CoSplit

Practical Smart Contract Sharding with
Static Program Analysis

George Pirlea Amrit Kumar llya Sergey
=1 \ Yale

College

/ o

Smart Contract Sharding

with Static Program Analysis

~

technique

Scaling blockchains
that support smart contracts

Scaling blockchains
that support smart contracts

with Static Program Analysis

Blockchains don’t scale

Blockchain state

block @

Counter

counter:
Uint128

Increment()

FungibleToken

balances[Addr]
[Uint128]

Transfer()
TransferFrom()
Approve()
Allowance()

Domains

owner[Domain]
record[Domain]

Register()
SetRecord()
Transfer()

~

Vs

From: Acc 1
To: FungibleTok
Call: Transfer

Vs

From: Acc 2
To: Counter
Call: Increment

From: Acc 1
To: Domains
Call: Register

Network nodes

c Acc 1 |

c Acc 1 |

Erom- Acc 1 L—ﬂ
Erom- Acc 1 L—ﬂ
c Acc 1 L Acc 1 L—

c Acc 1 - Acc 1

c Acc 1 ih]eTok
From: Acc 1 sfer
Ta. sbhlaTal c 1

Acc 1

« Acc 1 h'

L.
c Acc 1 | ; I
c Acc 1 1

c Acc 1 kungibleTok
' ,_Ennm' Acc 1 |TPanSfeP

Blockchain state

block 2

///’7 Counter

counter:
Uint128

Increment()

(_Ennm Acc 1 L—|1 |
Eram: Acc 1 L—Il
« Acc 1 L Acc 1 L=

« Acc 1 . ACC 1

Acc 1 h eTok
rom Acc 1 sfer
sl Tl 4: 1

« Acc 1 | kungibleTok
« Acc 1 Iransfer
Erom: Acc 1
Eram: Acc 1
c Acc 1 + Acc 1

< A 1 |- A
cc |1..cc 1 _l

FungibleToken

balances[Addr]
[Uint128]

Transfer()
TransferFrom()
Approve()
Allowance()

Domains ‘\\\\

owner[Domain]
record[Domain]

Register()
SetRecord()
Transfer()

/

c Acc 1 hleTok
From: Acc 1 sfer

Network nodes

Ta. 3l aTal c 1

(_Ennm- Ace 1 kurgibleTok
« Acc 1 Iran
=oon -

sfer

« Acc 1 b' Acc 1

m: Acc 2

h' Acc 1
« Acc 1
« Acc 1

ounter

From: Acc 1
To: FungibleTok

Call: Transfer)

ncrement

nodes have limited
bandwidth

and limited
processing power

Shard 1 state

Shard 2 state

Counter

counter:
Uint128

Increment()

FungibleToken

balances[Addr]
[Uint128]

Transfer()
TransferFrom()
Approve()
Allowance()

Shard 3 state

-

Vs

From: Acc 1
To: FungibleTok
Call: Transfer

Vs

From: Acc 2
To: Counter
Call: Increment

From: Acc 1
To: Domains
Call: Register

Shard 1
nodes

Shard 2
nodes

Domains

owner[Domain]
record[Domain]

Register()
SetRecord()
Transfer()

Shard 3
nodes

Sharding has limitations

Shard 1 state

///’

m: Acc 1 \

Counter

counter:
Uint128

Increment()

‘\\\

/

‘ram: _Acc 1 |

/_Ennm- Acc 1 |

« Acc 1

« Acc 1 l1 |

Acc 1 l1 |

From: Acc 1
To: FungibleTok
t Acc 1

Call: Transfer

/—b' Acc 1
Acc 1

1 Erom:®

Shard 1

« Acc 1 h. Acc 1

Acc 1

« Acc 1 h.

« Acc 1

InPdes

« Acc 1 h

Acc

1|

« Acc 1 h.

« Acc 1

h- Acc 1 |

« Acc 1

h.

Acc 1 I

Erom: Acc

m- Acc 1

1

I'='Imgib1eTok
n: Acc 1 Transfer

From: Acc 1
To: FungibleTok
Call: Transfer)

all

« Acc 1 |

« Acc 1 |

« Acc 1 |

From: Acc 1
To: FungibleTok
Call: Transfer

Shard 2 state

-

FungibleToken

balances[Addr]
[Uint128]

Transfer()
TransferFrom()
Approve()
Allowance()

~

/

Shard 2
nodes

Shard 3 state

///’

Domains

owner[Domain]
record[Domain]

Register()
SetRecord()
Transfer()

‘\\\

Shard 3
nodes

11

Shard 1 state

Shard 2 state

FungibleToken

balances[Addr]
[Uint128]

Transfer()
TransferFrom()
Approve()
Allowance()

FungibleToken

balances[Addr]
[Uint128]

Transfer()
TransferFrom()
Approve()
Allowance()

Shard 3 state

-

Shard 1
nodes

Shard 2
nodes

| FungibleToken

balances[Addr]
[Uint128]

Transfer()
TransferFrom()
Approve()
Allowance()

Shard 3
nodes

12

Sharded contracts: intuition

* A blockchain is a state transition system, * A smart contract is a state
consisting of: transition system, consisting of:
e State * State
* Rules that say which state updates are legal * Code that says which state

updates are legal

* We have strategies for sharding
blockchains (for certain kinds of rules*) * ..

* - some rules shard better than others
and some don’t shard at all

Does the code of the contract
define a shardable state
machine?

Does the code

We can shard contracts the
same way we sharad
blockchains.

Static analysis uncovers the opportunities.

CoSplit

Practical Smart Contract Sharding with
Static Program Analysis

Our contributions

* |dentify enabling mechanisms for sharding Ethereum-style contracts
e and show their adequacy for some realistic contracts

* CoSplit, a static ar]algsi_s tool that infers sharding strategies for smart
contracts written in Scilla, an ML-style smart contract language

* End-to-end integration of CoSplit with a production-grade sharded
blockchain (Zilliga)

e Evaluation of the inferred sharding strategies
e almost linear throughput increase as number of shards goes up

Mechanism (1): disjoint state ownership

Shard 1 state

-

-

Counter

counter: Uint128

Increment()

~

/

Shard 2 state

-

FungibleToken

balances[Addr][U
int128]

Transfer()
TransferFrom()
Approve()
Allowance()

~

Shard 3 state

-

Domains

owner[Domain]
record[Domain]

Register()
SetRecord()
Transfer()

~

/

19

field backers : Map

transition Donate ()
blk <- & ;
in _time = blk leq blk max_block;
match in_time with
| True =>
c <- exists backers[_sender];
match ¢ with
| False =>
accept;
backers[sender] := _amount;

cf. Safer Smart Contract Programming with Scilla, Sergey et al., OOPSLA’19

20

Mechanism (1): disjoint state ownership

Shard 1 state

-

N

Crowdfund

backers
[Addr]

[Uint128]

Donate()

_/

Shard 2 state

-

N

Crowdfund

backers
[Addr]

[Uint128]

Donate()

/

Shard 3 state

-

N

Crowdfund

backers
[Addr]

[Uint128]

Donate()

/

21

Mechanism (2): commutative effects

field counter :

transition Increment () Cumulative result can be

C <- counter; obtained by joining the
inc = 5 contributions from each
new ¢ = builtin add c inc; shard.
counter := new_cC

end

22

Mechanism (2): commutative effects

Commutative operations do not imply commutative effects!

field counter

transition Increment () transition Double ()
C <- counter; C <- counter;
inc = ; new ¢ = builtin add c c;
new ¢ = builtin add c inc; counter := new C
counter := new cC end
end

2*(2x+1)#2*2x+1

24

Static analysis for transition effects

* Produce an effect summary for every transition in the contract

 Effects include: reads, writes, accepting funds, sending messages,
conditioning on values derived from mutable fields

* The effect summary over-approximates the behaviour of the transition

Static analysis for transition effects

* Produce an effect summary for every transition in the contract

 Effects include: reads, writes, accepting funds, sending messages,
conditioning on values derived from mutable fields

* The effect summary over-approximates the behaviour of the transition

* Determine which effects are commutative using a
linearity-tracking flows-to analysis

* The analysis is expressed as a type system for “contribution types” and is
compositional (but gives uninformative types in some cases)

Constant X,y constant contract field or transition parameter
Mutable f mutable field or map-field access via parameter

Contrib. src. c¢si=x|f
Cardinality card ::= None | Linear | NonLinear

Operation opi =+]|—|x|...

Abstr. expr. e::=T|(cs,card,op)

Effect € ::= Read(f) | Write(f,e) | AcceptFunds |
Condition(e) | Event(e) | SendMsg(e) | T

transition Transfer(to: , amount:)

from_bal <- balances[_ sender]; Read(balances[_sender])
match from_bal with Condition(balances[_sender])
| Some bal => (balances[_sender], Linear, @)
match amount < bal with Condition(balances|[_sender], amount)
| True => {(balances[_sender], Linear, sub),
new_from bal = builtin sub bal amount; (amount, Linear, sub)}
balances[_sender] := new_from bal; Write(balances[_sender],
to bal <- balances[to]; {(balances[_sender], Linear, sub),
new to bal = match to bal with (amount, Linear, sub)})
| Some bal => builtin add bal amount Read(balances[to])
| None => amount
end;
balances[to] := new_to bal Write(balances[to],

{(balances][to], Linear, add),
(amount, Linear, add)})

28

Sharding Constraints

A language for restricting a set of shards that can execute
a certain transition of a contract.

Constraint oc ::= Owns(f) | UserAddr(x) | NoAliases((x,y)) |
SenderShard | ContractShard | L

Constraint oc ::= Owns(f) | UserAddr(x) | NoAliases((x,y)) |
SenderShard | ContractShard | L

Read(balances[_sender])

Join Hf ::= OwnOverwrite | IntMerge Condition(balances| sender])
Weak reads Condition(balances[_sender], amount)
Owns(balances[_sender]) Write(balances[sender],
OwnOverwrite join for owned contributions {(balances[_sender], Linear, sub),

(amount, Linear, sub)})

Read(balances[to])

IntMerge join for un-owned contributions ,
Write(balances[to],

{(balances[to], Linear, add),
(amount, Linear, add)})

30

transition Transfer(to: , amount:)
from _bal <- balances[sender];
match from bal with
| Some bal =>
match amount < bal with

| True =>
new from bal = builtin sub bal amount;
balances[sender] := new from bal;

to bal <- balances[to];

new to bal = match to bal with

| Some bal => builtin add bal amount
| None => amount

end;

balances[to] := new to bal

OwnOverwrite join for owned contributions

Owns(balances[_sender .. o
(-) IntMerge join for un-owned contributions

type expr_type =
ETop
EVal of known contrib

ECompositeVal of expr type * expr_ type

| EOp of contrib op * expr type

| EComposeSequence of expr type list
| EComposeParallel of expr type * expr_ type list

| EFun of efun_desc
| EApp of efun_desc * expr type list

32

...

CoSplit

Analysis Pipeline | Contrac

...

Sharding {Sharding siﬂature}
Query Solver | : (oc, &)

Transitions to be sharded
{7’ 1,724 .. }

1. Derive summaries for all contract transitions (R/W, operations, lin-ty)

2. Take from a user a set of transitions she wants to shard + weak reads

3. Produce an optimal (the most permissive) set of sharding constraints.
These constraints determine conditions a shard need to satisfy in
order to run the transaction with this transition.

4. Sharding more transitions of a contract => stronger constraints

Integration

A sharded blockchain design

DS Committee B
[= MB:, MBz, MBs I\SA[?:_'/ =5
Lookup Nodes
_

**
.
.
.
«*
e, .
. .
. .
.
.
.
.
.
.
o*
*

Jog

v

MB1 _I\MBQ
x4, 1X5, X X7, txs, Ix
SD1J [4, X5 6—|/SD2][7, [X8, 1X9

{tx 1, X2, X3

zilliga

35

Integrating CoSplit with Zilliga \I

1. Run the static analysis upon contract deployment

2. Store the resulting sharding sighature
= set of transition constraints + join instructions for each field in the contract

3. Dispatch transactions to shards using the constraints to determine
which shard the transaction needs to go to

4. Merge (join) contributions from shards before sequential/cross-
shard transactions are processed

Fvaluation

Cryptoman
TestSender
GoFundMi
FirstContract
Schnorr
HelloWorld
Soundario
BunkeringlLog
Quizbot
LoveZilliga
Voting
BoltAnalytics
LikeMaster
UD_escrow
UD_primitive_version
UD_resolver
UD_operator_contract
Bookstore
PayRespect
HydraXSettlement
(0]8)

RoadDamage
FungibleToken
LUY_Cambodia
SocialPay
ZKToken
ProofIPFS
SimpleBondingCurve
OceanRumble_crate
MyRewardsToken
ProxyContract
MRToken
DinoMightyLand
SwapContract
AuctionRegistrar
OceanRumble_minion_token
Multisig

HTLC

Zeecash
Hybrid_Euro
OTS200

Hub

DPSToken
Superplayer_token
UD_registry
Oracle
Map_cornercases
DBond
CelebrityNFT
XSGD

Blackjack

Parsing
B Typechecking
[Sharding analysis

l|““|”||””H|‘||I||I||||||||i.,,,m

-

us

38

I I Baseline 3 shards E E COSPLIT 3 shards a Q COSPLIT 4 shards I I COSPLIT 5 shards

400 | -
300
200
100

AN NNANANNNNNNNNNNNY

INNANNNNNNNNNN]

FT fund FT CF NFT NFT ProofI[PFS UD UD
transfer donate mint transfer register = bestow configure

Average TPS for different contract transitions as a function of number of shards, over 10 epochs.

39

Limitations

e Currently no support for sharding multi-contract transactions
* would need to somehow combine the signatures from multiple contracts

* At the moment, the contract is always sharded
* non-parallelizable operations become cross-shard (synchronized)

* inefficient if the contract has either low transaction volume (overhead
dominates) or many transactions to non-parallelizable transitions (forced into
expensive synchronization)

* would want dynamic sharding — only shard the contract when transactions
are of a profile that is known to shard well; otherwise keep it to a single shard

Future work

* Implement dynamic sharding to alleviate fixed-strategy limitation

* Produce sharding signatures that allow sharding of multi-contract
calls with commutative effects
* proxy contracts are a common example of this

* Automatic contract repair to make contracts shardable, e.g.:
* split records into a separate map for each component
* translate to compare-and-swap transitions

transition transfer(to: ByStr20, tokenld: Uint256)
getTokenOwner <- tokenOwners[tokenId];
match getTokenOwner with
| None => throw

| Some tokenOwner =>
isOwner = builtin eq _sender tokenOwner;
(* .. %)
getOperatorStatus <-
operatorApprovals[tokenOwner][_sender];
(* .. %)

tokenOwners[tokenId] := to;

transition transfer(tokenOwner: ByStr2e0,
to: ByStr20, tokenId: Uint256)
getTokenOwner <- tokenOwners[tokenId];
match getTokenOwner with
| None => throw
| Some actual =>
isCorrectOwner = builtin eq tokenOwner actual;
match isCorrectOwner with
| False => throw
| True =>
isOwner = builtin eq _sender tokenOwner;
(* .. %)
getOperatorStatus <-
operatorApprovals[tokenOwner][_sender];
(* .. %)
tokenOwners|[tokenId]

:= to;

42

To Take Away

* Sharding is a solution to the blockchain scalability problem

* Some smart contract logic can be sharded (“pessimistically parallelized”)
in the same way as simple blockchain transactions.

* We use static analysis to soundly determine conditions under which
(parts of) smart contracts can be executed in parallel.

* The technique has been integrated into real-world blockchain and shown
to give observable increase in the throughput.

Thanks!

