentially corrupted state.

1

Reasoning about Scilla Contracts

• What can be specified and proven
• Local properties (e.g., "transition does not throw an exception")
• Invariants (e.g., "balance is always strictly positive")
• Temporal Properties (something good eventually happens)

Q since P as long R ≝  
 ∀ conf conf′, conf →R* conf′, P(conf) ⇒ Q(conf, conf′)

•“Token price only goes up”

•“No payments accepted after the quorum is reached”

•“No changes can be made after locking”

•“Consensus results are irrevocable”

ConfC Conf0C Conf00C
m m′

P holds here Q holds here

Temporal Properties

R holds for intermediate messages

z}|{

Assumptions for Scilla-enabled
Formal Verification

• Translation from Scilla to Coq correct (in the compiler sense)
• future work: verified Scilla interpreter implemented in Coq  

• Formalised in Coq model of message-passing corresponds
precisely to the blockchain back-end.

Looking Ahead
• What are the right properties of Blockchain systems to prove?

• Most of the interesting properties require probabilistic reasoning
• Chain-growth, common-prefix, etc. — none are proven for real code!

• What are the right specifications for smart contracts?
• Can we reason about incentives for interaction with smart contracts?
• Can we teach non-experts in FM to state them?

• What should be the reusable libraries to make mechanised formal reasoning
about blockchains tractable and scalable?

To Take Away

• Formal verification requires precise specification and cannot be conducted
without reasonable assumptions

• Mechanically-checked proofs provide the best correctness guarantees

• Yet, testing shouldn’t be dismissed: it helps check the assumptions

• Mechanised formal reasoning is expensive but might well worth it  
for correctness-critical systems—especially blockchains and smart contracts

What We Talk about When We Talk about  
Formally Verified Systems

Thanks!

