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Spec Program

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

void sll_copy (loc r) {

  let x2 = *r;

  if (x2 == 0) {}

  else {

    let v = *x2;

    let nxt = *(x2 + 1);

    *r = nxt;

    sll_copy(r);

    let y12 = *r;

    let y2 = malloc(2);

    *r = y2;

    *(y2 + 1) = y12;

    *y2 = v;

  }

}

1 Polikarpova and Sergey ’19

Automatically produce

an implementation
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void sll_copy (loc r) {

  let x2 = *r;

  if (x2 == 0) {}

  else {

    let v = *x2;

    let nxt = *(x2 + 1);

    *r = nxt;

    sll_copy(r);

    let y12 = *r;

    let y2 = malloc(2);

    *r = y2;

    *(y2 + 1) = y12;

    *y2 = v;

  }

}

What if there’s a bug

 in the synthesizer?
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Formally guarantee correctness of synthesized programs

with proof certificates

generated via deductive insight from synthesis
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SUSLIK: Large TCB Coq: Small TCB

proof certificate
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Synthetic separation logic (SSL)
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SSL rule

{P} ⇝ {Q}

{P′￼} ⇝ {Q′￼}

program

statement

Initial goal

Transformed goal
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Searching for a program
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Proof tree

Program (byproduct)
void sll_copy (loc r) {

  let x2 = *r;

  if (x2 == 0) {}

  else {

    let v = *x2;

    let nxt = *(x2 + 1);

    *r = nxt;

    sll_copy(r);

    let y12 = *r;

    let y2 = malloc(2);

    *(y2 + 1) = y12;

    *y2 = v;

  }

}

Enumerative

proof searchInitial specification

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

All we need to

build a certificate?
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Verification: symbolic execution
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apply: val_ret.

{P0} ⇝ {Q}

{P1} ⇝ {Q}

{Pm} ⇝ {Q}

…

{P2} ⇝ {Q}

apply: bnd_readR=>//=.

apply: bnd_writeR=>//=.

let a = *x;

*x = b;
Postcondition unification


delayed to the end!

Pm ⊢ Q
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Synthesis: transforming the whole goal
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⟨READ …⟩

{P0} ⇝ {Q0}

{P1} ⇝ {Q1}

{emp} ⇝ {emp}

…

⟨EMP⟩

⟨WRITE …⟩

{P2} ⇝ {Q2}

Both

pre- and postcondition


can be transformed

let a = *x;

*x = b;
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How to bridge the gap?

How to support verifiers uniformly?

“interpret” synthesis trace into verification proof

an abstract framework that each verifier can instantiate
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HTT Interpreter IRIS Interpreter VST Interpreter
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Abstract Evaluator

HTT Interpreter

Ihtt : Stepssl ⟶ Stephtt

synthesis proof tree HTT certificate
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SuSLik proof tree Coq proof certificate

Evaluator

Interpreter
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1. Deferred proof steps 2. Proof contexts

delay proof step appearance track bookkeeping information

like a

continuation

like an

accumulator
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Example with

Hoare Type Theory (HTT)
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SuSLik proof tree Coq proof certificate (HTT)

⟨READ r, 0, x, x2⟩ apply: bnd_readR=>//=.



Handling the READ rule for HTT
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[ apply: bnd_readR=>//=. ]Ihtt⟨READ, x, ı, e, y⟩ ≜
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Problem: out of order appearance
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SuSLik proof tree Coq proof certificate (HTT)

Need to defer!

⟨CLOSE sll(y, s), 2⟩

…

…

…

…
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CLOSE unfolds a postcondition predicate

31

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

[y, 2] ∗ y ↦ v′ ∗ (y + 1) ↦ nxt′  ∗ sll(nxt′, s′)

constructor 2 of the sll predicate
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Rules that transform the postcondition
need to delay their insight
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Evaluator

Interpreter

Deferred

steps

queue

Ihtt : Stepssl ⟶ Stephtt × DeferredStephtt
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Deferred proof steps in action

34

SuSLik proof tree Coq proof certificate

Close

Close

Evaluator
Interpreter

…release

Control proof step ordering!
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⟨CLOSE sll(y, s), 2⟩

{r ↦ y12 ∗ sll(y12, s1) ∗ sll(nxt, s1) ∗ …} ⤳ {sll(y, s) ∗ …}

{sll(y12, s1) ∗ …} ⤳ {[y, 2] ∗ y ↦ v′ ∗ (y + 1) ↦ nxt′  ∗ sll(nxt′, s′) ∗ …}nxt′ s′v′
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nxt′s′v′

What we get

is not what we need!



Initially, no existential values given
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nxt′v′

⟨……⟩

⟨UNIFY s1,  s’⟩

⟨……⟩

{sll(y12, s1) ∗ …} ⤳ {sll(nxt′, s1) ∗ sll(nxt′′, s1) ∗ …}

{sll(y12, s1) ∗ …} ⤳ {sll(nxt′, s′) ∗ sll(nxt′′, s′) ∗ …}

s’ s1
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v’ v

s’ s1

nxt’ nxt
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A proof context to track substitutions
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Evaluator

Interpreter

Deferred

steps

queue

Proof

context

Ihtt : Stepssl ⟶ Contextssl ⟶ Stephtt × Contexthtt × DeferredStephtt
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queue

Proof

context
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Updating the proof context
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⟨UNIFY s1,  s’⟩

⟨UNIFY v,  v’⟩

⟨UNIFY nxt,  nxt’⟩Evaluator

Interpreter

Deferred

steps

queue

Proof

contextv’ v

s’ s1

nxt’ nxt
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nxt′s′v′Proof Context

Deferred step computation

Final proof context
Proof


contextv’ v
s’ s1

nxt’ nxt



Using proof context information
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nxt′s′v′Proof Context

Deferred step computation

Final proof context

Parameterize with

proof context argument

Proof

contextv’ v

s’ s1

nxt’ nxt



Using proof context information
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nxt′s′v′Proof ContextProof

contextv’ v

s’ s1

nxt’ nxt



The correct HTT step!
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•Most difficult
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Our experience with IRIS

• Alternative, “SUSLIK-style” approach relies 
on heap unification to avoid the trouble

•But IRIS’s heap unification tactics are fragile

56

HTT VST IRIS
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Synthesis Verification

⊢ Φ ⇒ Ψ

constructive proofSMT solver

Yes/No

?
HTT

apply …
rewrite …
apply …

pure assertions
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•Advanced ATP-guided proof 
search on available lemmas
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Hammer time!

Prove extracted lemma with COQHAMMER2
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Future work:

a middle ground between 

automation and interactivity?



We addressed a fundamental gap
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Fully certified program synthesis!


