Compositional Verification of
Composite Byzantine Protocols

Qiyuan Zhao, George Pirlea, Karolina Grzeszkiewicz
Seth Gilbert and llya Sergey

Distributed Protocols
dWs

» Distributed systems are important!

e Scalabillity, reliability, performance, ...

* Theoretical foundation: distributed protocols

* Defining how a node collaborates with other nodes

Byzantine Fault Tolerance

* Fault tolerance: a key goal in protocol design
 Byzantine fault:

* Faulty nodes that can deviate from the protocol arbitrarily

The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE
SRI International

Byzantine Fault Tolerance Protocols

* Key in ensuring the reliability and integrity of various Internet services

The latest gossip on BFT consensus

Ethan Buchman, Jac Kwon and 2 HotStuft: BFT Consensus in the Lens of Blockchain

Bullshark: DAG BFT Protocols Made Practical Guy Golan Gueta?, and Ittai Abraham’

ceenls 3TIAT M aca A1 LT

Alexander Spiegelman
sasha.spiegelman@gmail.cor

Aptos Fallback
Alberto Sonnino
alberto@sonnino.com = Rati Gelashvili Lefteris Kokoris-Kogias Alberto Sonnino Alexander Spiegelman
Mysten Labs Novi Research Novi Research & IST Austria Novi Research Novi Research
Zhuolun Xiang*

University of Illinois at Urbana-Champaign

4

Jolteon and Ditto: Network-Adaptive Efficient Consensus with Asynchronous

BFT Protocols Are Hard to Get Right

BFT Protocols Are Hard to Get Right

O dranov / protocol-bugs-list

Errors found in distributed protocols

Protocol Reference

Sync HotStuff [Abraham et al. 2019]

Tendermint [Buchman 2016}
hBFT [Duan et al. 2015]
[Kotla et al. 2007; Kotla et
Zyzzyva
al. 2010]
[Martin and Alvisi 2005;
FaB Paxos . ..
Martin and Alvisi 2006]
PBFTL! [Castro and Liskov 1999]

Source: https://github.com/dranov/protocol-bugs-list

Violation

safety &
liveness

liveness

safety

safety

liveness

liveness

Year(s) taken to
discover the bug

Counter-example

[Momose and Cruz 2019] S 1
[Cachin and Vukoli¢ 2017] ~ 71
[Shrestha et al. 2019] ~ 4
[Abraham et al. 2017] ~ 7
[Abraham et al. 2017] ~ 12
[Berger et al. 2021] ~ 29

BFT Protocols Are Hard to Get Right

&) jepsen (2 QUINT <y
' /\

APALACHE

* Jesting or model checking BFT protocols may not be effective

* Byzantine behavior = large search space

* Precisely capturing Byzantine behavior is difficult

Verification Builds Trust

* Reducing the risk of having bugs by formal verification

* Proving properties rigorously with proofs aided/checked by machine

Formal Verification IronFleet: Proving Practical Distributed Systems Correct
¢ o ; chris Verdi: A Framework for Implementing and
Of d ReahStIC COmpller 5 Formally Verifying Distributed Systems
CakeML: A Verified Impnlementation of ML Ivy: Safety Verification by Interactive Generalization
CertiKOS: An Extensible Architecture for Buildil Velisarios: Byzantine Fault-Tolerant Protocols
Certified Concurrent OS Kernels Oded Pe Powered by Coq
. . L
sel4: F()I'mal Verlﬁcathn Of dll Programmlng and Proving with Distributed Protocols
Operatmg System Ke]_’nel Aneris: A Mechanised Logic for Modular
A S e e et e 21 e) ILYA SERC . . .
By Gerwir* . Reasoning about Distributed Systems

@rnee HACL™: A Verified Modern Cryptographlc Lib |JAMER.
Z’A: Igloo: Soundly Linking Compositional Refinement and

Jean Karim Zinzindohoué Karthikeyan Bharga ;] . . - .
INRIA INRIA Separation Logic for Distributed System Verification
|
Jonathan Protzenko Benjamin Beurdouche
Microsoft Research INRIA CHRISTOPH SPRENGER, TOBIAS KLENZE, MARCO EILERS, FELIX A. WOLF, PETER

MULLER, MARTIN CLOCHARD, and DAVID BASIN, ETH Zurich, Switzerland

O

Verification is Also Laborious

IronFleet: Proving Practical Distributed Systems Correct

14
Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, . Proofs take 39253 LoC
Bryan Parno, Michael L. Roberts, Srinath Setty, Brian Zill In total”

Microsoft Research

Velisarios: Byzantine Fault-Tolerant Protocols

Powered by Coq * “Verifying PBFT takes

around 20000 lines of specs
and around 20000 lines of proofs”

Vincent Rahli DX, Ivana Vukotic, Marcus Volp, Paulo Esteves-Verissimo

Sn'T, University of Luxembourg, Esch-sur-Alzette, Luxembourg
firstname. lastname@uni. lu

* Such great efforts are difficult to reuse!

Compositionality For The Win

 Compositionality: the conventional wisdom in doing verification
e Separation of specification and implementation

 Modularity & proof reuse

proof proof proof

iImplementation

iImplementation

Implementation
10

Compositionality For The Win

 Compositionality: the conventional wisdom in doing verification
e Separation of specification and implementation

 Modularity & proof reuse

use already proved specifications

proof proof proof

iImplementation Implementation iImplementation

11

Compositionality For The Win

 Composition: strategy for reducing conceptual complexity in BFT protocol design

Written by Ittal Abraham, Alex
Posted on September 10, 2022

—

Check EV

Check EV_1 Check EV_2 Check EV_3

Sender s

Sender s

Delivery-
Certificate
Formed

Blog source: https://decentralizedthoughts.qgithub.io/
Image credit: https://decentralizedthoughts.github.io/2022-09-10-provable-
broadcast/

12

https://decentralizedthoughts.github.io/

We want to make verification compositional
for (potentially composite) BFT protocols.

Our Contribution

 BYTHOS: streamlining the verification of BFT protocols and their compositions

« Embedded in the Coqg proof assistant = foundational
* The first framework that supports:

M Reasoning about Byzantine faults

M Modular safety & liveness proofs of BFT protocols
M Proof reuse for verifying composite BFT protocols

M Executable reference implementation extracted to OCaml

14

Specifying Systems in BYTHOS

Workflow Techniques

15

Specifying Systems in BYTHOS

Workflow Techniques

Encoding the protocol

16

Running Example: Provable Broadcast (PB)

“PB based

P rova b I < B roa d ca St protocols are the backbone of

Written by Ittai Abraham, Alexander Spiegelman many authenticated
Posted on September 10, 2022 consensus protoco/s_

I *

» Intuitively, it is for ensuring that more than f non-faulty nodes accept some
value that satisfies a notion of external validity

» Assume n > 3f (n: the number of nodes, at most f nodes are Byzantine)

* https://decentralizedthoughts.github.io/2022-09-10-provable-broadcast/ 17

Running Example: Provable Broadcast

e A sender broadcasts a value v and

an associated proof Rl
A
o
Q.-
. Q"," e 4
\S\\\'&x ! VO()j) -
ok
e '\‘Q\“¢
@ _______ L !1@0:».@1”9.@.--,@
:/?{/é‘@
Ty
‘A

-=-=-=p €N route
—— delivered

18

Running Example: Provable Broadcast

e Each recelver validates the value

using an external validity function £V
EV(v, proof)?

. Init(v, proof) .O

-=-=-=p €N route
—— delivered

19

Running Example: Provable Broadcast

» For the first externally valid value v, @____E?hg(_s_i(g_r{igyz)___ @
the receilver signs v and echoes the

signature to the sender

-=-=-=p €N route
—— delivered

20

Running Example: Provable Broadcast

combine n — f o,

» The sender waits for n — f echoes to signatures
combine into a delivery certificate for v

--=-=p €N route
—— delivered

21

Specification of Provable Broadcast

check with EV

o Safety (“bad thing never happens”):

 |f a delivery certificate exists for v, then

&
o at least n — 2f non-faulty nodes know)
and echoed v o - : e e
* v is externally valid 0 &S U
* no any other value can have det'_i]}_’eri’
delivery certificate . Ccertmcate
on>n—f

echoes

22

Specification of Provable Broadcast

check with EV

* Liveness (“good thing eventually happens”):

* Given that s is non-faulty and v is externally
valid, If s broadcast v, then s will eventually g

obtain a delivery certificate for v e Init < >_ECh0 ,

delivery

. certificate
on>n—f

echoes

23

Encoding the Protocol

e System in BYTHOS: includes the set of nodes and a network

System semantics:
eParametric over
protocol logic
eWorks as a state
machine

Protocol logic:
eUser-provided

eDetermines node
behavior

24

Ingredients of a Protocol

e The kinds of internal events

* The kinds of messages

Inductive InternalEvent :=
| Start.
Inductive Message :=
Init (v : Value) (pf : Proof)
Echo (sig : Signature).

25

Ingredients of a Protocol

e The kinds of internal events

* The kinds of messages

Inductive InternalEvent :=
| Start.
Inductive Message :=
Init (v : Value) (pf : Proof)
Echo (sig : Signature).

26

Ingredients of a Protocol

* The local state of a non-faulty node Rrecord state := ¢

1d : Address; self address
» Keeps track of what the node

has done started : option (Value X Proof);
delivery_certificate : option CombinedSignature;
echo_counter : set (Address X Signature);

echoed : option (Value X Proof) }.

27

Ingredients of a Protocol

e The kinds of internal events
* The Kkinds of messages

* The local state of a non-faulty node Rrecord state := ¢
id : Address;

« Keeps track of what the node sender state
has done started : option (Value X Proof);

delivery_certificate : option CombinedSignature;
echo_counter : set (Address X Signature);

records from whom the /
Echo messages comes from echoed : option (Value X Proof) }.

and the attached signatures

28

Ingredients of a Protocol

* The local state of a non-faulty node Rrecord state := ¢
id : Address;

» Keeps track of what the node
has done started : option (Value X Proof);

delivery_certificate : option CombinedSignature;
echo_counter : set (Address X Signature);

echoed : option (Value X Proof) }.

receiver state
(records to which value
and proof the node has echoed)

29

Ingredients of a Protocol

' Handler: given the original state, |

|

W returns the updated state }
and the messages to send out |

—

e —— i ———— e ——————

e The handler for internal events Definition procInt (st : State) (ev : InternalEvent)
. State X list Packet := (* ... %).

30

Ingredients of a Protocol

' Handler: given the original state, |
e The kinds of messages returns the updated state \
' and the messages to send out |

—

e The kinds of internal events

* The local state of a non-faulty node
Definition procMsg (st : State) (sender : Address)

(msg : Message) : State X list Packet :=
match msg with
| Init v pf =>
* The handler for Incoming messages i: (st.echoed == None) && (EV v pf)
then
(st <| echoed := Some (v, pf) |>,
(* the packet containing Echo (signh v) to sender %))
else (st, empty_list)
| Echo sig => (x ... %)
end.

e The handler for internal events

31

Ingredients of a Protocol

* The kinds of internal events

* The kinds of messages

* The local state of a non-faulty node
* The handler for internal events
 The handler for incoming messages

* The constraint over Byzantine nodes

32

System Semantics

o System in BYTHOS: state machine

e System state = local states of nodes +
state of network (all sent messages)

* At most one node performs an atomic
step In one transition

O——» Handling an internal event with procInt

Handling an incoming message with procMsg

@——» Byzantine node sending out message

33

msg

Modeling Byzantine Adversary

 Assume an adversary controlling both the
network and Byzantine nodes O

 Network Is asynchronous
 Byzantine nodes can intercept messages O

 Byzantine nodes affect the system only by
sending out messages

 No modeling of their local states

34

Modeling Byzantine Adversary

e Using Dolev-Yao model for
constraining Byzantine behavior O

O

L
» E.g., Byzantine nodes can take ="
signatures from existing messages O v v
but cannot forge signatures \7-

iL

 Byzantine messages are under such delivery

constraints certificate
with signatures

{Sig, -, Sign_f}

35

Specifying Systems in BYTHOS

Workflow Techniques

Proving safety properties

36

Safety Properties of Provable Broadcast

check with EV

o Safety (“bad thing never happens”):

 |f a delivery certificate exists for v, then

&
o at least n — 2f non-faulty nodes know)
and echoed v o - : e e
* v is externally valid 0 &S U
* no any other value can have det'_i]}_’eri’
delivery certificate . Ccertmcate
on>n—f

echoes

37

Safety Properties, Formalized

* Proving safety amounts to establishing it as Safe
an Invariant
* |nvariant: a predicate that holds on all
system states reachable via transitions
from an initial system state
initial state

—

38

Safety Properties, Formalized

Definition safety (o : SystemState) : Prop :=
forall (o : Value),
(* a delivery certificate exists for v in o *) —
(exists S, |S| >n-2f A
(forall g, g€ S —
isByzantine q = false A
(* g's local state in o records that
g has echoed to v *)))
A Reachable
externally_valid o
A
(forall (o’ : Value),
(* a delivery certificate exists for o' in o *) —

v =0).

Initial state
®

Goal forall o, reachable o — safety o.

39

Proving Safety Properties

Safe
 Reachability is inductively defined, but proving
safety directly by induction may be infeasible
» Since safety is weak when used as the
induction hypothesis
initial state

—

40

Proving Safety Properties

* The standard approach to proving safety:

* Finding an inductive invariant /

Reachable
* Inductive: [is preserved after any transition

Initial state

« Showing that / implies the desired safety property A

41

check with EV

Inductive Invariants ()
&
. . & %
 Summarize the knowledge (or, causality) about protoc: "0.\& . &
system state 0 ; < °
nit O cho X
\/;7/} Q/C\}\O U
delivery
certificate
‘ on>n—f

Given that |s has a signature r has echoed to
statement s, r are from 7 in its Implies [the externally valid

non-faulty, local state value from s

42

Inductive Invariants

o Summarize the knowledge (or, causality) about protocol execution “within” a
system state

cause
timeline «—————ep&=— —
Given that |s has a signature r has echoed to
statement s, r are from 7 in its Implies [the externally valid

non-faulty, local state value from s

43

Knowledge Lemmas

 Coming up with all such knowledge that helps prove safety all at once is hard

 Knowledge lemmas:

o Systematically capturing low-level properties of the protocol that directly
follow from the protocol design

* Higher-level knowledge can be obtained by composing knowledge lemmas

44

Knowledge Lemmas, Classified

 Data persistence: “a field only grows or never gets overwritten”

transition

O = O

echoed = Some vpf echoed = Some vpf

echo counter =Y
with § C Y’

echo counter=S§

45

Knowledge Lemmas, Classified

 Data representation: “local invariants” maintained inside the local state

O

If echoed = Some (v, pf),

then EV(v, pf) is true

46

Knowledge Lemmas, Classified

 Knowledge propagation within a node: direct causal relationship within
multiple fields of the local state

O

If delivery certificate = Some d,

then d is made of signatures in echo_counter

and |echo_counter|>n-—f

47

Knowledge Lemmas, Classified

 Knowledge propagation through messages: direct, mutual effect between
non-faulty nodes and messages sent from or to them

a®

If (r, sig) € echo_counter, then the node

must have received Echo sig from r

48

Devising Knowledge Incrementally

 Knowledge lemmas facilitates incremental construction of inductive invariants
* Devising knowledge lemmas does not require much intellectual burden

 More knowledge can be devised by composing existing knowledge

49

Devising Knowledge Incrementally

 Knowledge lemmas facilitates incremental construction of inductive invariants
* Devising knowledge lemmas does not require much intellectual burden

 More knowledge can be devised by composing existing knowledge

Safety

Level of knowledge Inductive
Invariant

Knowledge lemmas

50

Knowledge-Driven Proof of Safety

Given that |s has a signature r has echoed to
S, I are from 7 in its implies [the externally valid

non-tfaulty, local state value from s

f

s has received an Echo message from r; or
r has sent an Echo message to s

data persistence &

knowledge propagation
data representation

through message

» Safety is then just the knowledge derived from existing knowledge!

51

Specifying Systems in BYTHOS

Workflow Techniques

Proving safety properties ~ Knowledge lemmas I

52

Specifying Systems in BYTHOS

Workflow Techniques

- Knowledge lemmas |

Reasoning about liveness

53

Liveness Property of Provable Broadcast

check with EV

* Liveness (“good thing eventually happens”):

* Given that s is non-faulty and v is externally
valid, If s broadcast v, then s will eventually g

obtain a delivery certificate for v e Init < >_ECh0 ,

delivery

. certificate
on>n—f

echoes

54

Liveness Property, Formalized

* A liveness property Is a predicate on the infinite-length traces of system states

* Can be expressed in the language of Linear Temporal Logic (LTL)

trace 7

55

Liveness Property, Formalized

* A liveness property Is a predicate on the infinite-length traces of system states

 Can be expressed in the language of Linear Temporal Logic (LTL)

trace 7

Q Q

« “If ” happens, then eventually O will happen”: formalized as “leads-to” ~

« 7 satisfies™ P ~ MO 1if at any moment when / holds, then there exists a
subsequent moment when O will hold

56

Liveness Property, Formalized

* Liveness properties would only hold on “reasonable” traces
 E.g., atrace with only Byzantine nodes moving is not reasonable to consider
* Fairness condition: “reasonableness” in the form of LTL formula

* The fairness condition in BYTHOS: every message between non-faulty nodes
will be eventually received

* Unrelated to clock or Byzantine nodes, due to the presence of asynchrony
and adversary

57

Liveness Property, Formalized

» Enable temporal logic reasoning by using the COQTLA library () tchaijed / coa-tia

Definition liveness : Prop :=

forall (s : Address) (v : Value), - N
isByzantine s = false A any trace satisfying conditions

externally_valid v — before — would satisfy those after”
" init ' A O (next) A fairness|k
" (* s broadcast v *) ' ~»

" (* s has delivery certificate for o *) .

wellformedness
condition

58

Reasoning about Liveness
‘ initial phase ‘ echo phase ‘time

* Several “phases” can be identified in the . &
protocol execution <5 <
5 <
* Proving liveness amounts to showing that \ |
these phases are guaranteed to happen e Init OEC_hO.
consecutively, assuming fairness % &\o U

delivery

. certificate
on>n—f
echoes

59

Phase Decomposition

 Phases can be proved separately and be composed using the transitivity of ~

VP,O,R, P~> QAQ~> RFP~ R

Initial phase echo phase

all non-faulty nodes s has

s broadcast v ~ echoed to v ~ delivery

certificate for v

60

Specifying Systems in BYTHOS

Workflow Techniques

- Knowledge lemmas |
Reasoning about liveness Phase decomposition I

61

Specifying Systems in BYTHOS

Workflow Techniques

- Knowledge lemmas |
Phase decomposition |

Composing protocols

62

Sequential Composition of Protocols

e Sequencing protocols help achieve stronger guarantees

broadcast v broadcast two-round delivery certificate:
. delivery . at least n — 2f non-faulty nodes
certificate have one-round delivery certificate

63

Functor for Protocol Composition

* The protocol logic of a protocol is encapsulated as a Cog module

 Composition functor: given two protocol modules, constructs a new one

SeqgCompProtocol(

64

Functor for Protocol Composition

* The protocol logic of a protocol is encapsulated as a Cog module
 Composition functor: given two protocol modules, constructs a new one

* Allows for multiple composition
Py ;

Pp Pe
SeqCompProtocol(O , O) =

65

Composite Protocol Construction

 The composite protocol reuses definitions from sub-protocols

» The local state of P, ; Pp = the pair of local states of P, and Pj
 The kinds of messages of P, ; Py = the union of messages of P, and Py
« A node running P4 ; Py~ two threads running £, and Py separately

 Exception: Py is instructed to start by the user-provided triggers

66

Triggers

« Firing internal events of P based on the execution of P,

Parameter trigger_procMsg :
P4 .State (* local state before executing Pa.procMsg *) ->
P4 .State (* local state after executing P .procMsg x) ->
option Pg.InternalEvent.

Parameter trigger_procInt : (* the same type as above x*)

6/

Triggers

 The logic of procMsg of P, ; Pp:
» If the incoming message is for Py, then handle it using the procMsg of Py

e Otherwise:

» Handle it using the procMsg of P,

 Check whether the trigger for procMsg is fired

o If the trigger gives the internal event ev of Py, then handle it using the
procInt of Py

638

Specifying Systems in BYTHOS

Workflow Techniques

- Knowledge lemmas |

Phase decomposition |
Composing protocols ‘ Composition functor |

69

Specifying Systems in BYTHOS

Workflow Techniques

- Knowledge lemmas |
Phase decomposition |
l Composition functor |

Verifying composite protocols

70

Composing Proofs

 The execution of a composite protocol can be projected into the executions
of sub-protocols

trace QfPA ; PB —_— e ——0—0—o——

71

Composing Proofs

 The execution of a composite protocol can be projected into the executions
of sub-protocols

trace QfPA ; PB —_—— 0 —0—0—

{ taking the component of Pp
® ® ® ® ® ®

(2

Composing Proofs

 The execution of a composite protocol can be projected into the executions
of sub-protocols

* Allows for composing proofs of sub-protocols by lifting

trace QfPA ; PB —_—— 0 —0—0—

trace of PB — o o o o o o

/3

Lifting Safety

« “If every reachable system state of °, satisfies some safety, then the P,
components of P, ; Pp would also satisfy it”
holds on
proj ,(o) for every
reachable o

f

trace of P, ; Pjp

74

Lifting and Composing Liveness

* |Liveness properties of sub-protocols can be lifted and composed

* Requires triggers to be fired properly
o VP,O,R, P~ QAQ~> R+FP~ R

trace QfPA ; PB @—»

~

trace of P A @—0—0—»

ltﬂggeﬁng

trace of Py W

~

73

Specifying Systems in BYTHOS

Workflow Techniques

Encoding the protocol

Proving safety properties ~ Knowledge lemmas |

Reasoning about liveness l Phase decomposition |

Composing protocols l Composition functor |

Verifying composite protocols l Proof lifting |
/6

Verified Case Studies

e Provable Broadcast
e Reliable Broadcast
 Accountable Confirmer

e Accountable Reliable Broadcast

’r’

Case Study: Reliable Broadcast

INFORMATION AND COMPUTATION 75, 130~143 (1987)

Asynchronous Byzantine Agreement Protocols

(GABRIEL BRACHA

13Bart Street, Tel-Aviv 69104, Israel

* A classic BFT protocol for broadcasting values with several guarantees

* Used as sub-protocol in some BFT consensus protocols (e.g., Bullshark)

/8

Proof Reuse In Liveness Proofs

* The proof of one phase can be used in proving different liveness properties

5 phases in total, but only need to prove 4 phases

liveness property 1

liveness property 2 the same phase,
proof reused

/9

Case Study: Accountable Confirmer

As easy as ABC: Optimal (A)ccountable
(B)yzantine (C)onsensus is easy!

Pierre Civit!, Seth Gilbert?, Vincent Gramoli**, Rachid Guerraoui* and Jovan Komatovic*

'Sorbonne University, CNRS, LIP6
“NUS Singapore
*University of Sydney

‘*EPFL

* A generic “plug-in” providing BFT protocols with accountability

* Allows non-faulty nodes to detect Byzantine culprits when the safety is
compromised due to too many Byzantine nodes

80

Uncovering Implicit Assumptions

* The protocol implicitly assumes the existence of a message buffer, while the
pseudo-code does not mention it

* Without the buffer the protocol may not be live

e Evidence that formal verification can uncover subtle issues!

81

Case Study: Accountable Reliable Broadcast

« Sequential composition of Accountable Confirmer and Reliable Broadcast
* Providing Reliable Broadcast with accountability

* |t only takes 7 lines of proof to show the composite liveness property!

82

Proof Efforts

* |n total: around 7100 lines of Coqg code

Library Component Spec Proof Total Reliable Implementation 130 6 136
Safety (Sec. 4.1.1) 448 432 880
System (Sec. 3.1) 729 465 11%4 Broadcast Liveness (Sec. 4.1.2) 144 161 305
N Liveness (Sec. 3.2) 160 181 341 (Sec. 4.1) Total 799 500 1391
(Sec. 3) Composition (Sec. 3.3) 529 &3 284 Implementation 237 109 346
Utilities 184 157 341 Accountable P afety o 700 1308
Total 1S0E 1090 4400 (ignﬁr;r;e)r Liveness (Sec. 4.2.2) 172 200 372
Implementation (Sec. 2.1) 121 6 127 o Total 1028 1018 2046
Provable Safety (Sec. 2.2) 404 320 724 Accountable Implementation 33 0 33
Broadcast Liveness (Sec. 2.3) 92 67 159 Reliable Connector (Sec. 4.3.1) 48 92 140
(Sec. 2) Composition (Sec. 2.4) 85 10" 95 Broadcast Liveness (Sec. 4.3.1) 3 7 10
Total 702 403 1105 (Sec. 4.3) Total 84 99 183

33

Summary

* Bythos: streamlining the verification of BFT protocols and their compositions

* Supporting standard toolsets:
inductive invariant based safety reasoning and LTL-based liveness reasoning

* Further facilitating proofs with knowledge lemmmas and phase decomposition

* Allowing veritying composite BFT protocols by reusing proofs of components

Sy SR Thanks!

84

