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Blockchains don’t scale
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Sharding has limitations
Especially for smart contracts!
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Sharded contracts: intuition

• A blockchain is a state transition system, 
consisting of:
• State
• Rules that say which state updates are legal

• We have strategies for sharding 
blockchains (for certain kinds of rules*)

• A smart contract is a state 
transition system, consisting of:
• State
• Code that says which state 

updates are legal

• …
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* - some rules shard better than others 
and some don’t shard at all



Does the code of the contract 
define a shardable state 

machine?
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Does the code have 
property X?
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We can shard contracts the 
same way we shard 

blockchains.

Static analysis uncovers the opportunities.
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CoSplit
Practical Smart Contract Sharding with 

Static Program Analysis



Our contributions

• Identify enabling mechanisms for sharding Ethereum-style contracts
• and show their adequacy for some realistic contracts

• CoSplit, a static analysis tool that infers sharding strategies for smart 
contracts written in Scilla, an ML-style smart contract language

• End-to-end integration of CoSplit with a production-grade sharded 
blockchain (Zilliqa)

• Evaluation of the inferred sharding strategies
• almost linear throughput increase as number of shards goes up

18



Mechanism (1): disjoint state ownership
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transition Donate ()
blk <- & BLOCKNUMBER;
in_time = blk_leq blk max_block;
match in_time with
| True =>

c <- exists backers[_sender];
match c with
| False =>
accept;
backers[_sender] := _amount;

field backers : Map ByStr20 Uint128

cf. Safer Smart Contract Programming with Scilla, Sergey et al., OOPSLA’19



Mechanism (1): disjoint state ownership
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Mechanism (2): commutative effects
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field counter : Uint128 = Uint128 0

transition Increment ()
c <- counter;
inc = Uint128 1;
new_c = builtin add c inc;
counter := new_c

end

Cumulative result can be 
obtained by joining the 
contributions from each 

shard.



Mechanism (2): commutative effects
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smart contract. That is, none of them solve the mentioned
congestion problem in Ethereum.

In this work, we address this issue by providing a novel
approach for significantly increasing the throughput of
blockchains for smart contract-manipulating transactions.
We do so by taking inspiration from the existing mecha-
nisms for sharding user-to-user transfers of funds [43, 68].
To achieve this, instead of treating contract implementa-
tions as “black boxes” (as do all the works mentioned
above), we design a solution based on programming lan-
guage techniques, specifically, on program analysis.
Our approach. Why can user-to-user money transfers
be sharded efficiently without complex inter-shard com-
munication, and how can we generalise (perhaps, conser-
vatively) this logic to shard arbitrary smart contracts?

Consider a transaction tx1 that manifests a transfer
of 10 digital currency units from the user A to B, and
a transaction tx2 that states that A transfers 20 units to
C. In order to ensure that A does not double-spend, both
tx1 and tx2 have to be executed in the same shard—the
one that owns A’s account and keeps track of A’s balance.
However, neither B nor C need to be owned by A’s shard:
as long as tx1 and tx2 are validated within A’s shard, the
positive deltas to B and C’s accounts can be simply broad-
cast through the network, so their balances are increased
accordingly with no extra inter-shard interaction.

A CB D
A:  -10 
B: +10

tx1 tx2 tx3

A:  -20 
C: +20

D:  -15 
C: +15

Now consider a transaction tx3, in which D transfers 15
units to C. Assuming that both A and D have sufficient
funds for those transfers, it does not matter in which
order tx1 and tx3 are going to be processed by the system,
as they commute: either of their relative orderings will
result in increasing C’s balance by 35 units.

The notions of state ownership and operation commu-
tativity have been central in a number of works dedicated
to reasoning about safe parallelism in multi-threaded
executions [19, 20, 23, 34, 42, 53, 66]. The virtue of
operations being commutative has also been studied
in the systems community for scaling concurrent soft-
ware [3, 13, 50, 51] and achieving faster consensus in
replication protocols [11, 36, 40, 45]. However, to the
best of our knowledge, no attempts to automatically lever-
age commutativity in user-defined replicated computa-
tions (e.g., smart contracts) have been made to date.

In this work, we present COSPLIT, a tool for static
analysis of smart contracts that soundly infers both own-
ership and commutativity constraints from source code of
smart contracts in the form of sharding signatures. The
signatures are used, upon the deployment of a contract,
to define a sharding strategy for the contract-affecting
transactions via the following rules:
• All transactions touching parts of a contract’s state
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Fig. 1: Left: Ethereum transaction breakdown per type;
the percentage distribution is averaged over 100K block
periods. Right: breakdown of single-call transactions.

owned by a shard S must be executed in this shard;
• Transactions executed in different shards are guaran-

teed to commute. Their cumulative result can be ob-
tained by means of “joining” their respective contribu-
tions in a way prescribed by the sharding signature.

These two rules achieve a notion of consistency for par-
allel transaction executions adopted from works on the
semantics of concurrent revisions [7, 8, 41]:
1. Potentially conflicting contract-manipulating transac-

tions will be executed in some globally-agreed order.
2. Commuting transactions can be executed in parallel,

as their effect does not depend on their order.
As we will discuss in Sec. 2, popular Ethereum-style
contracts often allow for a “virtual split” of their state
into disjointly owned components, which is much more
fine-grained than assigning an entire contract to a single
shard. This split makes it possible to process transactions
affecting those contracts in parallel in different shards,
obtaining the final result by joining individual changes.
Our contributions. The contributions of this work are:
• Identifying virtual state ownership and operation

commutativity as enabling mechanisms for sharding
Ethereum-style smart contracts, and the demonstration
of adequacy of those notions for realistic applications.

• COSPLIT, a static analysis tool that infers sharding
signatures for smart contracts written in Scilla [52] and
translates them to parallel shard allocation strategies.

• An end-to-end integration of COSPLIT with a
production-grade sharded blockchain system [43, 68].

• An evaluation of the inferred sharding signatures,
demonstrating a consistent increase in system through-
put with increasing the number of shards.

2 Motivation and Key Ideas
2.1 Contract Usage in Ethereum
At the time of writing, Ethereum is the most popular
smart contract network [65]. We want to know how many
Ethereum transactions involve contracts and what are the
trends of their usage. Since there are over 700 million
Ethereum transactions to date, processing all of the execu-
tion traces is too computationally expensive. Therefore,

2



Commutative operations do not imply commutative effects!

24

field counter : Uint128 = Uint128 0

transition Increment ()
c <- counter;
inc = Uint128 1;
new_c = builtin add c inc;
counter := new_c

end

transition Double ()
c <- counter;
new_c = builtin add c c;
counter := new_c

end

2 * (2x + 1) ≠ 2 * 2x + 1



Static analysis for transition effects

• Produce an effect summary for every transition in the contract
• Effects include: reads, writes, accepting funds, sending messages, 

conditioning on values derived from mutable fields
• The effect summary over-approximates the behaviour of the transition

25



Static analysis for transition effects

• Produce an effect summary for every transition in the contract
• Effects include: reads, writes, accepting funds, sending messages, 

conditioning on values derived from mutable fields
• The effect summary over-approximates the behaviour of the transition

• Determine which effects are commutative using a 
linearity-tracking flows-to analysis
• The analysis is expressed as a type system for “contribution types” and is 

compositional (but gives uninformative types in some cases)

26
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Write(balances[to],
{(balances[to], Linear, add),

(amount, Linear, add)})

Read(balances[to])

Write(balances[_sender],
{(balances[_sender], Linear, sub),

(amount, Linear, sub)})

{(balances[_sender], Linear, sub),
(amount, Linear, sub)}

Condition(balances[_sender], amount)
(balances[_sender], Linear, Ø) 
Condition(balances[_sender])

Read(balances[_sender])
1 transition Transfer(to: ByStr20, amount: Uint)
2 from_bal <- balances[_sender];
3 match from_bal with
4 | Some bal =>
5 match amount ≤ bal with
6 | True =>
7 new_from_bal = builtin sub bal amount;
8 balances[_sender] := new_from_bal;
9 to_bal <- balances[to];

10 new_to_bal = match to_bal with
11 | Some bal => builtin add bal amount
12 | None => amount
13 end;
14 balances[to] := new_to_bal
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Sharding Constraints

A language for restricting a set of shards that can execute 
a certain transition of a contract.



Write(balances[to],
{(balances[to], Linear, add),

(amount, Linear, add)})

Read(balances[to])

Condition(balances[_sender], amount)

Write(balances[_sender],
{(balances[_sender], Linear, sub),

(amount, Linear, sub)})

30

Condition(balances[_sender])

Read(balances[_sender])

Owns(balances[_sender])

IntMerge join for un-owned contributions

Weak reads

OwnOverwrite join for owned contributions
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Owns(balances[_sender]) OwnOverwrite join for owned contributions
IntMerge join for un-owned contributions

1 transition Transfer(to: ByStr20, amount: Uint)
2 from_bal <- balances[_sender];
3 match from_bal with
4 | Some bal =>
5 match amount ≤ bal with
6 | True =>
7 new_from_bal = builtin sub bal amount;
8 balances[_sender] := new_from_bal;
9 to_bal <- balances[to];

10 new_to_bal = match to_bal with
11 | Some bal => builtin add bal amount
12 | None => amount
13 end;
14 balances[to] := new_to_bal
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In fact, the types are more complicated: 
types are generic lambda terms.

(Lambdas are needed to represent the 
contribution types of pure functions, incl. 

higher-order functions.)

type expr_type =
| ETop
| EVal of known_contrib
| ECompositeVal of expr_type * expr_type

| EOp of contrib_op * expr_type

| EComposeSequence of expr_type list
| EComposeParallel of expr_type * expr_type list

| EFun of efun_desc
| EApp of efun_desc * expr_type list



Analysis Pipeline 

1. Derive summaries for all contract transitions (R/W, operations, lin-ty)

2. Take from a user a set of transitions she wants to shard + weak reads

3. Produce an optimal (the most permissive) set of sharding constraints.
These constraints determine conditions a shard need to satisfy in 
order to run the transaction with this transition.

4. Sharding more transitions of a contract => stronger constraints

33

are handled within the shard, while transactions to a con-
tract invoked by users from an outside shard are handled
in the DS committee. Any multi-contract transaction is
handled in the DS committee. To ensure that shards and
the DS do not end up manipulating the state of the same
contract concurrently, the protocol requires the DS com-
mittee to process transactions assigned to it only after the
shards have finished processing their transactions.

Given the simple deterministic assignment, the paral-
lelism achieved for smart contract transaction processing
is somewhat limited. In fact, the more shards there are,
the more transactions will need to be processed by the
DS committee. With 3 shards (the current mainnet con-
figuration), around 66% of single-contract transactions
(such as the ERC20 contract example from Fig. 2) can
be processed within shards in parallel.

3.2 Revising the Account-Based Model
The account-based blockchain model popularised by
Ethereum [65] (and, to a large extent, adopted by the
Zilliqa implementation) makes use of the nonce mecha-
nism for defining a total order on all transactions emitted
by a particular user. Nonces are calculated by counting
the number of transactions sent from a user address and
are digitally signed, addressing the following design as-
pects: (a) strict, gap-free, user-defined ordering of transac-
tions, and (b) prevention of replay attacks. Thanks to the
nonces, the user can send many transactions with subse-
quent numbers, and they are going to be processed in this
exact order—the protocol will not process transaction
with a nonce n+1 before the one with nonce n.
Relaxing the nonce mechanism. Because of aspect (a),
nonces pose a bottleneck to sharded executions. While
in plain Zilliqa all transactions from a single user are
guaranteed to be handled in the same shard, the nonce
mechanism prevents parallel executing of transactions
with the same origin in different shards, as the total order
of nonces cannot be communicated. We notice that in
practice almost no applications rely on a specific order
of user transactions before they are committed by the
protocol.2 Therefore, it suffices for transactions to be pro-
cessed in an increasing nonce order, without waiting for
all “gaps” to be filled, treating them similarly to ballots
in Paxos [39]. This required a very small change in the
Zilliqa protocol logic. With it, we kept the aspect (b) of
the nonce mechanism, while allowing for parallel execu-
tions. For instance, this way we can execute in parallel
two disjoint sets of commuting transactions from the
same user with nonces {1,3,5} and {2,4}, respectively.
Parallel gas accounting. Gas accounting is a mecha-
nism to charge the user for the computational costs of val-

2The UTxO blockchain model adopted by, e.g., Bitcoin [46] pro-
motes this kind of weak notion of consistency, in which the user cannot
predict the order in which her transactions are committed.

CoSplit
Contract  
Analyser

Transition

summary

Sharding  
Query Solver

Sharding signature

(oc, ]f)
<latexit sha1_base64="5lj8E5R7/RsIo8Mtisj1AZayxRI=">AAACIXicbVDLSsNAFJ3UV62vqEs3g0WoICURwS6LblxWsA9oQphMJ+3QSSbMTIQS8itu/BU3LhTpTvwZJ2kWtfXAwOGce5h7jx8zKpVlfRuVjc2t7Z3qbm1v/+DwyDw+6UmeCEy6mDMuBj6ShNGIdBVVjAxiQVDoM9L3p/e5338mQlIePalZTNwQjSMaUIyUljyz1XC49vN46oRITahKOc6yK7ikJzFLpLfwZZAGWZZdembdaloF4DqxS1IHJTqeOXdGHCchiRRmSMqhbcXKTZFQFDOS1ZxEkhjhKRqToaYRCol00+LCDF5oZQQDLvSLFCzU5USKQilnoa8niyVXvVz8zxsmKmi5KY3iRJEILz4KEgYVh3ldcEQFwYrNNEFYUL0rxBMkEFa61JouwV49eZ30rpu21bQfb+rtu7KOKjgD56ABbHAL2uABdEAXYPAC3sAH+DRejXfjy5gvRitGmTkFf2D8/ALFj6W+</latexit><latexit sha1_base64="5lj8E5R7/RsIo8Mtisj1AZayxRI=">AAACIXicbVDLSsNAFJ3UV62vqEs3g0WoICURwS6LblxWsA9oQphMJ+3QSSbMTIQS8itu/BU3LhTpTvwZJ2kWtfXAwOGce5h7jx8zKpVlfRuVjc2t7Z3qbm1v/+DwyDw+6UmeCEy6mDMuBj6ShNGIdBVVjAxiQVDoM9L3p/e5338mQlIePalZTNwQjSMaUIyUljyz1XC49vN46oRITahKOc6yK7ikJzFLpLfwZZAGWZZdembdaloF4DqxS1IHJTqeOXdGHCchiRRmSMqhbcXKTZFQFDOS1ZxEkhjhKRqToaYRCol00+LCDF5oZQQDLvSLFCzU5USKQilnoa8niyVXvVz8zxsmKmi5KY3iRJEILz4KEgYVh3ldcEQFwYrNNEFYUL0rxBMkEFa61JouwV49eZ30rpu21bQfb+rtu7KOKjgD56ABbHAL2uABdEAXYPAC3sAH+DRejXfjy5gvRitGmTkFf2D8/ALFj6W+</latexit><latexit sha1_base64="5lj8E5R7/RsIo8Mtisj1AZayxRI=">AAACIXicbVDLSsNAFJ3UV62vqEs3g0WoICURwS6LblxWsA9oQphMJ+3QSSbMTIQS8itu/BU3LhTpTvwZJ2kWtfXAwOGce5h7jx8zKpVlfRuVjc2t7Z3qbm1v/+DwyDw+6UmeCEy6mDMuBj6ShNGIdBVVjAxiQVDoM9L3p/e5338mQlIePalZTNwQjSMaUIyUljyz1XC49vN46oRITahKOc6yK7ikJzFLpLfwZZAGWZZdembdaloF4DqxS1IHJTqeOXdGHCchiRRmSMqhbcXKTZFQFDOS1ZxEkhjhKRqToaYRCol00+LCDF5oZQQDLvSLFCzU5USKQilnoa8niyVXvVz8zxsmKmi5KY3iRJEILz4KEgYVh3ldcEQFwYrNNEFYUL0rxBMkEFa61JouwV49eZ30rpu21bQfb+rtu7KOKjgD56ABbHAL2uABdEAXYPAC3sAH+DRejXfjy5gvRitGmTkFf2D8/ALFj6W+</latexit>

Transitions to be sharded 
{�1, �2, . . .}

<latexit sha1_base64="5WzdBTLk1pRp3+RwtBXI67OV+EU=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0VxISUpgi6LblxWsA9oQphMJu3QyYOZG6GE/oEbf8WNC0XcunXn3zhNs9DWA8M9nHMvd+7xU8EVWNa3UVlZXVvfqG7WtrZ3dvfM/YOuSjJJWYcmIpF9nygmeMw6wEGwfioZiXzBev74Zub3HphUPInvYZIyNyLDmIecEtCSZ546goXg5A6QzLPPcVGbuoogAYUdyYcjcKaeWbcaVgG8TOyS1FGJtmd+OUFCs4jFQAVRamBbKbg5kcCpYNOakymWEjomQzbQNCYRU25e3DPFJ1oJcJhI/WLAhfp7IieRUpPI150RgZFa9Gbif94gg/DKzXmcZsBiOl8UZgJDgmfh4IBLRkFMNCFUcv1XTEdEEgo6wpoOwV48eZl0mw3bath3F/XWdRlHFR2hY3SGbHSJWugWtVEHUfSIntErejOejBfj3fiYt1aMcuYQ/YHx+QMAsZv/</latexit><latexit sha1_base64="5WzdBTLk1pRp3+RwtBXI67OV+EU=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0VxISUpgi6LblxWsA9oQphMJu3QyYOZG6GE/oEbf8WNC0XcunXn3zhNs9DWA8M9nHMvd+7xU8EVWNa3UVlZXVvfqG7WtrZ3dvfM/YOuSjJJWYcmIpF9nygmeMw6wEGwfioZiXzBev74Zub3HphUPInvYZIyNyLDmIecEtCSZ546goXg5A6QzLPPcVGbuoogAYUdyYcjcKaeWbcaVgG8TOyS1FGJtmd+OUFCs4jFQAVRamBbKbg5kcCpYNOakymWEjomQzbQNCYRU25e3DPFJ1oJcJhI/WLAhfp7IieRUpPI150RgZFa9Gbif94gg/DKzXmcZsBiOl8UZgJDgmfh4IBLRkFMNCFUcv1XTEdEEgo6wpoOwV48eZl0mw3bath3F/XWdRlHFR2hY3SGbHSJWugWtVEHUfSIntErejOejBfj3fiYt1aMcuYQ/YHx+QMAsZv/</latexit><latexit sha1_base64="5WzdBTLk1pRp3+RwtBXI67OV+EU=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0VxISUpgi6LblxWsA9oQphMJu3QyYOZG6GE/oEbf8WNC0XcunXn3zhNs9DWA8M9nHMvd+7xU8EVWNa3UVlZXVvfqG7WtrZ3dvfM/YOuSjJJWYcmIpF9nygmeMw6wEGwfioZiXzBev74Zub3HphUPInvYZIyNyLDmIecEtCSZ546goXg5A6QzLPPcVGbuoogAYUdyYcjcKaeWbcaVgG8TOyS1FGJtmd+OUFCs4jFQAVRamBbKbg5kcCpYNOakymWEjomQzbQNCYRU25e3DPFJ1oJcJhI/WLAhfp7IieRUpPI150RgZFa9Gbif94gg/DKzXmcZsBiOl8UZgJDgmfh4IBLRkFMNCFUcv1XTEdEEgo6wpoOwV48eZl0mw3bath3F/XWdRlHFR2hY3SGbHSJWugWtVEHUfSIntErejOejBfj3fiYt1aMcuYQ/YHx+QMAsZv/</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="PZ8hvHA47hhtIzSBxgCdfoRAjE8=">AAACBHicbVDLSsNAFL2pr1qrVrduBoviQkrSjS4FNy4r2Ac0IUwmk3bo5MHMjVBC/8CNv+LGhSJ+gzv/xmnahbYeuNzDOfcyc0+QSaHRtr+tysbm1vZOdbe2V98/OGwc1Xs6zRXjXZbKVA0CqrkUCe+iQMkHmeI0DiTvB5Pbud9/5EqLNHnAaca9mI4SEQlG0Uh+49yVPEK3cJHmvnNJyt42XYYpauIqMRqjO/MbTbtllyDrxFmSJizR8RtfbpiyPOYJMkm1Hjp2hl5BFQom+azm5ppnlE3oiA8NTWjMtVeU98zImVFCEqXKVIKkVH9vFDTWehoHZjKmONar3lz8zxvmGF17hUiyHHnCFg9FuSSYknk4JBSKM5RTQyhTwvyVsDFVlKGJsGZCcFZPXie9dsuxW869DVU4gVO4AAeu4AbuoANdYPAEL/AG79az9Wp9LOKqWMvcjuEPrM8fTd2ahQ==</latexit><latexit sha1_base64="PZ8hvHA47hhtIzSBxgCdfoRAjE8=">AAACBHicbVDLSsNAFL2pr1qrVrduBoviQkrSjS4FNy4r2Ac0IUwmk3bo5MHMjVBC/8CNv+LGhSJ+gzv/xmnahbYeuNzDOfcyc0+QSaHRtr+tysbm1vZOdbe2V98/OGwc1Xs6zRXjXZbKVA0CqrkUCe+iQMkHmeI0DiTvB5Pbud9/5EqLNHnAaca9mI4SEQlG0Uh+49yVPEK3cJHmvnNJyt42XYYpauIqMRqjO/MbTbtllyDrxFmSJizR8RtfbpiyPOYJMkm1Hjp2hl5BFQom+azm5ppnlE3oiA8NTWjMtVeU98zImVFCEqXKVIKkVH9vFDTWehoHZjKmONar3lz8zxvmGF17hUiyHHnCFg9FuSSYknk4JBSKM5RTQyhTwvyVsDFVlKGJsGZCcFZPXie9dsuxW869DVU4gVO4AAeu4AbuoANdYPAEL/AG79az9Wp9LOKqWMvcjuEPrM8fTd2ahQ==</latexit><latexit sha1_base64="loJP7fTSJTgQUrZFsw/Zkjo8j2k=">AAACD3icbVC7TsMwFHV4lvIKMLJYVCAGVCVdYKxgYSwSfUhNFDmu01p1nMi+Qaqi/gELv8LCAEKsrGz8DW6aAVqOZN2jc+7V9T1hKrgGx/m2VlbX1jc2K1vV7Z3dvX374LCjk0xR1qaJSFQvJJoJLlkbOAjWSxUjcShYNxzfzPzuA1OaJ/IeJinzYzKUPOKUgJEC+8wTLAIv94BkgXuBi9owVQwS0NhTfDgCbxrYNafuFMDLxC1JDZVoBfaXN0hoFjMJVBCt+66Tgp8TBZwKNq16mWYpoWMyZH1DJYmZ9vPinik+NcoAR4kyTwIu1N8TOYm1nsSh6YwJjPSiNxP/8/oZRFd+zmWaAZN0vijKBIYEz8LBA64YBTExhFDFzV8xHRFFKJgIqyYEd/HkZdJp1F2n7t45teZ1GUcFHaMTdI5cdIma6Ba1UBtR9Iie0St6s56sF+vd+pi3rljlzBH6A+vzB/9im/s=</latexit><latexit sha1_base64="5WzdBTLk1pRp3+RwtBXI67OV+EU=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0VxISUpgi6LblxWsA9oQphMJu3QyYOZG6GE/oEbf8WNC0XcunXn3zhNs9DWA8M9nHMvd+7xU8EVWNa3UVlZXVvfqG7WtrZ3dvfM/YOuSjJJWYcmIpF9nygmeMw6wEGwfioZiXzBev74Zub3HphUPInvYZIyNyLDmIecEtCSZ546goXg5A6QzLPPcVGbuoogAYUdyYcjcKaeWbcaVgG8TOyS1FGJtmd+OUFCs4jFQAVRamBbKbg5kcCpYNOakymWEjomQzbQNCYRU25e3DPFJ1oJcJhI/WLAhfp7IieRUpPI150RgZFa9Gbif94gg/DKzXmcZsBiOl8UZgJDgmfh4IBLRkFMNCFUcv1XTEdEEgo6wpoOwV48eZl0mw3bath3F/XWdRlHFR2hY3SGbHSJWugWtVEHUfSIntErejOejBfj3fiYt1aMcuYQ/YHx+QMAsZv/</latexit><latexit sha1_base64="5WzdBTLk1pRp3+RwtBXI67OV+EU=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0VxISUpgi6LblxWsA9oQphMJu3QyYOZG6GE/oEbf8WNC0XcunXn3zhNs9DWA8M9nHMvd+7xU8EVWNa3UVlZXVvfqG7WtrZ3dvfM/YOuSjJJWYcmIpF9nygmeMw6wEGwfioZiXzBev74Zub3HphUPInvYZIyNyLDmIecEtCSZ546goXg5A6QzLPPcVGbuoogAYUdyYcjcKaeWbcaVgG8TOyS1FGJtmd+OUFCs4jFQAVRamBbKbg5kcCpYNOakymWEjomQzbQNCYRU25e3DPFJ1oJcJhI/WLAhfp7IieRUpPI150RgZFa9Gbif94gg/DKzXmcZsBiOl8UZgJDgmfh4IBLRkFMNCFUcv1XTEdEEgo6wpoOwV48eZl0mw3bath3F/XWdRlHFR2hY3SGbHSJWugWtVEHUfSIntErejOejBfj3fiYt1aMcuYQ/YHx+QMAsZv/</latexit><latexit sha1_base64="5WzdBTLk1pRp3+RwtBXI67OV+EU=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0VxISUpgi6LblxWsA9oQphMJu3QyYOZG6GE/oEbf8WNC0XcunXn3zhNs9DWA8M9nHMvd+7xU8EVWNa3UVlZXVvfqG7WtrZ3dvfM/YOuSjJJWYcmIpF9nygmeMw6wEGwfioZiXzBev74Zub3HphUPInvYZIyNyLDmIecEtCSZ546goXg5A6QzLPPcVGbuoogAYUdyYcjcKaeWbcaVgG8TOyS1FGJtmd+OUFCs4jFQAVRamBbKbg5kcCpYNOakymWEjomQzbQNCYRU25e3DPFJ1oJcJhI/WLAhfp7IieRUpPI150RgZFa9Gbif94gg/DKzXmcZsBiOl8UZgJDgmfh4IBLRkFMNCFUcv1XTEdEEgo6wpoOwV48eZl0mw3bath3F/XWdRlHFR2hY3SGbHSJWugWtVEHUfSIntErejOejBfj3fiYt1aMcuYQ/YHx+QMAsZv/</latexit><latexit sha1_base64="5WzdBTLk1pRp3+RwtBXI67OV+EU=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0VxISUpgi6LblxWsA9oQphMJu3QyYOZG6GE/oEbf8WNC0XcunXn3zhNs9DWA8M9nHMvd+7xU8EVWNa3UVlZXVvfqG7WtrZ3dvfM/YOuSjJJWYcmIpF9nygmeMw6wEGwfioZiXzBev74Zub3HphUPInvYZIyNyLDmIecEtCSZ546goXg5A6QzLPPcVGbuoogAYUdyYcjcKaeWbcaVgG8TOyS1FGJtmd+OUFCs4jFQAVRamBbKbg5kcCpYNOakymWEjomQzbQNCYRU25e3DPFJ1oJcJhI/WLAhfp7IieRUpPI150RgZFa9Gbif94gg/DKzXmcZsBiOl8UZgJDgmfh4IBLRkFMNCFUcv1XTEdEEgo6wpoOwV48eZl0mw3bath3F/XWdRlHFR2hY3SGbHSJWugWtVEHUfSIntErejOejBfj3fiYt1aMcuYQ/YHx+QMAsZv/</latexit><latexit sha1_base64="5WzdBTLk1pRp3+RwtBXI67OV+EU=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0VxISUpgi6LblxWsA9oQphMJu3QyYOZG6GE/oEbf8WNC0XcunXn3zhNs9DWA8M9nHMvd+7xU8EVWNa3UVlZXVvfqG7WtrZ3dvfM/YOuSjJJWYcmIpF9nygmeMw6wEGwfioZiXzBev74Zub3HphUPInvYZIyNyLDmIecEtCSZ546goXg5A6QzLPPcVGbuoogAYUdyYcjcKaeWbcaVgG8TOyS1FGJtmd+OUFCs4jFQAVRamBbKbg5kcCpYNOakymWEjomQzbQNCYRU25e3DPFJ1oJcJhI/WLAhfp7IieRUpPI150RgZFa9Gbif94gg/DKzXmcZsBiOl8UZgJDgmfh4IBLRkFMNCFUcv1XTEdEEgo6wpoOwV48eZl0mw3bath3F/XWdRlHFR2hY3SGbHSJWugWtVEHUfSIntErejOejBfj3fiYt1aMcuYQ/YHx+QMAsZv/</latexit><latexit sha1_base64="5WzdBTLk1pRp3+RwtBXI67OV+EU=">AAACD3icbVDLSsNAFJ3UV62vqEs3g0VxISUpgi6LblxWsA9oQphMJu3QyYOZG6GE/oEbf8WNC0XcunXn3zhNs9DWA8M9nHMvd+7xU8EVWNa3UVlZXVvfqG7WtrZ3dvfM/YOuSjJJWYcmIpF9nygmeMw6wEGwfioZiXzBev74Zub3HphUPInvYZIyNyLDmIecEtCSZ546goXg5A6QzLPPcVGbuoogAYUdyYcjcKaeWbcaVgG8TOyS1FGJtmd+OUFCs4jFQAVRamBbKbg5kcCpYNOakymWEjomQzbQNCYRU25e3DPFJ1oJcJhI/WLAhfp7IieRUpPI150RgZFa9Gbif94gg/DKzXmcZsBiOl8UZgJDgmfh4IBLRkFMNCFUcv1XTEdEEgo6wpoOwV48eZl0mw3bath3F/XWdRlHFR2hY3SGbHSJWugWtVEHUfSIntErejOejBfj3fiYt1aMcuYQ/YHx+QMAsZv/</latexit>

Contract C

Fig. 5: COSPLIT for a contract developer.

idating her transactions [65], and such deductions must
be treated sequentially to avoid overspending. We circum-
vent this different bottleneck to parallelism by splitting
a user’s balance between the shards (with a larger frac-
tion given to the shard handling money transfers from
that user), so they can charge her for the execution costs
without coordinating the changes in the balance.

3.3 Scilla Programming Language
Scilla [52] is a programming language for an account-
based (i.e., Ethereum-style) smart contract model, sup-
ported natively by the Zilliqa blockchain. It is a minimal-
istic memory- and type-safe functional language, similar
to OCaml and Haskell. Contracts written in Scilla are de-
ployed on the Zilliqa blockchain as-is and are interpreted
without compiling them to a lower-level representation.

Scilla provides a very small set of state-manipulating
primitives for altering contract state (i.e., reading from
the blockchain state and changing the values of con-
tract fields). All of the standard library as well as user-
defined contract-agnostic computations are implemented
in Scilla as pure (i.e., side effect-free) functions. This
design choice removes the need for inter-contract calls
for the sake of code reuse and makes contract analysis
scale, as pure functions need to be analysed only once.

Contracts in Scilla are encoded as communicating
state-transition systems in the style of IO-automata [44].
That is, all interaction between contracts is done by
means of message passing. All state changes in a con-
tract’s state are, thus, done by means of executing its tran-
sitions as reactions to received messages from the users
or other contracts. While transitions in Scilla contracts
are similar to functions in Solidity, they provide stronger
encapsulation and atomicity guarantees, for instance, pre-
venting phenomena such as in-call reentrancy [28]. This
model allows one to analyse each contract’s transitions
in isolation from any other contract’s code, thus allow-
ing for deriving their signatures statically without over-
approximating the effects of the external calls.

4 COSPLIT in Action
In this section, we explain the intended mode of using
COSPLIT by contract developers, as well as its integration
into the Zilliqa consensus protocol.
Offline mode. Fig. 5 depicts an interaction scenario be-
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3 Technical Background
While it would be desirable to implement the ideas de-
scribed in Sec. 2 directly in Ethereum, unfortunately, its
infrastructure is currently unsuitable for our purposes:
• Protocol-level support. At the time of writing, the

available prototype of Ethereum 2.0 [64], Topaz test-
net, only implements “Phase 0” that does not support
cross-shard transactions or smart contracts.

• Language-level support. EVM bytecode, Ethereum’s
low-level language, is difficult to analyse soundly,
due to the lack of modularity and structured control
flow [65]. One could engineer an analysis inferring
ownership constraints for Solidity [26]. However, a
number of Solidity’s features (e.g., inter-contract calls)
as well as frequently changing specification make it a
challenging target for a sound static analysis [32].

We implemented COSPLIT as a part of the open-source
Zilliqa blockchain [68]. The rest of this section provides
background on sharding in Zilliqa, limitations of the
account-based blockchain model, and on Scilla language.

3.1 Zilliqa and its Sharding Model
The Zilliqa blockchain [68] is one of the first sharded-
chains in production. It implements the Elastico protocol
for secure sharding [43] and relies on an optimised ver-
sion of the Practical Byzantine Fault Tolerance (PBFT)
protocol for consensus in the network [12, 59].
Network architecture. The Zilliqa network consists of
three main components: the lookup nodes, the shards,
and the Directory Service committee (aka the DS com-
mittee) (cf. Fig. 4). Lookup nodes are the entry-point to
the network. Any transaction created by a user has to be
sent to the lookup nodes, which thereupon group several
transactions together in a packet and dispatch them to
one of the shards or the DS committee for processing.

Shards and the DS committee (which in fact is a spe-
cial shard) form the consensus network of nodes. Each
shard and the DS committee consists of 600 nodes. The
current Zilliqa mainnet consists of three shards and a DS
Committee, hence a total of 2400 nodes. Once a transac-
tion is received by one of the shards or the DS committee,
the network of 600 nodes validates the transaction to
detect double spends and reaches consensus via PBFT.

The network of shards is regularly reshuffled (roughly
every 2 hours) to ensure that any malicious shard does
not perpetually stay in the network. This is done by re-
quiring nodes to perform a Proof-of-Work (PoW) [22].
PoW acts as a Sybil-resistance mechanism and prevents
a single physical machine from spawning multiple nodes.
Relying on the PoW randomness, a node is randomly
assigned to one of the shards. This random assignment
ensures that if the initial pool of nodes performing PoW
consists of a super-majority of honest nodes, then with
high probability each shard, representing a randomly se-
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Fig. 4: Zilliqa architecture and transaction processing.

lected sample, will also have a super-majority of honest
nodes. The DS committee is responsible for verifying the
PoW submissions and assigning nodes to shards.

The DS committee itself is also reshuffled but only
a few nodes at a time. A few oldest nodes are kicked
out and replaced by new ones. In order to join the DS
committee, a node has to go through the same PoW as
with the shards except that the difficulty is higher.
Transaction processing. A transaction can be processed
either by one of the shards or by the DS committee
(Fig. 4). Transactions are processed in epochs referred
to as TX-Epochs. Prior to each TX-Epoch, lookup nodes
send transactions to the shards and to the DS commit-
tee. Shards and the DS committee run PBFT to reach
consensus on validated transactions. Each shard (and
similarly the DS committee) then proposes a MicroBlock
(MB) that contains information on the transactions that
it has processed. MicroBlocks are then sent to the DS
committee together with StateDelta (SD) which encodes
change in the state of the accounts that were touched by
the transactions within a MicroBlock.

Once all the MicroBlocks and the corresponding Stat-
eDeltas reach the DS committee, the latter combines them
all together in the form of a FinalBlock (FB) and a Final-
StateDelta (FSD). The FinalBlock and FinalBlockDelta
are then sent back to each shard so that all the shards will
have the same view of the global state.
Conservative contract sharding. Zilliqa employs a
simple deterministic transaction assignment strategy to
shards to ensure that double spends are detected within a
shard without complex cross-shard communication [38].

User-to-user payment transactions are deterministi-
cally assigned to shards based on the sender’s address.
Any double spend from a specific spender can be detected
within a single shard in the same way it gets handled in a
non-sharded architecture. That is, all transactions from
the same user get handled in the same shard.

For smart contracts, the network assigns both contracts
and end users to shards. Transactions to a contract in-
voked by users residing in the same shard as the contract
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Integrating CoSplit with Zilliqa

1. Run the static analysis upon contract deployment

2. Store the resulting sharding signature 
= set of transition constraints + join instructions for each field in the contract

3. Dispatch transactions to shards using the constraints to determine 
which shard the transaction needs to go to

4. Merge (join) contributions from shards before sequential/cross-
shard transactions are processed
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Evaluation
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Average TPS for different contract transitions as a function of number of shards, over 10 epochs.



Limitations

• Currently no support for sharding multi-contract transactions
• would need to somehow combine the signatures from multiple contracts

• At the moment, the contract is always sharded
• non-parallelizable operations become cross-shard (synchronized)
• inefficient if the contract has either low transaction volume (overhead 

dominates) or many transactions to non-parallelizable transitions (forced into 
expensive synchronization)
• would want dynamic sharding – only shard the contract when transactions 

are of a profile that is known to shard well; otherwise keep it to a single shard
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Future work

• Implement dynamic sharding to alleviate fixed-strategy limitation

• Produce sharding signatures that allow sharding of multi-contract 
calls with commutative effects
• proxy contracts are a common example of this

• Automatic contract repair to make contracts shardable, e.g.:
• split records into a separate map for each component
• translate to compare-and-swap transitions
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transition transfer(to: ByStr20, tokenId: Uint256)

getTokenOwner <- tokenOwners[tokenId];

match getTokenOwner with

| None => throw

| Some tokenOwner =>

isOwner = builtin eq _sender tokenOwner;

(* … *)

getOperatorStatus <-

operatorApprovals[tokenOwner][_sender];

(* … *)

tokenOwners[tokenId] := to;

transition transfer(tokenOwner: ByStr20,

to: ByStr20, tokenId: Uint256)

getTokenOwner <- tokenOwners[tokenId];

match getTokenOwner with

| None => throw

| Some actual =>

isCorrectOwner = builtin eq tokenOwner actual;

match isCorrectOwner with

| False => throw

| True =>

isOwner = builtin eq _sender tokenOwner;

(* … *)

getOperatorStatus <-

operatorApprovals[tokenOwner][_sender];

(* … *)

tokenOwners[tokenId] := to;

42



To Take Away

• Sharding is a solution to the blockchain scalability problem

• Some smart contract logic can be sharded (“pessimistically parallelized”) 
in the same way as simple blockchain transactions.

• We use static analysis to soundly determine conditions under which 
(parts of) smart contracts can be executed in parallel.

• The technique has been integrated into real-world blockchain and shown 
to give observable increase in the throughput. 
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