~unctional Programming IS Everywhere

lya Sergey

Ilyasergey.net

YaleNUSCollege

National University
of Singapore

B8 &

95

LMW @ ICFP 2019

3

zilliga

About myself

MSc Saint Petersburg State University, 2003
PhD KU Leuven, 2008-2012

Currently Associate Professor (tenure-track) at Yale-NUS College & NUS

Previously Lecturer = Associate Professor at University College London
Postdoc at IMDEA Software Institute
Software Engineer at |etBrains

Functional programmer since 2005

Functional programmer since 2005

ol S

OCaml

2005 2006 2007 2008 2010 2011

-unctional Languages

The Essence of Functional Languages

* Higher-order functions and closures e Algebraic Data lypes
e Types and Type Inference e Pattern Matching

* Polymorphism * Folds

o Laziness o Continuations and CPS
e Point-free style o Structural Recursion
 Combinator Libraries o Type Classes

e Purely functional data structures « Monads

Check out this year’s ICFP program...

I'nis lalk

~unctional Programming

I'nis lalk

Functional

This lalk
Functional ldeas

-unctional Programming ldeas in...

Research Teaching Software Engineering

10

-unctional Programming ldeas in...

Researcn

d .7 /
\

|II :.-

Vioore's Law

Transistor

i count still
rising
Bl Al i s
1000 1 - .
Clock
= b mm
- : speed
. flattening
) E oy sharply
1 = + Clock Speed (MHz) |
< < = Transistors [(000)

1971 1975 1973 1933 1937 1931 1935 1933 2003 2007

1he Multicore Processor

Sun
T2000
Niagara

All on the
same chip

13

THE ART

7%
MULTIPROCESSOR
PROG RAMMING

Maurice Herlihy & Nir Shavit

14

Specifications for
Concurrent Data Structures

My research agenda since 2014

Reusable Specitications|tor

Concurrent Data Structures

16

Abstract Specifications of a Stack

[S=xs} push x {S'=xuxs}
{S=xs5} pop () { res=1 AS=Nil
V Ix xs'.res = x A

xs=xuxs' AS = xs"}

Surtable for sequential programming

Abstract Specifications of a Stack

[S=xs} push x {S'=xuxs}
{S=xs5} pop () { res=1 AS=Nil
V 3x, Xs'.res = x A

xs = xuxs' AS =xs")

Breaks composition in the presence of thread interference.

(S = Nil}

y := pop();
(y=m}

(S = Nil}

push 1;
y = pop();

vy €{Lrul 2}

push 2;

y := pop();

Ly €{Lruil 2 3}

A reusable specification for pop”

(S = Nil}

y := pop();
(y=m}

The Essence of Functional Languages

* Higher-order functions and closures e Algebraic Data lypes
e Types and Type Inference e Pattern Matching

* Polymorphism * Folds

o Laziness o Continuations and CPS
e Point-free style o Structural Recursion
 Combinator Libraries o Type Classes

e Purely functional data structures « Monads

23

The Essence of Functional Languages

* Higher-order functions and closures

* Types and Type Inference

* Polymorphism

Enablers for Modular Development

24

|dea: Interference-Farameterised
Specifications

Capture the effect of self-thread,
parametrise over the effect of others.

([aka Subjective specifications)

Atomic stack specifications

{S=xs} push x {S =x:xs]

Atomic stack specifications

W XS X . XS

/

“abstract timestamp’”

abstract time increases at
every concrete push/pop operation

Changes by this threac

Changes by other threac

W+ —

J[|<+3 —
J[|<+4 —

Subjective stack specifications

Sergey, Nanevski, Banerjee [ESOP’ | 5]

* Hs— "ghost history” of my pushes/pops to the stack

* Ho,— "ghost history’ of pushes/pops by all other threads

{Hs=2} A\Ho . pick (pushed(Ho))
Y := pop();

{y= 1 Vy=ywherev € pushed(Ho) }

N————

what | popped depends
on what the others have pushec

(S = Nil}

push 1;

pop(); push 3;
push 2;

Y

{Hi=2]
push 1;
{Hs= 1/ > (x5, 1:x5) }
push 2;

{Hs= 11 » (x5, Tixs) @ 1o (ys, 2:y5) }

{Ms= 2}

{Hs=11 » (x5, 1:x5) @ t) — (Y5, 2:y5) }

{Hs= 2 }
{Fs= 2}
push 3;
{Hi= 13+ (z5,3:25) }

{Hs= 11 » (x5, Tixs) @ 1o (ys, 2:y5) }

{Hs= O }

y := pop();

{ye{Ll} u pushed(Ho) }

{ s = O]
(H=2) (H=o)

y := pop();

{ye{L}u pushed(Ho) } {Hs= 13 (z5,3::25) }
{Hs=11 = (x5, 1:x5) &
ta = (ys, 2tys) }

{ s = D]
\Ms= 02 (H;=2)

y := pop();

{ye{ltu{123}} {Hs= 13 (z5,3::25) }
{Hs=11 » (x5, 1:x5) &
ta = (ys 2tys) }

Payoff: Verfied Concurrent Libraries

Sergey et al. [PLDI'[5]

Atomic Jayanti’s
Flat combiner snapshot snapshot

. o
* *
* *
* *
* *
* ’0
* * *
* o
L 4 ‘ .

. Abstract lock =———— Allocator Snapshot client

Spin-lock Ticketed lock

P ——
*

Treiber stack EC Stack
Increment I 2R 3 ot ‘
. Abstract stack aslol-cl
Concurrent Graph Sequential stack r I Ouiescent
Manipulations Producer/Consumer client

-unctional Programming ldeas in...

Researcn

... for modularity and proof reuse

-unctional Programming ldeas in...

{eacning

Algorithmic Competitions at UCL (2016-2013)

largeting /2nd year undergrads, team work

\ g

i
\’\ I

One week-long

L
. LA‘ ‘t
1 557,
= I
A

,\' v -

o] .
“ b .L:

= |

]
!

~
.

=
o
=
=
=z
=
T""'
—
=
]

N

=
.

-

i

1
- .
- ’
.-

-
Lo
B

Should Iinvolve math and programming

Challenging for students, but easy to assess

Algorithmic Competitions at UCL (2016-2013)

Computational Geomeltry
Introduction

1.1
.2
1.3
1.4
1.5

An Example: Convex Hulls
Degeneracies and Robustness
Application Domains

Notes and Comments
Excrcises

Line Segment Intersection

Thematic Map Overlay

2.1 Linc Scgment Intersection

2.2 The Doubly-Connected Edge List

2.3 Computing the Overlay of Two Subdivisions
2.4 Boolean Operations

2.5 Notes and Comments

2.6 [Exercises

Polygon Triangulation
Guarding an Art Gallery

3.1 Guarding and Triangulations

3.2 Partitioning a Polygon into Monotone ’icces
3.3 Triangulating 2 Monotone PPolygon
3.4 Notes and Comments

3.5 Exerciscs

Linear Programming
Manufacturing with Molds

4,1 The Geometry of Casting

4,2 Half-Plane Intersection

4.3 Incremental Linear Programming
4.4 Randomized Linear Programming

Orthogonal Range Searching
Querying a Database

5.1 1-Dimensional Range Searching
5.2 Kd-Trees

5.3 Range Trees

5.4 Higher-Dimensional Range Trees
5.5 General Sets of Points

5.6% Fractional Cascading

5.7 Notes and Comments

5.8 Exercises

Point Location
Knowing Where You Are

6.1 Point Location and Trapezoidal Maps
6.2 A Randomized Incremental Algorithm

6.3 Dealing with Degenerate Cases
6.4% A Tail Estimate

6.5 Notes and Comments

6.6 Exercises

Voronoi Diagrams
The Post Office Problem

7.1 Definition and Basic Praperties
7.2 Computing the Voronoi Diagram
7.3 Notes and Comments

74 Exercises

Arrangements and Duality
Supersampling in Ray Tracing

8.1 Computing the Discrepancy
8.2 Duality

8.3 Arrangements of Lines

8.4 Levels and Discrepancy

8.5 Notes and Comments

8.6 Excroises

95

96

99
105
109
111
112
115
117

121

122
128
137
140
143
144

147

148
151
160
162

165

167
169
172
177
178
180

9

Delaunay Triangulations
Height Interpolation

9.1 Triangulations of Planar Point Sets

9.2 The Delaunay Triangulation

9.3 Computing the Delaunay Triangulation
9.4 The Analysis

9.5% A Framework for Randomized Algorithms
9.6 Notes and Comments

9.7 Exercises

10 More Geometric Data Structures

11

Windowing

10.1 Interval Trees

10.2 Priority Search Trees
10.3 Segment Trees

10.4 Notes and Comments
10.5 Exercises

Convex Hulls
Mixing Things

11.1 The Complexity of Convex Hulls in 3-Space
11.2 Computing Convex Hulls in 3-Space

11.3* The Analysis

11.4* Convex Hulls and Half-Space Intersection
11.5* Voronoi Diagrams Revisited

11.6 Notes and Comments

11.7 Exercises

12 Binary Space Partitions

13

The Painter’s Algorithm

12.1 The Definition of BSP Trees

12.2 BSP Trees and the Painter’s Algorithm
12.3 Constructing a BSP Tree

12.4* The Size of BSP Trees in 3-Space

12.5 Notes and Comments

12.6 Exercises

Robot Motion Planning
Getting Where You Want to Be

13.1 Work Space and Configuration Space

183

185
188
191
197
200
206
207

211

212
218
223
229
230

235

236
238
242
245
247
248
249

251

253
255
256
260
263
264

267

268

CONTENTS

The Competitions

e 2016: Art Gallery Competition
e 2017: Move-and-Tag Competition

e 2018: Room rurnisning

Art Gallery Competition

hased on:

Chvatal's Art Gallery Problem (1975)

How many guards do we really need!

The answer depends on the shape of the gallery.

How many guards do we really need!

The answer depends on the shape of the gallery.

How many guards do we really need!

How many guards do we really need!

How many guards do we really need!

How many guards do we really need!

Art Gallery Problem

For a given gallery (polygon),
find the minimal set of guards’ positions,
so together the guards can “see” the whole interior.

Project: Art Gallery Competition

Find the best solutions for a collection of /arge polygons.

_—————
—_—
b \
——_———

C— . i,
\ \ e ————
\.\ \'\ /_,/"f H"""—w
s
N
r_——_—.\' 4
\\\\ . N, >
N ——
J—
(‘ﬁ__ﬁ
// _
PE—— /,/'
r— . -
/ ¢ \F\\ -~
x}' //z \\‘\ﬂ__—_ ffff
4 —_—
i
BN .—_ T
) - e * 58 vertices

* 5 guards

Making 1t Fun

* Problem generator;
» Polygons with different “features” (convex, rectangular, etc.)

« Solution checker with online feedback

» geometric machinery (triangulation, visibility, ...)

» web-server

« Make sure that it all works.

Making 1t Fun

* Problem generator;

» Polygons with different “features” (convex, rectangular, etc.)

Growing polygons

Primitive polygons with specific “features”

Crow
rowing polygons

| » . A
N e - A - | |
\ v s o il s o ~
G o o Y k7
S S
Al ,"~
1 - ol

Growing polygons

Growing polygons

Growing polygons

Growing polygons

Growing polygons

Growing polygons

Can we enumerate “primitive” polygons
and plug arbitrary shapes generators?

The Essence of Functional Languages

* Higher-order functions and closures * Purely functional data structures
e Types and Type Inference e Pattern Matching

* Polymorphism * Folds

e [aziness o Continuations and CPS

e Point-free style o Structural Recursion
 Combinator Libraries o Type Classes

* Algebraic Data lypes Monads

606

The Essence of Functional Languages

Enumeration and Extensibility

e Combinator Libraries
* Algebraic Data lypes

6/

1 A : Snecification-
Qule Check BL’:E&" ;Ssctinpgec' ication

Koen Claessen and John Hughes

QuickCheck 1is a tool for testing Haskell programs automatically. The programmer provides a
specification of the program, in the form of properties which functions should satistfy, and

QuickCheck then tests that the properties hold in a large number of randomly generated cases.
Specifications are expressed in Haskell, using combinators defined in the QuickCheck library.

QuickCheck provides combinators to define properties, observe the distribution of test data,
and define test data generators.

Resources

e QOur paper from ICFP 2000.

e A new paper (presented at the Haskell Workshop 2002) on testing monadic programs,
especially in the ST monad.

68

"Polygon Combinator”

trait PolygonGenerator extends GeneratorPrimitives {

val seeds : List[Polygon]

val primitives : List[(Int) => Polygon]

val locate : Double => Option[(Double, Double)]
val seedFreqgs r List[Int]

val primFreqgs : List[Int]

val generations : Int

(Generating random polygons

Rectilinear

(Generating random polygons

Quasi-convex

Generating random polygons

et
T ST T
LY A 2
Y e . \\\\.a P .u.\« H\ll_\ J
/.., 4 AT P y s A7 AL \u
) - = g . 4
% ,...,.. \.\\ A \\..U\ 3 & ,\ \\ < A/
M.lx oy o L /\ < _| | .//H N ﬂ -
/.f.x... /.f. .‘.,.....j f/./ \f W S N ./Jﬁ// .U////H.u\ i i
W s X - -3 /./ " //.
s.\;lrf.... /.! ...,..., ..(r.,) ...\W......)/ ‘ w *f. . H. S . /...N.f///.“.,ﬁ.pﬁo /.r....f.
{ X ~_ 1 N WA,
4 f/,.,/f 1 J,H.},. 2 o _ ,,,. M NN /f
/ fr\\x — /,_._rl. o h\ swu k
y SA)Y e \a_v.sv
f ,n./ M \.\.v A - g W
\d¢ o et e
\ —— v .~ —
A = 7 - .// l \>/!
=T) =N o
S d
H .\.\lr/ - - \‘ﬂ — If,lf.url \\ \\\
—/ - l.,\lx.,.\]\]ll _/,,\\\}/\.?M.r\twr“:.r». \.\ \\ ~
P St ™ - vy A
—_— T Va4 .
: B .
J ./.[.“V P / .../. F / __lI/ e N
. A 7 = d_ 3 T
LN / f./.,/ / - ! w = IR N
\ ~ : & b B
N i\ (o add A
e W b T 11/ o B A
= /fc j L t-.}.ruw K —_—— ll.\]n\l.]n\\lp/ f./ u..........'hrj. ..f
RN \ . & S, //.f AV
//.., //.,, ‘ Fam? ,,.(&« 5 4 /. { . /H : W
/.// == Tm— \\ /ff.).m 4 (,.. .fp ﬂ/ .1.‘.‘-1w i
e //.,. / ¢ M, L ; fﬂ \ 4 et —_
_\.?/.f s ™S, #\ —a 4\ f,../ | -—— e ..fl
N . N AR = Y
[— 1 oY i
[—— ,, L ¥ _
-/ \\.s

Crazy

y
.,.//.rl/
.v\,
T/

w
3 \\

v 4

A3

Can we Quick-Check
geometric algorithms®

Bug In textbook visibllity algorithm

L Randomly generated,
| H - 200 vertices,

| /= = guards in every node

L 1y © y

—n

Bug In textbook visibllity algorithm

- _.“5 I Randomly generated,
I = i - 2600 vertices,

] . |] G 1 guards in every node

—n

Bug In textbook visibllity algorithm

After shrinking:
20 vertices

.

RN

|

Bug In textbook visibllity algorithm

Removed Irrelevant
ight sources

Bug In textbook visibllity algorithm

Rer‘joved Irrelevant
ight sources

[lya Sergey

University College London, UK
i.sergey@uc\.ac.uk
ICFP 2016

Beyond Classroom:
|CFP Programming Contest 2019

I Contest Report |

| on Tuesday, 17:45 |

80

-unctional Programming ldeas in...

{eacning

... for creating fun assignments

81

-unctional Programming ldeas in...

Software Engineering

"u".'";“‘.l:",‘
AR ! o
- ¥ . J 18 ‘A '

e [[o

About

Scilla, short for Smart Contract Intermediate-Level Language, is an intermediate-level smart contract
language being developed for Zilliga. Scilla has been designed as a principled language with smart
contract safety in mind.

382

Documentation -

Scilla, short for Smart Contract Intermediate-Lev
language being developed for Zilliga. Scilla has b
contract safety in mind.

Branch: master ~ New pull request

Create new file

Upload files

£l Zilliga / scilla @unwatchv 27 | | kstar | 133 | ¥Fork
¢»Code (DlIssues 64 17 Pullrequests 1 [l Projects 0 Wiki @ Security [:li Insights £} Settings
Scilla - A Smart Contract Intermediate Level Language https://scilla-lang.org
smart-contracts blockchain verification Manage topics
D 956 commits I 11 branches © Breleases 42 18 contributors 5fs GPL-3.0
E—
©® 0Caml 88.7% @ C++ 7.6% ® Emacs Lisp 1.6% @®@C0.7% © Shell 0.6% ® Makefile 0.3% Other 0.5%

Find File l Clone or download ~

. vaivaswatha testsuite: input state json must contain all fields (#630) -

Latest commit 1lad43d3 2 days ago

B8 .github Tweak CODEOWNERS file (#534)

B8 docs moved readthedocs to a new repo

B imgs Added Scilla logos

B misc/emacs-mode Remove vim-plugin in misc, update README, fix typos (#607)

B8 scripts build: allow compilation with OCaml 4.07 (#548)

Fix minor bug in EvalUtil.ml : map_get (#629)

4 manths ago
last year
last year

24 days ago

3 months ago

2 days ago

Smart Contracts

Stateful mutable objects replicated via a consensus protocol
Use valuable resource (gas) to prevent “expensive” computations
Yet, should be able to handle arbitrarily large data

Can fail at any moment and roll-back (transactional behaviour)

Smart Contracts

Stateful mutable objects replicated via a consensus protocol |
Can we have an interpreter

Use valuable resource (gas) to prevent “expensive” computations supporting all of these,
while keeping the “core”
Yet, should be able to handle arbitrarily large data semantics simple

. . . and easy to maintain®’
Can fail at any moment and roll-back (transactional behaviour) y

The Essence of Functional Languages

* Higher-order functions and closures * Purely functional data structures
e Types and Type Inference e Pattern Matching

* Polymorphism * Folds

e [aziness o Structural Recursion

e Point-free style e Continuations and CPS
 Combinator Libraries o Type Classes

* Algebraic Data lypes Monads

86

The Essence of Functional Languages

A 4

Representing Monads®

Andrzej Tilinski EXpreSSiﬂg any Effects
School o™ o ! &
Cg&uegi
Pl;ﬂ:‘; Monad Transformers and Modular Interpreters’ M O d L) ‘ ar | N -t er p re-t ers
Sheng Liang ~ Paul Hudak Mark Jones!

! Yale University

= Department of Computer Science
New Haven, CT 06520-8285

{liang, hudak, jones-mark}@cs.yale.edu

r e Continuations and CPS
e ——————

We show how a set of building blocks can be used to
construct programming language interpreters, and present
Implementations of such building blocks capable of supporting
many commonly known features, including simple e Monads
expressions, three different function call mechanisms |...],
references and assignment, nondeterminism, first-class

continuations, and program tracing.
T EEEEEERRC

e Jype Classes

88

(skokokskskokokokskskokskokskskokskokokskskskskskokskokskkokskskskskskskokskskskokok skokskskskokskok sk kk sk ok)
(x A monadic big-step evaluator for Scilla expressions)

(skokskokskoskskokokskokkokskskokskokokskokskokskkskokskskokskokokokskokokskokskok sk kokskokkok sk okok kokkok) * About 200 LOC of OCaml
(x [Evaluation in CPS] * Hasn't been affeCted
by multiple modifications in the
The following evaluator is implemented in a monadic style, with the back-end pl’OtOCO|
monad, at the moment to be CPS, with the specialised return result
type as described in [Specialising the Return Type of Closures]. ¢ Changes N gas accounting
*) have not affected the core
iINnterpreter
let rec exp_eval erep env =
let (e, loc) = erep in * Lots of performance bottlenecks
match e with fixed without ever touching the
| Literal L == evaluator

pure (1, env)
| Var i —>
let%bind v = Env. lookup env 1 in
pure @@ (v, env)
| Let (i, _, lhs, rhs) —>
let%bind (1lval, _) = exp_eval_wrapper lhs env in
let env' = Env.bind env (get_id i) 1lval in

exp_eval_wrapper rhs env'
| Message bs ->

89

-unctional Programming ldeas in...

Software Engineering

... for robust and maintainable artefacts

90

-unctional Programming ldeas in...

Research Teaching Software Engineering

.. for modularity and proof reuse ... for creating fun assignments ... for robust and maintainable artefacts

o lake Away

o FP Insights spread far beyond programming in
OCaml, Haskell, Racket, etc.

P keeps evolving: new powerful ideas are
constantly emerging: effect handlers, staging,
automatic differentiation, security type systems...

 [hose ideas can be your tools, too!

Thanks!

91

