
Ilya Sergey
ilyasergey.net

PLMW @ POPL 2019

How to Bootstrap a Research Project

About myself
 2

MSc Saint Petersburg State University, 2008  
PhD KU Leuven, 2008-2012

 
Currently Associate Professor (tenure-track) at Yale-NUS College & NUS  
 
Previously Lecturer at University College London  
 Postdoc at IMDEA Software Institute  
 Software Engineer at JetBrains

Anxiety

 3

Why do a PhD?

 4

Why do a PhD?

Challenge

 5

Not this kind of Challenge…
 6

More like this kind of Challenge

http://www.claymath.org/millennium-problems

?

?
?
?

?

 7

Challenge
paper.pdf

Challenge?
paper.pdf

Acc
ept

ed
 

to
POP

L

 8

Challenge
paper.pdf

Challenge?
paper.pdf

Acc
ept

ed
 

to
POP

L

 9

Challenge
paper.pdf

Challenge?
paper.pdf

Acc
ept

ed
 

to
POP

L

 10

Challenge
paper.pdf

What is “?”

 11

Picture from https://www.guyanassociates.com

When did it go wrong?

• Need to find your own project

• Lost interest in a given project

• Got scooped

• Writer’s Block

 13

Research Limbo

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of  
what I’m about to do.

Limbo game art copyright: Playdead ApS

 14

You know what to do

 15

Blame Others

• your advisor
• your research environment
• your officemates
• your parents
• the pizza delivery guys

 16

Escaping Research Limbo

 17

Big Picture

human knowledge

your knowledge

Matt Might. The illustrated guide to a Ph.D. 
http://matt.might.net/articles/phd-school-in-pictures/

 18

?

?

?

?

? ?

??

? ?

?

?

??

?

?
advisor’s 

role

 19

?

?

?

?

?

?

?

?

?
?

?

?

?
?

?

?

 20

?

?

?

?

?

?

?

?

?
?

?

?

?
?

?

?

 21

?

?

?

?

?

?

?

?

?
?

?

?

?
?

?

?

 22

?

 23

?

Application Domain

Tools and Techniques

 24

• Type Theory
• Semantics
• Abstract Interpretation
• SMT and Model Checking
• Logics and Proof Assistants
• Program Synthesis, etc

• Machine Learning
• Security and Privacy
• Quantum Computation
• Processor Architecture
• Resource Consumption
• Web, etc

Application DomainTools and Techniques
 25

One researcher’s Technique
is

another researcher’s Domain

 26

One researcher’s Technique
is

another researcher’s Domain

 27

This year at POPL
• Pretend Synchrony: Synchronous Verification of Asynchronous Distributed Programs
• A Separation Logic for Concurrent Randomized Programs
• Bayesian Synthesis of Probabilistic Programs for Automatic Data Modeling
• An Abstract Domain for Certifying Neural Networks
• Game Semantics for Quantum Programming
• Type-Driven Gradual Security with References
• ISA Semantics for ARMv8-A, RISC-V, and CHERI-MIPS
• JaVerT 2.0: Compositional Symbolic Execution for JavaScript
• LWeb: Information Flow Security for Multi-Tier Web Applications

 28

Step 1: Read

Escaping Research Limbo
 29

?

Application Domain

Tools and Techniques

 30

?

 31

?

 32

?

 33

?

 34

?

 35

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 36

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 37

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 38

?

 39

Finding the Path

 40

There is no royal road to geometry.  
Euclid

Research is from “search”.
Aleks Nanevski

Move Fast and Break Things.
©

 41

Step 2:

Escaping Research Limbo

Hack

 42

Pick your Favourite Tools
 43

A typical POPL paper
• Introduction
• Overview
• Theory
• Mechanisation / Implementation
• Case Studies / Evaluation
• Related Work and Conclusion

 44

A typical POPL paper
• Introduction
• Overview
• Theory
• Mechanisation / Implementation
• Case Studies / Evaluation
• Related Work and Conclusion

 45

Evaluation

Theory

Implementation

The Scientific Method
 46

Implementation

 47

Evaluation

Implementation

 48

Evaluation

Theory

Implementation

 49

DomainTechnique

72

Structuring the Synthesis of Heap-Manipulating Programs

NADIA POLIKARPOVA, University of California, San Diego, USA

ILYA SERGEY, Yale-NUS College, Singapore and National University of Singapore, Singapore

This paper describes a deductive approach to synthesizing imperative programs with pointers from declarative
specifications expressed in Separation Logic. Our synthesis algorithm takes as input a pair of assertions—
a pre- and a postcondition—which describe two states of the symbolic heap, and derives a program that
transforms one state into the other, guided by the shape of the heap. Our approach to program synthesis
is grounded in proof theory: we introduce the novel framework of Synthetic Separation Logic (SSL), which
generalises the classical notion of heap entailment P ⊢ Q to incorporate a possibility of transforming a heap
satisfying an assertion P into a heap satisfying an assertion Q. A synthesized program represents a proof
term for a transforming entailment statement P ! Q, and the synthesis procedure corresponds to a proof
search. The derived programs are, thus, correct by construction, in the sense that they satisfy the ascribed
pre/postconditions, and are accompanied by complete proof derivations, which can be checked independently.

We have implemented a proof search engine for SSL in a form of the program synthesizer called SuSLik.
For efficiency, the engine exploits properties of SSL rules, such as invertibility and commutativity of rule
applications on separate heaps, to prune the space of derivations it has to consider. We explain and showcase
the use of SSL on characteristic examples, describe the design of SuSLik, and report on our experience of
using it to synthesize a series of benchmark programs manipulating heap-based linked data structures.

CCS Concepts: • Theory of computation→ Logic and verification; • Software and its engineering→
Automatic programming;

Additional Key Words and Phrases: Program Synthesis, Separation Logic, Proof Systems, Type Theory

ACM Reference Format:
Nadia Polikarpova and Ilya Sergey. 2019. Structuring the Synthesis of Heap-Manipulating Programs. Proc.
ACM Program. Lang. 3, POPL, Article 72 (January 2019), 30 pages. https://doi.org/10.1145/3290385

1 INTRODUCTION

Consider the task of implementing a procedure swap(x, y), which swaps the values stored at
two distinct heap locations, x and y. The desired effect of swap can be concisely captured via
pre/postconditions expressed in Separation Logic (SL)—a Hoare-style program logic for specifying
and verifying stateful programs with pointers (O’Hearn et al. 2001; Reynolds 2002):

{x "→ a ∗ y "→ b} void swap(loc x, loc y) {x "→ b ∗ y "→ a} (1)

This specification is declarative: it describes what the heap should look like before and after
executing swap without saying how to get from one to the other. Specifically, it states that the
program takes as input two pointers, x and y, and runs in a heap where x points to an unspecified
value a, and y points to b. Both a and b here are logical (ghost) variables, whose scope captures both
pre- and postcondition (Kleymann 1999). Because these variables are ghosts, we cannot use them

Authors’ addresses: Nadia Polikarpova, University of California, San Diego, USA, nadia.polikarpova@ucsd.edu; Ilya Sergey,
Yale-NUS College, Singapore, National University of Singapore, Singapore, ilya.sergey@yale-nus.edu.sg.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/1-ART72
https://doi.org/10.1145/3290385

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 72. Publication date: January 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

 50

| {z }
<latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit><latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit><latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit><latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit>

Implementation

z }| {
<latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit><latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit><latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit><latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit>

Distilling  
the theory

z }| {
<latexit sha1_base64="SNixYgukui8QXPR0fihCOzo6HNk=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slgETyURQY9FLx4r2A9oQtlsN+3SzW7Y3QglFLz4V7x4UMSrf8Kb/8Ztm4O2Phh4vDfDzLwo5Uwbz/t2Siura+sb5c3K1vbO7p67f9DSMlOENonkUnUirClngjYNM5x2UkVxEnHajkY3U7/9QJVmUtybcUrDBA8EixnBxko99yiQ1o4UJjQP0iEWRiY5tphMem7Vq3kzoGXiF6QKBRo99yvoS5IlVBjCsdZd30tNmGNlGOF0UgkyTVNMRnhAu5YKnFAd5rMfJujUKn0US2VLGDRTf0/kONF6nES2M8FmqBe9qfif181MfBXmTKSZoYLMF8UZR0aiaSCozxQlho8twUQxeysiQ2wDMTa2ig3BX3x5mbTOa75X8+8uqvXrIo4yHMMJnIEPl1CHW2hAEwg8wjO8wpvz5Lw4787HvLXkFDOH8AfO5w9C+5iL</latexit><latexit sha1_base64="SNixYgukui8QXPR0fihCOzo6HNk=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slgETyURQY9FLx4r2A9oQtlsN+3SzW7Y3QglFLz4V7x4UMSrf8Kb/8Ztm4O2Phh4vDfDzLwo5Uwbz/t2Siura+sb5c3K1vbO7p67f9DSMlOENonkUnUirClngjYNM5x2UkVxEnHajkY3U7/9QJVmUtybcUrDBA8EixnBxko99yiQ1o4UJjQP0iEWRiY5tphMem7Vq3kzoGXiF6QKBRo99yvoS5IlVBjCsdZd30tNmGNlGOF0UgkyTVNMRnhAu5YKnFAd5rMfJujUKn0US2VLGDRTf0/kONF6nES2M8FmqBe9qfif181MfBXmTKSZoYLMF8UZR0aiaSCozxQlho8twUQxeysiQ2wDMTa2ig3BX3x5mbTOa75X8+8uqvXrIo4yHMMJnIEPl1CHW2hAEwg8wjO8wpvz5Lw4787HvLXkFDOH8AfO5w9C+5iL</latexit><latexit sha1_base64="SNixYgukui8QXPR0fihCOzo6HNk=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slgETyURQY9FLx4r2A9oQtlsN+3SzW7Y3QglFLz4V7x4UMSrf8Kb/8Ztm4O2Phh4vDfDzLwo5Uwbz/t2Siura+sb5c3K1vbO7p67f9DSMlOENonkUnUirClngjYNM5x2UkVxEnHajkY3U7/9QJVmUtybcUrDBA8EixnBxko99yiQ1o4UJjQP0iEWRiY5tphMem7Vq3kzoGXiF6QKBRo99yvoS5IlVBjCsdZd30tNmGNlGOF0UgkyTVNMRnhAu5YKnFAd5rMfJujUKn0US2VLGDRTf0/kONF6nES2M8FmqBe9qfif181MfBXmTKSZoYLMF8UZR0aiaSCozxQlho8twUQxeysiQ2wDMTa2ig3BX3x5mbTOa75X8+8uqvXrIo4yHMMJnIEPl1CHW2hAEwg8wjO8wpvz5Lw4787HvLXkFDOH8AfO5w9C+5iL</latexit><latexit sha1_base64="SNixYgukui8QXPR0fihCOzo6HNk=">AAACA3icbVBNS8NAEJ3Ur1q/ot70slgETyURQY9FLx4r2A9oQtlsN+3SzW7Y3QglFLz4V7x4UMSrf8Kb/8Ztm4O2Phh4vDfDzLwo5Uwbz/t2Siura+sb5c3K1vbO7p67f9DSMlOENonkUnUirClngjYNM5x2UkVxEnHajkY3U7/9QJVmUtybcUrDBA8EixnBxko99yiQ1o4UJjQP0iEWRiY5tphMem7Vq3kzoGXiF6QKBRo99yvoS5IlVBjCsdZd30tNmGNlGOF0UgkyTVNMRnhAu5YKnFAd5rMfJujUKn0US2VLGDRTf0/kONF6nES2M8FmqBe9qfif181MfBXmTKSZoYLMF8UZR0aiaSCozxQlho8twUQxeysiQ2wDMTa2ig3BX3x5mbTOa75X8+8uqvXrIo4yHMMJnIEPl1CHW2hAEwg8wjO8wpvz5Lw4787HvLXkFDOH8AfO5w9C+5iL</latexit>

Fancy 
Case Studies

POPL  
deadline

“Hello World”

works!

 51

z }| {
<latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit><latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit><latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit><latexit sha1_base64="o/9y/+iYATmvWYLFFwU2SaLHtLQ=">AAACCXicbVBNS8NAEN3Ur1q/oh69LBbBU0lE0GPRi8cK9gPaUCbbTbt0sxt2N0IJuXrxr3jxoIhX/4E3/43bNoi2Phh4vDfDzLww4Uwbz/tySiura+sb5c3K1vbO7p67f9DSMlWENonkUnVC0JQzQZuGGU47iaIQh5y2w/H11G/fU6WZFHdmktAghqFgESNgrNR3cU9aO1RAaNZLRiCMjDP4QZ733apX82bAy8QvSBUVaPTdz95AkjSmwhAOWnd9LzFBBsowwmle6aWaJkDGMKRdSwXEVAfZ7JMcn1hlgCOpbAmDZ+rviQxirSdxaDtjMCO96E3F/7xuaqLLIGMiSQ0VZL4oSjk2Ek9jwQOmKDF8YgkQxeytmIzAxmJseBUbgr/48jJpndV8r+bfnlfrV0UcZXSEjtEp8tEFqqMb1EBNRNADekIv6NV5dJ6dN+d93lpyiplD9AfOxzfaMpsN</latexit>

Optimisations

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 52

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 53

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 54

Step 3: Look for Shortcomings

Escaping Research Limbo
 55

 56

opportunity

 57

The Virtue of PL Research

too messy
too brittle
too inefficient

Implementation to
Solve a Domain Problem

?Can we make it better

A novel technique
for better implementations.

 58

In praise of Incrementality

Bertrand Meyer. One cheer for incremental research

https://bertrandmeyer.com/2009/08/10/one-cheer-for-incremental-research/

 59

https://bertrandmeyer.com/2009/08/10/one-cheer-for-incremental-research/

Story One

“Can we make Static Analyses less complex?”

 60

too inefficient

Introspective Pushdown Analysis of Higher-Order Programs

Christopher Earl
University of Utah

cwearl@cs.utah.edu

Ilya Sergey
KU Leuven

ilya.sergey@cs.kuleuven.be

Matthew Might
University of Utah
might@cs.utah.edu

David Van Horn
Northeastern University
dvanhorn@ccs.neu.edu

Abstract
In the static analysis of functional programs, pushdown flow anal-
ysis and abstract garbage collection skirt just inside the boundaries
of soundness and decidability. Alone, each method reduces analy-
sis times and boosts precision by orders of magnitude. This work
illuminates and conquers the theoretical challenges that stand in the
way of combining the power of these techniques. The challenge in
marrying these techniques is not subtle: computing the reachable
control states of a pushdown system relies on limiting access dur-
ing transition to the top of the stack; abstract garbage collection,
on the other hand, needs full access to the entire stack to compute
a root set, just as concrete collection does. Introspective pushdown
systems resolve this conflict. Introspective pushdown systems pro-
vide enough access to the stack to allow abstract garbage collection,
but they remain restricted enough to compute control-state reacha-
bility, thereby enabling the sound and precise product of pushdown
analysis and abstract garbage collection. Experiments reveal syn-
ergistic interplay between the techniques, and the fusion demon-
strates “better-than-both-worlds” precision.

Categories and Subject Descriptors D.3.4 [Programming lan-
guages]: Processors—Optimization; F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis, Operational semantics

General Terms Languages, Theory

Keywords CFA2, pushdown systems, abstract interpretation,
pushdown analysis, program analysis, abstract machines, abstract
garbage collection, higher-order languages

1. Introduction

The recent development of a context-free1 approach to control-
flow analysis (CFA2) by Vardoulakis and Shivers has provoked a

1 As in context-free language, not context-sensitivity.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP ’12 September 10–12, Copenhagen, Denmark.
Copyright c� 2012 ACM 978-1-4503-1054-3/12/09. . . $15.00

seismic shift in the static analysis of higher-order programs [22].
Prior to CFA2, a precise analysis of recursive behavior had been
a stumbling block—even though flow analyses have an important
role to play in optimization for functional languages, such as flow-
driven inlining [13], interprocedural constant propagation [19] and
type-check elimination [23].

While it had been possible to statically analyze recursion soundly,
CFA2 made it possible to analyze recursion precisely by matching
calls and returns without approximation. In its pursuit of recursion,
clever engineering steered CFA2 just shy of undecidability. The
payoff is an order-of-magnitude reduction in analysis time and an
order-of-magnitude increase in precision.

For a visual measure of the impact, Figure 1 renders the abstract
transition graph (a model of all possible traces through the pro-
gram) for the toy program in Figure 2. For this example, pushdown
analysis eliminates spurious return-flow from the use of recursion.
But, recursion is just one problem of many for flow analysis. For
instance, pushdown analysis still gets tripped up by the spurious
cross-flow problem; at calls to (id f) and (id g) in the previous
example, it thinks (id g) could be f or g.

Powerful techniques such as abstract garbage collection [14]
were developed to solve the cross-flow problem.2 In fact, abstract
garbage collection, by itself, also delivers orders-of-magnitude im-
provements to analytic speed and precision. (See Figure 1 again for
a visualization of that impact.)

It is natural to ask: can abstract garbage collection and pushdown
anlysis work together? Can their strengths be multiplied? At first
glance, the answer appears to be a disheartening No.

1.1 The problem: The whole stack versus just the top

Abstract garbage collections seems to require more than push-
down analysis can decidably provide: access to the full stack. Ab-
stract garbage collection, like its name implies, discards unreach-
able values from an abstract store during the analysis. Like con-
crete garbage collection, abstract garbage collection also begins its
sweep with a root set, and like concrete garbage collection, it must
traverse the abstract stack to compute that root set. But, pushdown

2 The cross-flow problem arises because monotonicity prevents revoking a
judgment like “procedure f flows to x,” or “procedure g flows to x,” once
it’s been made.

ICFP’12

Can we make
Static Analyses
less complex?ICFP’10

Abstracting Abstract Machines

David Van Horn ⇤

Northeastern University
dvanhorn@ccs.neu.edu

Matthew Might
University of Utah
might@cs.utah.edu

Abstract

We describe a derivational approach to abstract interpretation that
yields novel and transparently sound static analyses when applied
to well-established abstract machines. To demonstrate the tech-
nique and support our claim, we transform the CEK machine
of Felleisen and Friedman, a lazy variant of Krivine’s machine,
and the stack-inspecting CM machine of Clements and Felleisen
into abstract interpretations of themselves. The resulting analyses
bound temporal ordering of program events; predict return-flow
and stack-inspection behavior; and approximate the flow and eval-
uation of by-need parameters. For all of these machines, we find
that a series of well-known concrete machine refactorings, plus a
technique we call store-allocated continuations, leads to machines
that abstract into static analyses simply by bounding their stores.
We demonstrate that the technique scales up uniformly to allow
static analysis of realistic language features, including tail calls,
conditionals, side effects, exceptions, first-class continuations, and
even garbage collection.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis, Operational semantics; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic—Lambda calculus and
related systems

General Terms Languages, Theory

Keywords abstract machines, abstract interpretation

1. Introduction

Abstract machines such as the CEK machine and Krivine’s ma-
chine are first-order state transition systems that represent the core
of a real language implementation. Semantics-based program anal-
ysis, on the other hand, is concerned with safely approximating
intensional properties of such a machine as it runs a program. It
seems natural then to want to systematically derive analyses from
machines to approximate the core of realistic run-time systems.

Our goal is to develop a technique that enables direct abstract
interpretations of abstract machines by methods for transforming
a given machine description into another that computes its finite
approximation.

⇤ Supported by the National Science Foundation under grant 0937060 to the
Computing Research Association for the CIFellow Project.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c� 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

We demonstrate that the technique of refactoring a machine
with store-allocated continuations allows a direct structural ab-
straction1 by bounding the machine’s store. Thus, we are able to
convert semantic techniques used to model language features into
static analysis techniques for reasoning about the behavior of those
very same features. By abstracting well-known machines, our tech-
nique delivers static analyzers that can reason about by-need evalu-
ation, higher-order functions, tail calls, side effects, stack structure,
exceptions and first-class continuations.

The basic idea behind store-allocated continuations is not new.
SML/NJ has allocated continuations in the heap for well over a
decade [28]. At first glance, modeling the program stack in an ab-
stract machine with store-allocated continuations would not seem
to provide any real benefit. Indeed, for the purpose of defining the
meaning of a program, there is no benefit, because the meaning
of the program does not depend on the stack-implementation strat-
egy. Yet, a closer inspection finds that store-allocating continua-
tions eliminate recursion from the definition of the state-space of
the machine. With no recursive structure in the state-space, an ab-
stract machine becomes eligible for conversion into an abstract in-
terpreter through a simple structural abstraction.

To demonstrate the applicability of the approach, we derive
abstract interpreters of:

• a call-by-value �-calculus with state and control based on the
CESK machine of Felleisen and Friedman [13],

• a call-by-need �-calculus based on a tail-recursive, lazy vari-
ant of Krivine’s machine derived by Ager, Danvy and Midt-
gaard [1], and

• a call-by-value �-calculus with stack inspection based on the
CM machine of Clements and Felleisen [3];

and use abstract garbage collection to improve precision [25].

Overview

In Section 2, we begin with the CEK machine and attempt a struc-
tural abstract interpretation, but find ourselves blocked by two re-
cursive structures in the machine: environments and continuations.
We make three refactorings to:

1. store-allocate bindings,
2. store-allocate continuations, and
3. time-stamp machine states;

resulting in the CESK, CESK?, and time-stamped CESK? ma-
chines, respectively. The time-stamps encode the history (context)
of the machine’s execution and facilitate context-sensitive abstrac-
tions. We then demonstrate that the time-stamped machine ab-
stracts directly into a parameterized, sound and computable static
analysis.

1 A structural abstraction distributes component-, point-, and member-wise.

lots of code
duplication

Monadic Abstract Interpreters

Ilya Sergey

IMDEA Software Institute, Spain

ilya.sergey@imdea.org

Dominique Devriese

iMinds – DistriNet, KU Leuven, Belgium

dominique.devriese@cs.kuleuven.be

Matthew Might

University of Utah, USA

might@cs.utah.edu

Jan Midtgaard

Aarhus University, Denmark

jmi@cs.au.dk

David Darais

Harvard University, USA

darais@seas.harvard.edu

Dave Clarke Frank Piessens

iMinds – DistriNet, KU Leuven, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract

Recent developments in the systematic construction of abstract
interpreters hinted at the possibility of a broad unification of
concepts in static analysis. We deliver that unification by show-
ing context-sensitivity, polyvariance, flow-sensitivity, reachability-
pruning, heap-cloning and cardinality-bounding to be independent
of any particular semantics. Monads become the unifying agent be-
tween these concepts and between semantics. For instance, by plug-
ging the same “context-insensitivity monad” into a monadically-
parameterized semantics for Java or for the lambda calculus, it
yields the expected context-insensitive analysis.

To achieve this unification, we develop a systematic method for
transforming a concrete semantics into a monadically-parameterized
abstract machine. Changing the monad changes the behavior of
the machine. By changing the monad, we recover a spectrum of
machines—from the original concrete semantics to a monovariant,
flow- and context-insensitive static analysis with a singly-threaded
heap and weak updates.

The monadic parameterization also suggests an abstraction over
the ubiquitous monotone fixed-point computation found in static
analysis. This abstraction makes it straightforward to instrument
an analysis with high-level strategies for improving precision and
performance, such as abstract garbage collection and widening.

While the paper itself runs the development for continuation-
passing style, our generic implementation replays it for direct-style
lambda-calculus and Featherweight Java to support generality.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Program
analysis, Operational semantics

General Terms Languages, Theory

Keywords abstract machines, abstract interpretation, monads, op-
erational semantics, collecting semantics, abstract garbage collec-
tion, interpreters

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c⃝ 2013 ACM 978-1-4503-2014-6/13/06. . . $10.00

1. Introduction

Recent work on systematizing the construction of abstract inter-
preters [15, 23, 24] hints at the possibility of broad theoretical uni-
fication within static analysis. Van Horn and Might [23] sketch
a method for abstracting abstract machines into static analyzers
by bounding the store of the abstract machine: once the store is
bounded, the abstraction and then the analysis follows.

But, bounding the store is an act of design—of human interven-
tion. How a designer bounds the store immediately determines clas-
sical properties of the analysis such as its context-sensitivity and its
polyvariance. While not directly expressed in terms of a bound on
the store, other classical properties are also related to the abstrac-
tion and handling of the store, including heap-cloning, reachability-
pruning and cardinality-bounding. But, other properties, such as
flow-sensitivity, path-sensitvity and some kinds of widening, have
little to do with the store, and more to with the (re-)interpretation
of the abstract semantics during analysis.

Fortunately, there is a construct that encompasses all of these
concerns: the monad. Monads were originally adapted to program-
ming languages to provide a durable abstraction for mutation in
a purely functional language. As such, expressing a semantics
monadically allows the monad to fully veil the details of interact-
ing with a store. Yet monads have always provided more than just
a means for hiding effects in a purely functional manner: they also
allow a near-complete reinterpretation of computations expressed
monadically, e.g., the instant and powerful non-determinism of the
list monad. This semantic reflection in precisely the right dimen-
sions allows monads to encapsulate a variety of concepts in static
analysis.

The payoff of this realization is immediate: we can monadically
refactor semantics for languages as diverse as the lambda calculus
and Java, yet define notions like context-sensitivity for both at the
same time, with the same monad.

Our presentation details every step of the monadic refactoring
for continuation-passing style lambda calculus, and then develops
the monadic parameters that induce static analyzers. The imple-
mentation of the approach in the accompanying code repository
replays the same monadic refactoring for a direct-style lambda cal-
culus and for Featherweight Java. The monads remain the same.

We have chosen Haskell in lieu of formal mathematics for the
presentation for two reasons: (1) Haskell is directly executable, and
(2) Haskell has concise, convenient and readable syntax for ex-
pressing monads—the central actor in our work. Our fundamental
results are no more restricted to Haskell than monads are restricted
to Haskell.

PLDI’13

See David Darais’ works for the follow-ups.

 61

Story Two

“Can we unify existing Concurrency Logics?”

 62

how do we use it?

proofs are difficult
to manage

Higher-Order Ghost State

Ralf Jung
MPI-SWS, Germany
jung@mpi-sws.org

Robbert Krebbers
Aarhus University, Denmark
mail@robbertkrebbers.nl

Lars Birkedal
Aarhus University, Denmark

birkedal@cs.au.dk

Derek Dreyer
MPI-SWS, Germany
dreyer@mpi-sws.org

Abstract
The development of concurrent separation logic (CSL) has sparked a
long line of work on modular verification of sophisticated concurrent
programs. Two of the most important features supported by several
existing extensions to CSL are higher-order quantification and
custom ghost state. However, none of the logics that support both
of these features reap the full potential of their combination. In
particular, none of them provide general support for a feature we
dub “higher-order ghost state”: the ability to store arbitrary higher-
order separation-logic predicates in ghost variables.

In this paper, we propose higher-order ghost state as a interesting
and useful extension to CSL, which we formalize in the framework
of Jung et al.’s recently developed Iris logic. To justify its soundness,
we develop a novel algebraic structure called CMRAs (“cameras”),
which can be thought of as “step-indexed partial commutative
monoids”. Finally, we show that Iris proofs utilizing higher-order
ghost state can be effectively formalized in Coq, and discuss the
challenges we faced in formalizing them.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Separation logic, fine-grained concurrency, higher-
order logic, compositional verification, interactive theorem proving

1. Introduction
Over a decade ago, O’Hearn made a critical observation: separation
logic—developed to simplify the verification of sequential, heap-
manipulating programs—can help simplify the verification of con-
current programs as well. In concurrent separation logic (CSL) [28],
assertions denote not only facts about the state of the program, but
also ownership of a piece of that state. Concretely, this means that
if a thread t can assert ` 7! v, then t knows not only that location
` currently points to v, but also that it “owns” `, so no other thread
can read or write ` concurrently. Given this ownership assertion, t
can perform local (and essentially sequential) reasoning on accesses
to `, completely ignoring concurrently operating threads.

Of course at some point threads have to communicate through
some kind of shared state (such as a mutable heap or message-
passing channels). To reason modularly about such communication,
the original CSL used a simple form of resource invariants, which

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

ICFP ’16, September 18–22, 2016, Nara, Japan.
Copyright c� 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4219-3/16/09. . . $15.00.
DOI: http://dx.doi.org/10.1145/2951913.2951943

were tied to a “conditional critical region” construct for synchro-
nization. Since O’Hearn’s pioneering (and Gödel-award-winning)
paper, there has been an avalanche of follow-on work extending
CSL with more sophisticated mechanisms for modular reasoning,
which allow shared state to be accessed at a finer granularity (e.g.,
atomic compare-and-swap instructions) and which support the ver-
ification of more “daring” (less clearly synchronized) concurrent
programs [40, 17, 16, 13, 18, 38, 35, 27, 11, 24].

In this paper, we focus on two of the most important extensions
to CSL—higher-order quantification and custom ghost state—and
observe that, although several logics support both of these exten-
sions, none of them reap the full potential of their combination. In
particular, none of them provide general support for a feature we
dub “higher-order ghost state”.

Higher-order quantification is the ability to quantify logical
assertions (universally and existentially) over other assertions and,
in general, over arbitrary higher-order predicates. Several recent
extensions to CSL have incorporated higher-order quantification [36,
35, 24, 21, 27], in part because it leads to more generic and reusable
specifications of concurrent data structures (see §4), and in part
because it is seemingly necessary for verifying some higher-order
concurrency paradigms [35, 38, 31].

Ghost state is “logical state”, i.e., state that is essential to
maintain in the proof of a program but is not part of the physical state
manipulated by the program itself. It is a fixture of Hoare logics since
the work of Owicki and Gries [29] in the 1970s, and is useful for
a variety of purposes: for encoding various kinds of “permissions”,
for recording information about the trace of the computation, for
describing “protocols” on how threads may interact with shared
state, and more. Traditionally, ghost state was manipulated by
instrumenting a program with updates to “ghost” (or “auxiliary”)
variables. Although this approach is convenient for integration into
automatic verification tools [10], it is unnecessarily low-level: there
is no reason logical state needs to be manipulated in exactly the
same way as physical state, and doing so makes it harder to reason
about updates to shared logical state in a modular fashion.

Recently, a number of researchers have argued that a more high-
level, general, and flexible way to represent ghost state is via partial
commutative monoids (PCMs). Intuitively, PCMs are a natural
fit for ghost state because they impose only the bare minimum
requirements on something that should be “ownable” in a separation
logic, while leaving lots of room for proof-specific customization.
Several newer extensions to CSL [24, 27, 12] thus give users the
freedom to define ghost state on a per-proof basis in terms of an
arbitrary PCM of their choosing. Furthermore, the Iris logic [24] has
established that PCMs (together with simple invariants) are flexible
enough to derive several advanced reasoning mechanisms that were
built in as primitive in prior logics.

Unfortunately, a limitation arises when one uses PCMs to support
custom ghost state in the context of a logic with higher-order
quantification. Specifically, PCMs yield a model of ghost state that
is first-order. By this we mean that there is an inherent stratification:

1

ICFP’16

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Interactive Proofs in Higher-Order
Concurrent Separation Logic

Robbert Krebbers ⇤

Delft University of Technology,
The Netherlands

mail@robbertkrebbers.nl

Amin Timany
imec-Distrinet, KU Leuven, Belgium

amin.timany@cs.kuleuven.be

Lars Birkedal
Aarhus University, Denmark

birkedal@cs.au.dk

Abstract
When using a proof assistant to reason in an embedded logic – like
separation logic – one cannot benefit from the proof contexts and
basic tactics of the proof assistant. This results in proofs that are
at a too low level of abstraction because they are cluttered with
bookkeeping code related to manipulating the object logic.

In this paper, we introduce a so-called proof mode that extends
the Coq proof assistant with (spatial and non-spatial) named proof
contexts for the object logic. We show that thanks to these contexts
we can implement high-level tactics for introduction and elimination
of the connectives of the object logic, and thereby make reasoning
in the embedded logic as seamless as reasoning in the meta logic of
the proof assistant. We apply our method to Iris: a state of the art
higher-order impredicative concurrent separation logic.

We show that our method is very general, and is not just limited to
program verification. We demonstrate its generality by formalizing
correctness proofs of fine-grained concurrent algorithms, derived
constructs of the Iris logic, and a unary and binary logical relation
for a language with concurrency, higher-order store, polymorphism,
and recursive types. This is the first formalization of a binary logical
relation for such an expressive language. We also show how to use
the logical relation to prove contextual refinement of fine-grained
concurrent algorithms.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Separation Logic, Interactive Theorem Proving, Coq,
Fine-grained Concurrency, Logical Relations

1. Introduction
In the last decade, there has been tremendous progress on program
logics for increasingly sophisticated programming languages [43,
17, 16, 13, 18, 42, 40, 11, 31, 24, 23, 26]. Part of the success of
these logics stems from the fact that they have built-in support for
reasoning about challenging programming language features. For

⇤ This research was carried out while this author was at Aarhus University.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

POPL ’17, January 18 - 20, 2017, Paris, France
Copyright c� 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4660-3/17/01. . . $15.00.
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3009837.3009855

instance, they include separating conjunction of separation logic for
reasoning about mutable data structures, invariants for reasoning
about sharing, guarded recursion for reasoning about various forms
of recursion, and higher-order quantification for giving generic
modular specifications to libraries.

Due to these built-in features, modern program logics are very
different from the logics of general purpose proof assistants. There-
fore, to use a proof assistant to formalize reasoning in a program
logic, one needs to represent the program logic in that proof assis-
tant, and then, to benefit from the built-in features of the program
logic, use the proof assistant to reason in the embedded logic.

Reasoning in an embedded logic using a proof assistant tradition-
ally results in a lot of overhead. Most of this overhead stems from
the fact that when embedding a logic, one can no longer make use
of the proof assistant’s infrastructure for managing hypotheses. In
separation logic this overhead is evident from the fact that proposi-
tions represent resources (they are spatial) and can thus be used at
most once, which is very different from hypotheses in conventional
logic that can be duplicated at will.

To remedy this situation, we present a so-called proof mode that
extends the Coq proof assistant with (spatial and non-spatial) named
contexts for managing the hypotheses of the object logic. We show
that using our proof mode we can make reasoning in the embedded
logic as seamless as reasoning in the meta logic of Coq. Although
we believe that our proof mode is very generic, and can be applied
to a variety of different embedded logics, we apply it to a specific
logic in this paper, Iris: a state of the art impredicative higher-order
separation logic for fine-grained concurrency [24, 23, 26]. We call
the implementation on top of Iris IPM: Iris Proof Mode.

Iris is an interesting showcase for our proof mode, because
unlike conventional program logics, it cannot only be used to
reason about partial program correctness, but it also supports other
kinds of reasoning. For starters, Iris differs from other (concurrent)
program logics by not baking in particular reasoning principles,
but by providing a minimal set of primitive constructs using which
more advanced reasoning constructs can be defined in the logic.
Furthermore, Iris can be used to define unary and binary relational
interpretations of type systems and for proving theorems about those
interpretations, e.g., that if two terms are related in the relational
interpretation of a type, then they are contextually equivalent.
The type systems can range from ML-like type systems, such
as Fµ,ref ,conc (System F with recursive types, references, and
concurrency), to more expressive type-and-effect systems [27], or
sophisticated ownership-based type systems such as the Rust type
system [14]. We show that IPM supports all of these different kinds
of reasoning.

One may wonder why we develop a reasoning tool for a logic
like Iris in a general purpose proof assistant, instead of building a
standalone tool. The main reason for using a proof assistant is that

POPL’17

Can we unify existing
Concurrency Logics?

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR
eu
se
* *

Evaluated
*
P
O
P
L
*

Ar
tifact

*
A
E
C

Iris: Monoids and Invariants as an

Orthogonal Basis for Concurrent Reasoning

Ralf Jung
MPI-SWS &

Saarland University
jung@mpi-sws.org

David Swasey
MPI-SWS

swasey@mpi-sws.org

Filip Sieczkowski
Aarhus University
filips@cs.au.dk

Kasper Svendsen
Aarhus University

ksvendsen@cs.au.dk

Aaron Turon
Mozilla Research

aturon@mozilla.com

Lars Birkedal
Aarhus University
birkedal@cs.au.dk

Derek Dreyer
MPI-SWS

dreyer@mpi-sws.org

Abstract

We present Iris, a concurrent separation logic with a simple premise:
monoids and invariants are all you need. Partial commutative
monoids enable us to express—and invariants enable us to enforce—
user-defined protocols on shared state, which are at the conceptual
core of most recent program logics for concurrency. Furthermore,
through a novel extension of the concept of a view shift, Iris supports
the encoding of logically atomic specifications, i.e., Hoare-style
specs that permit the client of an operation to treat the operation
essentially as if it were atomic, even if it is not.

Categories and Subject Descriptors D.3.1 [Programming Lan-

guages]: Formal Definitions and Theory; D.3.3 [Programming

Languages]: Language Constructs and Features; F.3.1 [Logics and

Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

Keywords Separation logic, fine-grained concurrency, atomicity,
partial commutative monoids, invariants, higher-order logic, compo-
sitional verification.

1. Introduction

Concurrency is fundamentally about shared state. This is true not
only for shared-memory concurrency, where the state takes the form
of a “heap” that threads may write to and read from, but also for
message-passing concurrency, where the state takes the form of a
“network” that threads may send to and receive from (or a sequence
of “events” on which threads may synchronize). Thus, to scalably
verify concurrent programs of any stripe, we need compositional
methods for reasoning about shared state.

This goal has sparked a long line of work, especially in recent
years, during which a synthesis of rely-guarantee reasoning [21] and
separation logic [31, 28] has led to a series of increasingly advanced
program logics for concurrency: RGSep [37], SAGL [13], LRG [12],
CAP [10], HLRG [15], CaReSL [34], iCAP [33], FCSL [27],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676980

TaDA [8], and others. In this paper, we present a logic called Iris that
explains some of the complexities of these prior separation logics in
terms of a simpler unifying foundation, while also supporting some
new and powerful reasoning principles for concurrency.

Before we get to Iris, however, let us begin with a brief overview
of some key problems that arise in reasoning compositionally about
shared state, and how prior approaches have dealt with them.

1.1 Invariants and their limitations

The canonical model of concurrency is sequential consistency [23]:
threads take turns interacting with the shared state (reading/writing,
sending/receiving), with each turn lasting for one step of computa-
tion.1 Although the semantics of sequentially consistent (SC) con-
currency is simple to define, that does not mean it is easy to reason
about. In particular, the key question is how to do thread-local

reasoning—that is, verifying one thread at a time—even though
other threads may interfere with (i.e., mutate) the shared state in
between each step of computation in the thread we are verifying.

The invariant rule. The simplest (and oldest) way in which
concurrent program logics account for such interference is via
invariants [5]. An invariant is a property that holds of some piece of
shared state at all times: each thread accessing the state may assume
the invariant holds before each step of its computation, but it must
also ensure that it continues to hold after each step.

Formally, in concurrent separation logics, the invariant rule looks
something like the following (omitting some important details that
we explain later in §4):

{R ⇤ P } e {R ⇤Q} e physically atomic
R ` {P } e {Q}

Here, the assertion R states the knowledge that there exists an
invariant R governing some piece of shared state. Given this
knowledge, the rule tells us that e may gain (exclusive) control of
the shared state satisfying R, so long as it ensures that R continues
to hold of it when it is finished executing. Note the crucial side
condition that e be physically atomic, meaning that it takes exactly
one step of computation. If e were not physically atomic, then
another thread might access the shared state governed by R during
e’s execution, in which case it would not be safe for the rule to grant
e exclusive control of the shared state throughout its execution.

1 There is much recent work on weaker models of concurrency, which are in
many ways more realistic, but in this paper we focus on SC concurrency.

1

POPL’15
 63

Standing on the Shoulders of Giants

 64

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 65

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 66

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 67

you

POPL CAV PLDI POPL again

your officemate

now

now

 68

nowtwo years ago

uphill b
attl

e

when you  
started

productivity plateau

learning new  
techniques/domain

 69

milestone papers

workshop

symposium

flagship  
conference

Step 4: Document your results

Escaping Research Limbo
 70

My first Highs and Lows
Inspired by Greg Morrisett’s Highs and Lows of a Language Researcher. PLMW@POPL’16

LDTA’11

IPL’11
ESOP’12 ESOP’14

ESOP’15

PLDI’15 OOPSLA’16

ECOOP’17

|{z} <latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit> <latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit> <latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit> <latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit>

Project 1 (PhD)

|{z} <latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit> <latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit> <latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit> <latexit sha1_base64="PTT9Yj7gx2hGEUf0/7gVMmt9N4c=">AAACI3ichVBNS8NAEN3Ur1q/oh69BIvgqSQiKJ6KXjxWsK3QhLLZTNqlm92wuxFKyH/x4l/x4kEpXjz4X9y2OWgr+GDg8d4MM/PClFGlXffTqqysrq1vVDdrW9s7u3v2/kFHiUwSaBPBhHwIsQJGObQ11QweUgk4CRl0w9HN1O8+glRU8Hs9TiFI8IDTmBKsjdS3r/yMRyBDiQnkfjrEXIskx/+jKPp23W24MzjLxCtJHZVo9e2JHwmSJcA1YVipnuemOsix1JQwKGp+piDFZIQH0DOU4wRUkM9+LJwTo0ROLKQprp2Z+nMix4lS4yQ0nQnWQ7XoTcW/vF6m48sgpzzNNHAyXxRnzNHCmQbmRFQC0WxsCCaSmlsdMsQmL21irZkQvMWXl0nnrOG5De/uvN68LuOooiN0jE6Rhy5QE92iFmojgp7QC3pD79az9WpNrI95a8UqZw7RL1hf32D0pew=</latexit>

Project 2 (postdoc)

| {z }
Learning about concurrency, Separation Logic, and Coq

 71

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 72

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 73

• Is what I’m about to do relevant?

• What if it won’t work?

• Will it scale for more project ideas?

• I’m not as productive as my labmates.

• I don’t see the final goal of what I’m about to do.• I don’t see the final goal of what I’m about to do.

Escaping Research Limbo
 74

They are reusable

You have acquired skills

 75

?

 76

?

?

?

?

?

?

?

? ?

?

?

?

?

?
?

 77

To Take Away
• Starting a new project is always scary!

• To escape the Research Limbo:  
Read, Hack, Find shortcomings, Write

Thank you and good luck!

Many thanks to my fellow travellers: Dave Clarke, Aleks Nanevski, Olivier Danvy, Matt Might, David Van Horn,  
Simon Peyton Jones, Dimitrios Vytiniotis, Dominique Devriese, Aquinas Hobor, Nadia Polikarpova, Jan Midtgaard,  
Peter O’Hearn, Nikos Gorogiannis, Álvaro Garcia Pérez, Anindya Banerjee, Zach Tatlock, Germán Delbianco,  
David Darais, Anton Podkopaev, Kristoffer Just Andersen, Maria A Schett, George Pîrlea, Kiran Gopinathan, and
James R. Wilcox.

 78

