
Compositional Verification of
Composite Byzantine Protocols

Qiyuan Zhao, George Pîrlea, Karolina Grzeszkiewicz

Seth Gilbert and Ilya Sergey

Distributed Protocols

• Distributed systems are important!

• Scalability, reliability, performance, …

• Theoretical foundation: distributed protocols

• Defining how a node collaborates with other nodes

2

Byzantine Fault Tolerance
• Fault tolerance: a key goal in protocol design

• Byzantine fault:

• Faulty nodes that can deviate from the protocol arbitrarily

3

Byzantine Fault Tolerance Protocols
• Key in ensuring the reliability and integrity of various Internet services

4

BFT Protocols Are Hard to Get Right

5

BFT Protocols Are Hard to Get Right

6Source: https://github.com/dranov/protocol-bugs-list

#Year(s) taken to

discover the bug

 1≤
 1≈
 4≈
 7≈

 12≈
 22≈

BFT Protocols Are Hard to Get Right

• Testing or model checking BFT protocols may not be effective

• Byzantine behavior large search space

• Precisely capturing Byzantine behavior is difficult

⇒

7

Verification Builds Trust
• Reducing the risk of having bugs by formal verification

• Proving properties rigorously with proofs aided/checked by machine

8

Verification is Also Laborious

9

“Proofs take 39253 LoC 
in total”

• Such great efforts are difficult to reuse!

“Verifying PBFT takes 
around 20000 lines of specs 
and around 20000 lines of proofs”

Compositionality For The Win

10

• Compositionality: the conventional wisdom in doing verification

• Separation of specification and implementation

• Modularity & proof reuse

implementation

specification

proof

implementation

specification

proof

implementation

specification

proof

Compositionality For The Win

11

• Compositionality: the conventional wisdom in doing verification

• Separation of specification and implementation

• Modularity & proof reuse

implementation

specification

proof

implementation

specification

proof

implementation

specification

proof

composed 
system

specification of composed system

use already proved specifications

Compositionality For The Win
• Composition: strategy for reducing conceptual complexity in BFT protocol design

12

Blog source: https://decentralizedthoughts.github.io/  
Image credit: https://decentralizedthoughts.github.io/2022-09-10-provable-
broadcast/

https://decentralizedthoughts.github.io/

We want to make verification compositional
for (potentially composite) BFT protocols.

13

Our Contribution
• BYTHOS: streamlining the verification of BFT protocols and their compositions

• Embedded in the Coq proof assistant foundational

• The first framework that supports:

Reasoning about Byzantine faults

Modular safety & liveness proofs of BFT protocols

Proof reuse for verifying composite BFT protocols

Executable reference implementation extracted to OCaml

⇒

14

Specifying Systems in BYTHOS

15

Encoding the protocol

Workflow Techniques

Proving safety properties

Reasoning about liveness

Composing protocols

Verifying composite protocols

Specifying Systems in BYTHOS

16

Encoding the protocol

Workflow Techniques

Proving safety properties

Reasoning about liveness

Composing protocols

Verifying composite protocols

Running Example: Provable Broadcast (PB)

• Intuitively, it is for ensuring that more than non-faulty nodes accept some
value that satisfies a notion of external validity

• Assume (: the number of nodes, at most nodes are Byzantine)

f

n > 3f n f

17

“PB based
protocols are the backbone of
many authenticated
consensus protocols.”*

* https://decentralizedthoughts.github.io/2022-09-10-provable-broadcast/

Running Example: Provable Broadcast
• A sender broadcasts a value and

an associated proof
v

18

s ri

…

…

𝖨𝗇𝗂𝗍(v, proof)

𝖨𝗇𝗂𝗍(v
, proof)

𝖨𝗇𝗂𝗍(v, proof)

𝖨𝗇𝗂𝗍(v, proof)

en route
delivered

Running Example: Provable Broadcast
• A sender broadcasts a value and

an associated proof

• Each receiver validates the value
using an external validity function

v

EV

19

s ri

…

…

𝖨𝗇𝗂𝗍(v, proof)

𝖨𝗇𝗂𝗍(v
, proof)

𝖨𝗇𝗂𝗍(v, proof)

𝖨𝗇𝗂𝗍(v, proof)

?EV(v, proof)

en route
delivered

Running Example: Provable Broadcast
• A sender broadcasts a value and

an associated proof

• Each receiver validates the value
using an external validity function

• For the first externally valid value ,
the receiver signs and echoes the
signature to the sender

v

EV

v
v

20

s ri

…

…

𝖤𝖼𝗁𝗈(signi(v))

𝖤𝖼𝗁𝗈(sig
n 1

(v)
)

𝖤𝖼𝗁𝗈(sign 2
(v))

𝖤𝖼𝗁𝗈(sign
m (v))

en route
delivered

Running Example: Provable Broadcast
• A sender broadcasts a value and

an associated proof

• Each receiver validates the value
using an external validity function

• For the first externally valid value ,
the receiver signs and echoes the
signature to the sender

• The sender waits for echoes to
combine into a delivery certificate

v

EV

v
v

n − f

21

s ri

…

…

𝖤𝖼𝗁𝗈(signi(v))

𝖤𝖼𝗁𝗈(sig
n 1

(v)
)

𝖤𝖼𝗁𝗈(sign 2
(v))

𝖤𝖼𝗁𝗈(sign
m (v))

⇓
combine

signatures

for

n − f

v

en route
delivered

Specification of Provable Broadcast

• Safety (“bad thing never happens”):

• If a delivery certificate exists for , then

• at least non-faulty nodes know
and echoed

• is externally valid

• no any other value can have
delivery certificate

v

n − 2f
v

v

22

s 𝖨𝗇𝗂𝗍 s

…

𝖨𝗇𝗂𝗍

𝖨𝗇
𝗂𝗍

𝖨𝗇𝗂𝗍 𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

⇓
delivery

certificate 
on

echoes
≥ n − f

check with EV

Specification of Provable Broadcast

• Liveness (“good thing eventually happens”):

• Given that is non-faulty and is externally
valid, if broadcast , then will eventually
obtain a delivery certificate for

s v
s v s

v

23

s 𝖨𝗇𝗂𝗍 s

…

𝖨𝗇𝗂𝗍

𝖨𝗇
𝗂𝗍

𝖨𝗇𝗂𝗍 𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

⇓
delivery

certificate 
on

echoes
≥ n − f

check with EV

Encoding the Protocol
• System in BYTHOS: includes the set of nodes and a network

24

Protocol logic:
•User-provided
•Determines node
behavior

System semantics:
•Parametric over
protocol logic

•Works as a state
machine

25

Ingredients of a Protocol
• The kinds of internal events

• The kinds of messages

Each bar represents one kind

26

Ingredients of a Protocol
• The kinds of internal events

• The kinds of messages

payload

27

Ingredients of a Protocol
• The kinds of internal events

• The kinds of messages

• The local state of a non-faulty node

• Keeps track of what the node
has done

self address

28

Ingredients of a Protocol
• The kinds of internal events

• The kinds of messages

• The local state of a non-faulty node

• Keeps track of what the node
has done

sender state

records from whom the 
Echo messages comes from 
and the attached signatures

29

Ingredients of a Protocol
• The kinds of internal events

• The kinds of messages

• The local state of a non-faulty node

• Keeps track of what the node
has done

receiver state 
(records to which value  

and proof the node has echoed)

30

Ingredients of a Protocol
• The kinds of internal events

• The kinds of messages

• The local state of a non-faulty node

• The handler for internal events

Handler: given the original state,
returns the updated state

and the messages to send out

31

Ingredients of a Protocol
• The kinds of internal events

• The kinds of messages

• The local state of a non-faulty node

• The handler for internal events

• The handler for incoming messages

Handler: given the original state,
returns the updated state

and the messages to send out

32

Ingredients of a Protocol
• The kinds of internal events

• The kinds of messages

• The local state of a non-faulty node

• The handler for internal events

• The handler for incoming messages

• The constraint over Byzantine nodes

System Semantics

33

• System in BYTHOS: state machine

• System state = local states of nodes +
state of network (all sent messages)

• At most one node performs an atomic
step in one transition

Handling an internal event with procInt

Handling an incoming message with procMsg
msg

Byzantine node sending out message😈

Modeling Byzantine Adversary

• Assume an adversary controlling both the
network and Byzantine nodes

• Network is asynchronous

• Byzantine nodes can intercept messages

• Byzantine nodes affect the system only by
sending out messages

• No modeling of their local states

34

😈😈

Modeling Byzantine Adversary

• Using Dolev-Yao model for
constraining Byzantine behavior

• E.g., Byzantine nodes can take
signatures from existing messages
but cannot forge signatures

• Byzantine messages are under such
constraints

35

😈

⇓
delivery

certificate

with signatures

{sig1, ⋯, sign−f}
valid with regard to

a non-faulty node

Echo sig1

taken from

36

Specifying Systems in BYTHOS

Encoding the protocol

Workflow Techniques

Proving safety properties

Reasoning about liveness

Composing protocols

Verifying composite protocols

Safety Properties of Provable Broadcast

• Safety (“bad thing never happens”):

• If a delivery certificate exists for , then

• at least non-faulty nodes know
and echoed

• is externally valid

• no any other value can have
delivery certificate

v

n − 2f
v

v

37

s 𝖨𝗇𝗂𝗍 s

…

𝖨𝗇𝗂𝗍

𝖨𝗇
𝗂𝗍

𝖨𝗇𝗂𝗍 𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

⇓
delivery

certificate 
on

echoes
≥ n − f

check with EV

Safety Properties, Formalized

• Proving safety amounts to establishing it as
an invariant

• Invariant: a predicate that holds on all
system states reachable via transitions
from an initial system state

38

Safe

Reachable

initial state

Safety Properties, Formalized

39

Reachable

Safe

initial state

Proving Safety Properties

• Reachability is inductively defined, but proving
safety directly by induction may be infeasible

• Since safety is weak when used as the
induction hypothesis

40

Reachable

Safe

initial state

Proving Safety Properties

• The standard approach to proving safety:

• Finding an inductive invariant

• Inductive: is preserved after any transition

• Showing that implies the desired safety property

I

I

I

41

Reachable

Safe

 holdsI

❌

initial state

Inductive Invariants
• Summarize the knowledge (or, causality) about protocol execution “within” a

system state

42

statement implies
Given that

 are

non-faulty,

s, r
 has a signature

from in its

local state

s
r

 has echoed to

the externally valid

value from

r

s

Inductive Invariants
• Summarize the knowledge (or, causality) about protocol execution “within” a

system state

43

timeline

statement implies
Given that

 are

non-faulty,

s, r

cause

remembering
 has a signature

from in its

local state

s
r

 has echoed to

the externally valid

value from

r

s

Knowledge Lemmas
• Coming up with all such knowledge that helps prove safety all at once is hard

• Knowledge lemmas:

• Systematically capturing low-level properties of the protocol that directly
follow from the protocol design

• Higher-level knowledge can be obtained by composing knowledge lemmas

44

Knowledge Lemmas, Classified
• Data persistence: “a field only grows or never gets overwritten”

45

⟹transition

echoed = Some vpf
echo_counter = S

echoed = Some vpf
echo_counter = S′

with S ⊆ S′

Knowledge Lemmas, Classified
• Data representation: “local invariants” maintained inside the local state

46

If echoed = Some ,

then is true

(v, pf)
EV(v, pf)

Knowledge Lemmas, Classified
• Knowledge propagation within a node: direct causal relationship within

multiple fields of the local state

47

If delivery_certificate = Some ,

then is made of signatures in echo_counter
and |echo_counter|

d
d

≥ n − f

Knowledge Lemmas, Classified
• Knowledge propagation through messages: direct, mutual effect between

non-faulty nodes and messages sent from or to them

48

If echo_counter, then the node

must have received Echo from

(r, sig) ∈
sig r

Devising Knowledge Incrementally

• Knowledge lemmas facilitates incremental construction of inductive invariants

• Devising knowledge lemmas does not require much intellectual burden

• More knowledge can be devised by composing existing knowledge

49

Knowledge lemmas

Devising Knowledge Incrementally

• Knowledge lemmas facilitates incremental construction of inductive invariants

• Devising knowledge lemmas does not require much intellectual burden

• More knowledge can be devised by composing existing knowledge

50

Knowledge lemmas

Safety

Inductive 
Invariant

Level of knowledge

Knowledge-Driven Proof of Safety

51

 has received an Echo message from ; or

 has sent an Echo message to

s r
r s

implies
Given that

 are

non-faulty,

s, r
 has a signature

from in its

local state

s
r

 has echoed to

the externally valid

value from

r

s

knowledge propagation

through message

data persistence &

data representation

• Safety is then just the knowledge derived from existing knowledge!

52

Specifying Systems in BYTHOS

Encoding the protocol

Workflow Techniques

Proving safety properties

Reasoning about liveness

Composing protocols

Verifying composite protocols

Knowledge lemmas

53

Specifying Systems in BYTHOS

Encoding the protocol

Workflow Techniques

Proving safety properties

Reasoning about liveness

Composing protocols

Verifying composite protocols

Knowledge lemmas

Liveness Property of Provable Broadcast

• Liveness (“good thing eventually happens”):

• Given that is non-faulty and is externally
valid, if broadcast , then will eventually
obtain a delivery certificate for

s v
s v s

v

54

s 𝖨𝗇𝗂𝗍 s

…

𝖨𝗇𝗂𝗍

𝖨𝗇
𝗂𝗍

𝖨𝗇𝗂𝗍 𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

⇓
delivery

certificate 
on

echoes
≥ n − f

check with EV

Liveness Property, Formalized
• A liveness property is a predicate on the infinite-length traces of system states

• Can be expressed in the language of Linear Temporal Logic (LTL)

55

trace τ …
σ1 σ2 σ3 σ4 σ5

Liveness Property, Formalized
• A liveness property is a predicate on the infinite-length traces of system states

• Can be expressed in the language of Linear Temporal Logic (LTL)

56

• “If happens, then eventually will happen”: formalized as “leads-to”

• satisfies if at any moment when holds, then there exists a
subsequent moment when will hold

P Q ↝

τ ⌜P⌝ ↝ ⌜Q⌝ P
Q

trace τ …
σ1 σ2 σ3 σ4 σ5

P P P

Q Q Q

Liveness Property, Formalized
• Liveness properties would only hold on “reasonable” traces

• E.g., a trace with only Byzantine nodes moving is not reasonable to consider

• Fairness condition: “reasonableness” in the form of LTL formula

• The fairness condition in BYTHOS: every message between non-faulty nodes
will be eventually received

• Unrelated to clock or Byzantine nodes, due to the presence of asynchrony
and adversary

57

Liveness Property, Formalized

58

wellformedness

condition

“any trace satisfying conditions

before would satisfy those after”⊢

• Enable temporal logic reasoning by using the COQTLA library

Reasoning about Liveness

• Several “phases” can be identified in the
protocol execution

• Proving liveness amounts to showing that
these phases are guaranteed to happen
consecutively, assuming fairness

59

s 𝖨𝗇𝗂𝗍 s

…

𝖨𝗇𝗂𝗍

𝖨𝗇
𝗂𝗍

𝖨𝗇𝗂𝗍 𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

⇓
delivery

certificate 
on

echoes
≥ n − f

timeinitial phase echo phase

Phase Decomposition
• Phases can be proved separately and be composed using the transitivity of ↝

60

initial phase echo phase

 broadcast s v all non-faulty nodes

echoed to v

 has

delivery

certificate for

s

v
↝ ↝

↝

61

Specifying Systems in BYTHOS

Encoding the protocol

Workflow Techniques

Proving safety properties

Reasoning about liveness

Composing protocols

Verifying composite protocols

Knowledge lemmas

Phase decomposition

62

Specifying Systems in BYTHOS

Encoding the protocol

Workflow Techniques

Proving safety properties

Reasoning about liveness

Composing protocols

Verifying composite protocols

Knowledge lemmas

Phase decomposition

Sequential Composition of Protocols
• Sequencing protocols help achieve stronger guarantees

63

s 𝖨𝗇𝗂𝗍 s

…

𝖨𝗇𝗂𝗍

𝖨𝗇
𝗂𝗍

𝖨𝗇𝗂𝗍 𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈 𝖨𝗇𝗂𝗍 s

…

𝖨𝗇𝗂𝗍

𝖨𝗇
𝗂𝗍

𝖨𝗇𝗂𝗍 𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈
𝖤𝖼𝗁𝗈

𝖤𝖼𝗁𝗈

⇓
two-round delivery certificate:

at least non-faulty nodes

have one-round delivery certificate

n − 2f
broadcast v broadcast

delivery

certificate

Functor for Protocol Composition
• The protocol logic of a protocol is encapsulated as a Coq module

• Composition functor: given two protocol modules, constructs a new one

64

SeqCompProtocol(
PA PB

,) :=
PA ; PB

Functor for Protocol Composition
• The protocol logic of a protocol is encapsulated as a Coq module

• Composition functor: given two protocol modules, constructs a new one

• Allows for multiple composition

65

SeqCompProtocol(
PC

,) :=
PA ; PB

PA ; PB ; PC

Composite Protocol Construction

• The composite protocol reuses definitions from sub-protocols

• The local state of = the pair of local states of and

• The kinds of messages of = the union of messages of and

• A node running two threads running and separately

• Exception: is instructed to start by the user-provided triggers

PA ; PB PA PB

PA ; PB PA PB

PA ; PB ≈ PA PB

PB

66

Triggers
• Firing internal events of based on the execution of PB PA

67

Triggers
• The logic of procMsg of :

• If the incoming message is for , then handle it using the procMsg of

• Otherwise:

• Handle it using the procMsg of

• Check whether the trigger for procMsg is fired

• If the trigger gives the internal event of , then handle it using the
procInt of

PA ; PB

PB PB

PA

ev PB
PB

68

69

Specifying Systems in BYTHOS

Encoding the protocol

Workflow Techniques

Proving safety properties

Reasoning about liveness

Composing protocols

Verifying composite protocols

Knowledge lemmas

Phase decomposition

Composition functor

70

Specifying Systems in BYTHOS

Encoding the protocol

Workflow Techniques

Proving safety properties

Reasoning about liveness

Composing protocols

Verifying composite protocols

Knowledge lemmas

Phase decomposition

Composition functor

Composing Proofs
• The execution of a composite protocol can be projected into the executions

of sub-protocols

71

trace of PA ; PB

Composing Proofs
• The execution of a composite protocol can be projected into the executions

of sub-protocols

72

trace of PA ; PB

 taking the component of ⇑ PA

 taking the component of ⇓ PB

Composing Proofs
• The execution of a composite protocol can be projected into the executions

of sub-protocols

• Allows for composing proofs of sub-protocols by lifting

73

trace of PA ; PB

trace of PA

trace of PB

Lifting Safety
• “If every reachable system state of satisfies some safety, then the

components of would also satisfy it”
PA PA

PA ; PB

74

trace of PA ; PB

trace of PA
holds on every 
reachable σ

holds on 
 for every 

reachable  
projA(σ)

σ

Lifting and Composing Liveness
• Liveness properties of sub-protocols can be lifted and composed

• Requires triggers to be fired properly

75

trace of PA ; PB

trace of PA

trace of PB

↝

↝

triggering

↝

76

Specifying Systems in BYTHOS

Encoding the protocol

Workflow Techniques

Proving safety properties

Reasoning about liveness

Composing protocols

Verifying composite protocols

Knowledge lemmas

Phase decomposition

Composition functor

Proof lifting

Verified Case Studies
• Provable Broadcast

• Reliable Broadcast

• Accountable Confirmer

• Accountable Reliable Broadcast

77

Case Study: Reliable Broadcast

• A classic BFT protocol for broadcasting values with several guarantees

• Used as sub-protocol in some BFT consensus protocols (e.g., Bullshark)

78

Proof Reuse in Liveness Proofs
• The proof of one phase can be used in proving different liveness properties

• 5 phases in total, but only need to prove 4 phases

79

liveness property 1

liveness property 2 the same phase,  
proof reused

Case Study: Accountable Confirmer

• A generic “plug-in” providing BFT protocols with accountability

• Allows non-faulty nodes to detect Byzantine culprits when the safety is
compromised due to too many Byzantine nodes

80

Uncovering Implicit Assumptions

• The protocol implicitly assumes the existence of a message buffer, while the
pseudo-code does not mention it

• Without the buffer the protocol may not be live

• Evidence that formal verification can uncover subtle issues!

81

Case Study: Accountable Reliable Broadcast

• Sequential composition of Accountable Confirmer and Reliable Broadcast

• Providing Reliable Broadcast with accountability

• It only takes 7 lines of proof to show the composite liveness property!

82

Proof Efforts

83

• In total: around 7100 lines of Coq code

Summary
• Bythos: streamlining the verification of BFT protocols and their compositions

• Supporting standard toolsets:  
inductive invariant based safety reasoning and LTL-based liveness reasoning

• Further facilitating proofs with knowledge lemmas and phase decomposition

• Allowing verifying composite BFT protocols by reusing proofs of components

84

Thanks!
Code Paper

