~unctional Programming IS Everywhere

lya Sergey

Ilyasergey.net

YaleNUSCollege

National University
of Singapore

B8 &

95

LMW @ ICFP 2019

3

zilliga




About myself

MSc Saint Petersburg State University, 2003
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Previously  Lecturer = Associate Professor at University College London
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The Essence of Functional Languages

* Higher-order functions and closures e Algebraic Data lypes
e Types and Type Inference e Pattern Matching

* Polymorphism * Folds

o Laziness o Continuations and CPS
e Point-free style o Structural Recursion
 Combinator Libraries o Type Classes

e Purely functional data structures « Monads

Check out this year’s ICFP program...
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-unctional Programming ldeas in...

Research Teaching Software Engineering
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1he Multicore Processor

Sun
T2000
Niagara

All on the
same chip
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THE ART

7%
MULTIPROCESSOR
PROG RAMMING

Maurice Herlihy & Nir Shavit
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Specifications for
Concurrent Data Structures



My research agenda since 2014

Reusable Specitications|tor

Concurrent Data Structures
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Abstract Specifications of a Stack

[S=xs} push x {S'=xuxs}
{S=xs5} pop () { res=1 AS=Nil
V Ix xs'.res = x A

xs=xuxs' AS = xs"}

Surtable for sequential programming




Abstract Specifications of a Stack

[S=xs} push x {S'=xuxs}
{S=xs5} pop () { res=1 AS=Nil
V 3x, Xs'.res = x A

xs = xuxs' AS =xs")

Breaks composition in the presence of thread interference.



(S = Nil}

y := pop();
(y=m}



(S = Nil}

push 1;
y = pop();

vy €{Lrul 2}

push 2;



y := pop();

Ly €{Lruil 2 3}




A reusable specification for pop”

(S = Nil}

y := pop();
(y=m}



The Essence of Functional Languages

* Higher-order functions and closures e Algebraic Data lypes
e Types and Type Inference e Pattern Matching

* Polymorphism * Folds

o Laziness o Continuations and CPS
e Point-free style o Structural Recursion
 Combinator Libraries o Type Classes

e Purely functional data structures « Monads
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The Essence of Functional Languages

* Higher-order functions and closures

* Types and Type Inference

* Polymorphism

Enablers for Modular Development

24



|dea: Interference-Farameterised
Specifications

Capture the effect of self-thread,
parametrise over the effect of others.

([aka Subjective specifications)



Atomic stack specifications

{S=xs} push x {S =x:xs]



Atomic stack specifications

W XS X . XS

/

“abstract timestamp’”




abstract time increases at
every concrete push/pop operation
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Subjective stack specifications

Sergey, Nanevski, Banerjee [ESOP’ | 5]

* Hs— "ghost history” of my pushes/pops to the stack

* Ho,— "ghost history’ of pushes/pops by all other threads

{Hs=2} A\Ho . pick (pushed(Ho))
Y := pop();

{y= 1 Vy=ywherev € pushed(Ho) }

N————

what | popped depends
on what the others have pushec




(S = Nil}

push 1;

pop(); push 3;
push 2;

Y



{Hi=2]
push 1;
{Hs= 1/ > (x5, 1:x5) }
push 2;

{Hs= 11 » (x5, Tixs) @ 1o (ys, 2:y5) }



{Ms= 2}

{Hs=11 » (x5, 1:x5) @ t) — (Y5, 2:y5) }



{Hs= 2 }
{Fs= 2}
push 3;
{Hi= 13+ (z5,3:25) }

{Hs= 11 » (x5, Tixs) @ 1o (ys, 2:y5) }



{Hs= O }

y := pop();

{ye{Ll} u pushed(Ho) }




{ s = O ]
(H=2) (H=o)

y := pop();

{ye{L}u pushed(Ho) } {Hs= 13 (z5,3::25) }
{Hs=11 = (x5, 1:x5) &
ta = (ys, 2tys) }




{ s = D ]
\Ms= 02 (H;=2)

y := pop();

{ye{ltu{123}} {Hs= 13 (z5,3::25) }
{Hs=11 » (x5, 1:x5) &
ta = (ys 2tys) }



Payoff: Verfied Concurrent Libraries

Sergey et al. [PLDI'[ 5]

Atomic Jayanti’s
Flat combiner snapshot snapshot
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Algorithmic Competitions at UCL (2016-2013)

largeting /2nd year undergrads, team work

\ g

i
\’\ I

One week-long

L
. LA‘ ‘t
1 557,
= I
A

,\' v -

o ] .
“ b .L:

= |

]
!

~
.

=
o
=
=
=z
=
T""'
—
=
]

N

=
.

-

i

1
- .
- ’
.-

-
Lo
B

Should Iinvolve math and programming

Challenging for students, but easy to assess




Algorithmic Competitions at UCL (2016-2013)
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The Competitions

e 2016: Art Gallery Competition
e 2017: Move-and-Tag Competition

e 2018: Room rurnisning



Art Gallery Competition

hased on:

Chvatal's Art Gallery Problem (1975)






How many guards do we really need!

The answer depends on the shape of the gallery.




How many guards do we really need!

The answer depends on the shape of the gallery.




How many guards do we really need!




How many guards do we really need!




How many guards do we really need!




How many guards do we really need!




Art Gallery Problem

For a given gallery (polygon),
find the minimal set of guards’ positions,
so together the guards can “see” the whole interior.



Project: Art Gallery Competition

Find the best solutions for a collection of /arge polygons.
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Making 1t Fun

* Problem generator;
» Polygons with different “features” (convex, rectangular, etc.)

« Solution checker with online feedback

» geometric machinery (triangulation, visibility, ...)

» web-server

« Make sure that it all works.



Making 1t Fun

* Problem generator;

» Polygons with different “features” (convex, rectangular, etc.)



Growing polygons

Primitive polygons with specific “features”




Crow
rowing polygons
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Growing polygons




Growing polygons




Growing polygons




Growing polygons




Growing polygons




Growing polygons




Can we enumerate “primitive” polygons
and plug arbitrary shapes generators?



The Essence of Functional Languages

* Higher-order functions and closures * Purely functional data structures
e Types and Type Inference e Pattern Matching

* Polymorphism * Folds

e [aziness o Continuations and CPS

e Point-free style o Structural Recursion
 Combinator Libraries o Type Classes

* Algebraic Data lypes  Monads
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The Essence of Functional Languages

Enumeration and Extensibility

e Combinator Libraries
* Algebraic Data lypes

6/



1 A : Snecification-
Qule Check BL’:E&" ;Ssctinpgec' ication

Koen Claessen and John Hughes

QuickCheck 1is a tool for testing Haskell programs automatically. The programmer provides a
specification of the program, in the form of properties which functions should satistfy, and

QuickCheck then tests that the properties hold in a large number of randomly generated cases.
Specifications are expressed in Haskell, using combinators defined in the QuickCheck library.

QuickCheck provides combinators to define properties, observe the distribution of test data,
and define test data generators.

Resources

e QOur paper from ICFP 2000.

e A new paper (presented at the Haskell Workshop 2002) on testing monadic programs,
especially in the ST monad.

68



"Polygon Combinator”

trait PolygonGenerator extends GeneratorPrimitives {

val seeds : List[Polygon]

val primitives : List[(Int) => Polygon]

val locate : Double => Option[(Double, Double)]
val seedFreqgs r List[Int]

val primFreqgs : List[Int]

val generations : Int



(Generating random polygons

Rectilinear



(Generating random polygons

Quasi-convex




Generating random polygons
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Can we Quick-Check
geometric algorithms®



Bug In textbook visibllity algorithm

L Randomly generated,
| H - 200 vertices,

| /= = guards in every node

L 1y © y
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Bug In textbook visibllity algorithm

- _.“5 I Randomly generated,
I = i - 2600 vertices,

] . | ] G 1 guards in every node

—n




Bug In textbook visibllity algorithm

After shrinking:
20 vertices

.
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Bug In textbook visibllity algorithm

Removed Irrelevant
ight sources




Bug In textbook visibllity algorithm

Rer‘joved Irrelevant
ight sources

[lya Sergey

University College London, UK
i.sergey@uc\.ac.uk
ICFP 2016




Beyond Classroom:
|CFP Programming Contest 2019

I Contest Report |

| on Tuesday, 17:45 |
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... for creating fun assignments
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e [ [ o

About

Scilla, short for Smart Contract Intermediate-Level Language, is an intermediate-level smart contract
language being developed for Zilliga. Scilla has been designed as a principled language with smart
contract safety in mind.

382



Documentation -

Scilla, short for Smart Contract Intermediate-Lev
language being developed for Zilliga. Scilla has b
contract safety in mind.

Branch: master ~ New pull request

Create new file

Upload files

£l Zilliga / scilla  @unwatchv 27 | | kstar | 133 | ¥Fork
¢»Code  (DlIssues 64 17 Pullrequests 1 [l Projects 0 Wiki @ Security  [:li Insights £} Settings
Scilla - A Smart Contract Intermediate Level Language https://scilla-lang.org
smart-contracts blockchain verification Manage topics
D 956 commits I 11 branches © Breleases 42 18 contributors 5fs GPL-3.0
E—
©® 0Caml 88.7% @ C++ 7.6% ® Emacs Lisp 1.6% @®@C0.7% © Shell 0.6% ® Makefile 0.3% Other 0.5%

Find File l Clone or download ~

. vaivaswatha testsuite: input state json must contain all fields (#630) -

Latest commit 1lad43d3 2 days ago

B8 .github Tweak CODEOWNERS file (#534)

B8 docs moved readthedocs to a new repo

B imgs Added Scilla logos

B misc/emacs-mode Remove vim-plugin in misc, update README, fix typos (#607)

B8 scripts build: allow compilation with OCaml 4.07 (#548)

Fix minor bug in EvalUtil.ml : map_get (#629)

4 manths ago
last year
last year

24 days ago

3 months ago

2 days ago




Smart Contracts

Stateful mutable objects replicated via a consensus protocol
Use valuable resource (gas) to prevent “expensive” computations
Yet, should be able to handle arbitrarily large data

Can fail at any moment and roll-back (transactional behaviour)



Smart Contracts

Stateful mutable objects replicated via a consensus protocol |
Can we have an interpreter

Use valuable resource (gas) to prevent “expensive” computations supporting all of these,
while keeping the “core”
Yet, should be able to handle arbitrarily large data semantics simple

. . . and easy to maintain®’
Can fail at any moment and roll-back (transactional behaviour) y



The Essence of Functional Languages

* Higher-order functions and closures * Purely functional data structures
e Types and Type Inference e Pattern Matching

* Polymorphism * Folds

e [aziness o Structural Recursion

e Point-free style e Continuations and CPS
 Combinator Libraries o Type Classes

* Algebraic Data lypes  Monads
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The Essence of Functional Languages

A 4

Representing Monads®

Andrzej Tilinski EXpreSSiﬂg any Effects
School o™ o ! &
Cg&uegi
Pl;ﬂ:‘; Monad Transformers and Modular Interpreters’ M O d L) ‘ ar | N -t er p re-t ers
Sheng Liang ~ Paul Hudak  Mark Jones!

! Yale University

= Department of Computer Science
New Haven, CT 06520-8285

{liang, hudak, jones-mark}@cs.yale.edu

r e Continuations and CPS
e ——————

We show how a set of building blocks can be used to
construct programming language interpreters, and present
Implementations of such building blocks capable of supporting
many commonly known features, including simple e Monads
expressions, three different function call mechanisms |...],
references and assignment, nondeterminism, first-class

continuations, and program tracing.
T EEEEEERRC

e Jype Classes
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( skokokskskokokokskskokskokskskokskokokskskskskskokskokskkokskskskskskskokskskskokok skokskskskokskok sk kk sk ok )
(x A monadic big-step evaluator for Scilla expressions )

( skokskokskoskskokokskokkokskskokskokokskokskokskkskokskskokskokokokskokokskokskok sk kokskokkok sk okok kokkok ) * About 200 LOC of OCaml
(x [Evaluation in CPS] * Hasn't been affeCted
by multiple modifications in the
The following evaluator is implemented in a monadic style, with the back-end pl’OtOCO|
monad, at the moment to be CPS, with the specialised return result
type as described in [Specialising the Return Type of Closures]. ¢ Changes N gas accounting
*) have not affected the core
iINnterpreter
let rec exp_eval erep env =
let (e, loc) = erep in * Lots of performance bottlenecks
match e with fixed without ever touching the
| Literal L == evaluator

pure (1, env)
| Var i —>
let%bind v = Env. lookup env 1 in
pure @@ (v, env)
| Let (i, _, lhs, rhs) —>
let%bind (1lval, _) = exp_eval_wrapper lhs env in
let env' = Env.bind env (get_id i) 1lval in

exp_eval_wrapper rhs env'
| Message bs ->
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.. for modularity and proof reuse ... for creating fun assignments ... for robust and maintainable artefacts



o lake Away

o FP Insights spread far beyond programming in
OCaml, Haskell, Racket, etc.

P keeps evolving: new powerful ideas are
constantly emerging: effect handlers, staging,
automatic differentiation, security type systems...

 [hose ideas can be your tools, too!

Thanks!
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