
Certifying the Synthesis

of Heap-Manipulating Programs

1

Yasunari Watanabe Kiran Gopinathan George Pîrlea Ilya SergeyNadia Polikarpova

Copying a linked list

2

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

x
…

r

Copying a linked list

2

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

r “points-to” x

x
…

r

Copying a linked list

2

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

inductive predicate 
“singly-linked list”

r “points-to” x

x
…

r

Copying a linked list

2

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

inductive predicate 
“singly-linked list”

r “points-to” x

x
…

r

Copying a linked list

2

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

inductive predicate 
“singly-linked list”

r “points-to” x

x
…

r

y
…

Copying a linked list

2

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

inductive predicate 
“singly-linked list”

r “points-to” x

x
…

r

y
…

Copying a linked list

2

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

separating conjunction

inductive predicate 
“singly-linked list”

r “points-to” x

x
…

r

y
…

The linked list predicate

3

sll(x, s) ≜ x = 0 ∧ {s = ∅, emp}

| x ≠ 0 ∧ {s = {v} ∪ s1 ∧ [x,2] x ↦ v (x + 1) ↦ nxt sll(nxt, s1)}* * *

The linked list predicate

3

sll(x, s) ≜ x = 0 ∧ {s = ∅, emp}

| x ≠ 0 ∧ {s = {v} ∪ s1 ∧ [x,2] x ↦ v (x + 1) ↦ nxt sll(nxt, s1)}* * *

The linked list predicate

3

sll(x, s) ≜ x = 0 ∧ {s = ∅, emp}

| x ≠ 0 ∧ {s = {v} ∪ s1 ∧ [x,2] x ↦ v (x + 1) ↦ nxt sll(nxt, s1)}* * *

v nxt

x x+1 nxt

0…

r

The linked list predicate

3

sll(x, s) ≜ x = 0 ∧ {s = ∅, emp}

| x ≠ 0 ∧ {s = {v} ∪ s1 ∧ [x,2] x ↦ v (x + 1) ↦ nxt sll(nxt, s1)}* * *

v nxt

x x+1 nxt

0…

r

The linked list predicate

3

sll(x, s) ≜ x = 0 ∧ {s = ∅, emp}

| x ≠ 0 ∧ {s = {v} ∪ s1 ∧ [x,2] x ↦ v (x + 1) ↦ nxt sll(nxt, s1)}* * *

v nxt

x x+1 nxt

0…

r

Write your own code?

4

Spec Program

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

Write your own code?

4

Spec Program

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

Synthesize with SUSLIK1!

5

Spec Program

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

1 Polikarpova and Sergey ’19

Synthesize with SUSLIK1!

5

Spec Program

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

1 Polikarpova and Sergey ’19

Automatically produce

an implementation

Synthesize with SUSLIK1!

5

Spec Program

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

void sll_copy (loc r) {

 let x2 = *r;

 if (x2 == 0) {}

 else {

 let v = *x2;

 let nxt = *(x2 + 1);

 *r = nxt;

 sll_copy(r);

 let y12 = *r;

 let y2 = malloc(2);

 *r = y2;

 *(y2 + 1) = y12;

 *y2 = v;

 }

}

1 Polikarpova and Sergey ’19

Automatically produce

an implementation

Can I trust this result?

6

void sll_copy (loc r) {

 let x2 = *r;

 if (x2 == 0) {}

 else {

 let v = *x2;

 let nxt = *(x2 + 1);

 *r = nxt;

 sll_copy(r);

 let y12 = *r;

 let y2 = malloc(2);

 *r = y2;

 *(y2 + 1) = y12;

 *y2 = v;

 }

}

Can I trust this result?

6

void sll_copy (loc r) {

 let x2 = *r;

 if (x2 == 0) {}

 else {

 let v = *x2;

 let nxt = *(x2 + 1);

 *r = nxt;

 sll_copy(r);

 let y12 = *r;

 let y2 = malloc(2);

 *r = y2;

 *(y2 + 1) = y12;

 *y2 = v;

 }

}

What if there’s a bug

 in the synthesizer?

A formal guarantee

of correctness

WANTED

7

This work

8

This work

8

Formally guarantee correctness of synthesized programs

This work

8

Formally guarantee correctness of synthesized programs

with proof certificates

This work

8

Formally guarantee correctness of synthesized programs

with proof certificates

generated via deductive insight from synthesis

Shifting the burden of trust

9

Shifting the burden of trust

9

SUSLIK: Large TCB

Shifting the burden of trust

9

SUSLIK: Large TCB Coq: Small TCB

Shifting the burden of trust

9

SUSLIK: Large TCB Coq: Small TCB

proof certificate

SUSLIK codebase: too large to verify

10

Deductive insight

11

Deductive insight

11

→ post-hoc certification

Deductive insight

11

Program

Program

Program

→ post-hoc certification

Program synthesis with SUSLIK

12

Spec Program

Synthetic separation logic (SSL)

13

SSL rule

Synthetic separation logic (SSL)

13

SSL rule

{P} ⇝ {Q}Initial goal

Synthetic separation logic (SSL)

13

SSL rule

{P} ⇝ {Q}

{P′￼} ⇝ {Q′￼}

Initial goal

Transformed goal

Synthetic separation logic (SSL)

13

SSL rule

{P} ⇝ {Q}

{P′￼} ⇝ {Q′￼}

program

statement

Initial goal

Transformed goal

Searching for a program

14

Initial specification

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

Searching for a program

14

Enumerative

proof searchInitial specification

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

Searching for a program

14

Proof tree

Enumerative

proof searchInitial specification

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

Searching for a program

14

Proof tree

Program (byproduct)
void sll_copy (loc r) {

 let x2 = *r;

 if (x2 == 0) {}

 else {

 let v = *x2;

 let nxt = *(x2 + 1);

 *r = nxt;

 sll_copy(r);

 let y12 = *r;

 let y2 = malloc(2);

 *(y2 + 1) = y12;

 *y2 = v;

 }

}

Enumerative

proof searchInitial specification

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

Searching for a program

14

Proof tree

Program (byproduct)
void sll_copy (loc r) {

 let x2 = *r;

 if (x2 == 0) {}

 else {

 let v = *x2;

 let nxt = *(x2 + 1);

 *r = nxt;

 sll_copy(r);

 let y12 = *r;

 let y2 = malloc(2);

 *(y2 + 1) = y12;

 *y2 = v;

 }

}

Enumerative

proof searchInitial specification

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

All we need to

build a certificate?

And yet, a fundamental gap

15

synthesis verification

And yet, a fundamental gap

15

synthesis verification

Verification: symbolic execution

16

let a = *x;

*x = b;

known program structure

Verification: symbolic execution

16

Symbolically execute

to transform

the precondition only

let a = *x;

*x = b;

Verification: symbolic execution

16

apply: val_ret.

{P0} ⇝ {Q}

{P1} ⇝ {Q}

{Pm} ⇝ {Q}

…

{P2} ⇝ {Q}

apply: bnd_readR=>//=.

apply: bnd_writeR=>//=.

Symbolically execute

to transform

the precondition only

let a = *x;

*x = b;

Verification: symbolic execution

16

apply: val_ret.

{P0} ⇝ {Q}

{P1} ⇝ {Q}

{Pm} ⇝ {Q}

…

{P2} ⇝ {Q}

apply: bnd_readR=>//=.

apply: bnd_writeR=>//=.

Symbolically execute

to transform

the precondition only

let a = *x;

*x = b;

Verification: symbolic execution

16

apply: val_ret.

{P0} ⇝ {Q}

{P1} ⇝ {Q}

{Pm} ⇝ {Q}

…

{P2} ⇝ {Q}

apply: bnd_readR=>//=.

apply: bnd_writeR=>//=.

let a = *x;

*x = b;

Verification: symbolic execution

17

apply: val_ret.

{P0} ⇝ {Q}

{P1} ⇝ {Q}

{Pm} ⇝ {Q}

…

{P2} ⇝ {Q}

apply: bnd_readR=>//=.

apply: bnd_writeR=>//=.

let a = *x;

*x = b;

Verification: symbolic execution

17

apply: val_ret.

{P0} ⇝ {Q}

{P1} ⇝ {Q}

{Pm} ⇝ {Q}

…

{P2} ⇝ {Q}

apply: bnd_readR=>//=.

apply: bnd_writeR=>//=.

let a = *x;

*x = b;
Postcondition unification

delayed to the end!

Pm ⊢ Q

Synthesis: transforming the whole goal

18

⟨READ …⟩

{P0} ⇝ {Q0}

{P1} ⇝ {Q1}

{emp} ⇝ {emp}

…

⟨EMP⟩

⟨WRITE …⟩

{P2} ⇝ {Q2}

Can’t rely on
program
structure!

Synthesis: transforming the whole goal

18

⟨READ …⟩

{P0} ⇝ {Q0}

{P1} ⇝ {Q1}

{emp} ⇝ {emp}

…

⟨EMP⟩

⟨WRITE …⟩

{P2} ⇝ {Q2}

Can’t rely on
program
structure!

Synthesis: transforming the whole goal

18

⟨READ …⟩

{P0} ⇝ {Q0}

{P1} ⇝ {Q1}

{emp} ⇝ {emp}

…

⟨EMP⟩

⟨WRITE …⟩

{P2} ⇝ {Q2}

let a = *x;

*x = b;

Synthesis: transforming the whole goal

18

⟨READ …⟩

{P0} ⇝ {Q0}

{P1} ⇝ {Q1}

{emp} ⇝ {emp}

…

⟨EMP⟩

⟨WRITE …⟩

{P2} ⇝ {Q2}

Both

pre- and postcondition

can be transformed

let a = *x;

*x = b;

A question

19

A question

19

Rules that transform the postcondition

A question

19

Rules that transform the postcondition
need to delay their insight

A question

19

Rules that transform the postcondition
need to delay their insight

→ How to bridge the gap?

Another question

20

Another question

20

Multiple program verifiers available

Another question

20

Multiple program verifiers available
1. Hoare Type Theory (HTT) — Nanevski et al. ’10

Another question

20

Multiple program verifiers available
1. Hoare Type Theory (HTT) — Nanevski et al. ’10

2. Verified Software Toolchain (VST) — Appel ’11

Another question

20

Multiple program verifiers available
1. Hoare Type Theory (HTT) — Nanevski et al. ’10

2. Verified Software Toolchain (VST) — Appel ’11

3. IRIS — Jung et al. ’18; Krebbers et al. ’17

Another question

20

Multiple program verifiers available
1. Hoare Type Theory (HTT) — Nanevski et al. ’10

2. Verified Software Toolchain (VST) — Appel ’11

3. IRIS — Jung et al. ’18; Krebbers et al. ’17

→ How to support verifiers uniformly?

Two motivating challenges…

21

How to bridge the gap?

How to support verifiers uniformly?

Two motivating challenges…

21

How to bridge the gap?

How to support verifiers uniformly?

“interpret” synthesis trace into verification proof

Two motivating challenges…

21

How to bridge the gap?

How to support verifiers uniformly?

“interpret” synthesis trace into verification proof

an abstract framework that each verifier can instantiate

Our contributions

22

Our contributions

• An abstract proof evaluator framework

22

Our contributions

• An abstract proof evaluator framework

• Instantiations for 3 target verifiers 
(HTT, VST, IRIS)

22

Our contributions

• An abstract proof evaluator framework

• Instantiations for 3 target verifiers 
(HTT, VST, IRIS)

• Evaluation on characteristic benchmarks

22

Our contributions

• An abstract proof evaluator framework

• Instantiations for 3 target verifiers 
(HTT, VST, IRIS)

• Evaluation on characteristic benchmarks

22

Custom proof step interpreters

23

HTT Interpreter IRIS Interpreter VST Interpreter

Custom proof step interpreters

24

Abstract Evaluator

HTT Interpreter

Ihtt : Stepssl ⟶ Stephtt

synthesis proof tree HTT certificate

Custom proof step interpreters

24

Abstract Evaluator

HTT Interpreter

Ihtt : Stepssl ⟶ Stephtt

synthesis proof tree HTT certificate

The evaluator in action

25

SuSLik proof tree Coq proof certificate

The evaluator in action

25

SuSLik proof tree Coq proof certificate

Evaluator

Interpreter

Two strategies to bridge the gap

26

Two strategies to bridge the gap

26

1. Deferred proof steps

Two strategies to bridge the gap

26

1. Deferred proof steps

delay proof step appearance

Two strategies to bridge the gap

26

1. Deferred proof steps

delay proof step appearance

like a

continuation

Two strategies to bridge the gap

26

1. Deferred proof steps 2. Proof contexts

delay proof step appearance

like a

continuation

Two strategies to bridge the gap

26

1. Deferred proof steps 2. Proof contexts

delay proof step appearance track bookkeeping information

like a

continuation

Two strategies to bridge the gap

26

1. Deferred proof steps 2. Proof contexts

delay proof step appearance track bookkeeping information

like a

continuation

like an

accumulator

27

Example with

Hoare Type Theory (HTT)

Let’s certify sll_copy

28

…

…

…

…

Let’s certify sll_copy

28

SuSLik proof tree

…

…

…

…

Let’s certify sll_copy

28

SuSLik proof tree Coq proof certificate (HTT)

…

…

…

…

Let’s certify sll_copy

28

SuSLik proof tree Coq proof certificate (HTT)

⟨READ r, 0, x, x2⟩ apply: bnd_readR=>//=.

Handling the READ rule for HTT

29

[apply: bnd_readR=>//=.]Ihtt⟨READ, x, ı, e, y⟩ ≜

Problem: out of order appearance

30

SuSLik proof tree Coq proof certificate (HTT)

…

…

…

…

Problem: out of order appearance

30

SuSLik proof tree Coq proof certificate (HTT)

…

…

…

…

Problem: out of order appearance

30

SuSLik proof tree Coq proof certificate (HTT)

Need to defer!

⟨CLOSE sll(y, s), 2⟩

…

…

…

…

CLOSE unfolds a postcondition predicate

31

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

CLOSE unfolds a postcondition predicate

31

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

CLOSE unfolds a postcondition predicate

31

{r ↦ x ∗ sll(x, s)}

{r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

[y, 2] ∗ y ↦ v′ ∗ (y + 1) ↦ nxt′ ∗ sll(nxt′, s′)

constructor 2 of the sll predicate

Recall…

32

Recall…

32

Rules that transform the postcondition

Recall…

32

Rules that transform the postcondition
need to delay their insight

Deferred proof steps to the rescue!

33

Ihtt : Stepssl ⟶ Stephtt

Evaluator

Interpreter

Deferred proof steps to the rescue!

33

Evaluator

Interpreter

Deferred

steps

queue

Ihtt : Stepssl ⟶ Stephtt × DeferredStephtt

Deferred proof steps in action

34

SuSLik proof tree Coq proof certificate

Close

Close

Deferred proof steps in action

34

SuSLik proof tree Coq proof certificate

Close

Close
Evaluator
Interpreter

Enqueue…

Deferred proof steps in action

34

SuSLik proof tree Coq proof certificate

Close

Close

Evaluator
Interpreter

…release

Deferred proof steps in action

34

SuSLik proof tree Coq proof certificate

Close

Close

Evaluator
Interpreter

…release

Control proof step ordering!

However…

35

⟨CLOSE sll(y, s), 2⟩

{r ↦ y12 ∗ sll(y12, s1) ∗ sll(nxt, s1) ∗ …} ⤳ {sll(y, s) ∗ …}

{sll(y12, s1) ∗ …} ⤳ {[y, 2] ∗ y ↦ v′ ∗ (y + 1) ↦ nxt′ ∗ sll(nxt′, s′) ∗ …}nxt′ s′v′

However…

36

nxt′s′v′

What we get

However…

36

nxt′s′v′

What we get

is not what we need!

Initially, no existential values given

37

nxt′s′v′

A few nodes later, s’ is unified with s1

38

nxt′s′v′

A few nodes later, s’ is unified with s1

38

nxt′s′v′

⟨……⟩

⟨UNIFY s1, s’⟩

⟨……⟩

{sll(y12, s1) ∗ …} ⤳ {sll(nxt′, s1) ∗ sll(nxt′′, s1) ∗ …}

{sll(y12, s1) ∗ …} ⤳ {sll(nxt′, s′) ∗ sll(nxt′′, s′) ∗ …}

A few nodes later, s’ is unified with s1

38

nxt′v′

⟨……⟩

⟨UNIFY s1, s’⟩

⟨……⟩

{sll(y12, s1) ∗ …} ⤳ {sll(nxt′, s1) ∗ sll(nxt′′, s1) ∗ …}

{sll(y12, s1) ∗ …} ⤳ {sll(nxt′, s′) ∗ sll(nxt′′, s′) ∗ …}

s’ s1

Eventually, all existentials are provided

39

nxt′v′

s’ s1

Eventually, all existentials are provided

39

v’ v

s’ s1

nxt’ nxt

A proof context to track substitutions

40

Evaluator

Interpreter

Deferred

steps

queue

Ihtt : Stepssl ⟶ Stephtt × DeferredStephtt

A proof context to track substitutions

40

Evaluator

Interpreter

Deferred

steps

queue

Proof

context

Ihtt : Stepssl ⟶ Contextssl ⟶ Stephtt × Contexthtt × DeferredStephtt

Updating the proof context

41

⟨UNIFY s1, s’⟩

⟨UNIFY v, v’⟩

⟨UNIFY nxt, nxt’⟩Evaluator

Interpreter

Deferred

steps

queue

Proof

context

Updating the proof context

41

⟨UNIFY s1, s’⟩

⟨UNIFY v, v’⟩

⟨UNIFY nxt, nxt’⟩Evaluator

Interpreter

Deferred

steps

queue

Proof

context

s’ s1

Updating the proof context

41

⟨UNIFY s1, s’⟩

⟨UNIFY v, v’⟩

⟨UNIFY nxt, nxt’⟩Evaluator

Interpreter

Deferred

steps

queue

Proof

contextv’ v

s’ s1

nxt’ nxt

Using proof context information

42

nxt′s′v′Proof Context

Deferred step computation

Final proof context
Proof

contextv’ v
s’ s1

nxt’ nxt

Using proof context information

42

nxt′s′v′Proof Context

Deferred step computation

Final proof context

Parameterize with

proof context argument

Proof

contextv’ v

s’ s1

nxt’ nxt

Using proof context information

43

nxt′s′v′Proof ContextProof

contextv’ v

s’ s1

nxt’ nxt

The correct HTT step!

44

Two strategies to bridge the gap

45

1. Deferred proof steps 2. Proof contexts

delay proof step appearance track bookkeeping information

like a

continuation

like an

accumulator

Two strategies to bridge the gap

45

1. Deferred proof steps 2. Proof contexts

delay proof step appearance track bookkeeping information

like a

continuation

like an

accumulator

Two strategies to bridge the gap

45

1. Deferred proof steps 2. Proof contexts

delay proof step appearance track bookkeeping information

like a

continuation

like an

accumulator

Research questions

46

Research questions

1. Efficiency of certification, 
wrt. proof size and checking time

46

Research questions

1. Efficiency of certification, 
wrt. proof size and checking time

2. Synthesizer/verifier design choices 
that complicate automated certification

46

Research questions

1. Efficiency of certification, 
wrt. proof size and checking time

2. Synthesizer/verifier design choices 
that complicate automated certification

47

Concise proof sizes

48

Concise proof sizes

48

2-20s checking times for HTT/Iris, longer for VST

49

2-20s checking times for HTT/Iris, longer for VST

49

2-20s checking times for HTT/Iris, longer for VST

49

Research questions

50

1. Efficiency of certification, 
wrt. proof size and checking time

2. Synthesizer/verifier design choices 
that complicate automated certification

Two challenges

• Implementation experience for the 3 target verifiers

• Recreating synthesis steps not recoverable from proof tree

51

Synthesizer/verifier design choices 
that complicate automated certification

Two challenges

• Implementation experience for the 3 target verifiers

• Recreating synthesis steps not recoverable from proof tree

52

Synthesizer/verifier design choices 
that complicate automated certification

Our experience with HTT

53

HTT VST IRIS

Our experience with HTT

• The simplest framework

53

HTT VST IRIS

Our experience with HTT

• The simplest framework

• Shallow embedding

53

HTT VST IRIS

Our experience with HTT

• The simplest framework

• Shallow embedding

• No need to distinguish program and proof terms

53

HTT VST IRIS

Our experience with VST

54

HTT VST IRIS

Our experience with VST

• VST certifies real C programs

54

HTT VST IRIS

Our experience with VST

• VST certifies real C programs

• Lots of custom notation used to simplify proofs

54

HTT VST IRIS

Our experience with VST

• VST certifies real C programs

• Lots of custom notation used to simplify proofs

• Need understanding of implementation details to
write tactics for proof automation

54

HTT VST IRIS

Our experience with IRIS

55

HTT VST IRIS

Our experience with IRIS

•Most difficult

55

HTT VST IRIS

Our experience with IRIS

•Most difficult

•With human-oriented approach, proofs need
to manage lots of goal/hypothesis information

55

HTT VST IRIS

Our experience with IRIS

56

HTT VST IRIS

Our experience with IRIS

• Alternative, “SUSLIK-style” approach relies
on heap unification to avoid the trouble

56

HTT VST IRIS

Our experience with IRIS

• Alternative, “SUSLIK-style” approach relies
on heap unification to avoid the trouble

•But IRIS’s heap unification tactics are fragile

56

HTT VST IRIS

Two challenges

• Implementation experience for the 3 target verifiers

• Recreating synthesis steps not recoverable from proof tree

57

Synthesizer/verifier design choices 
that complicate automated certification

Two challenges

• Implementation experience for the 3 target verifiers

• Recreating synthesis steps not recoverable from proof tree

58

Synthesizer/verifier design choices 
that complicate automated certification

SUSLIK solves pure assertions with SMT

59

SUSLIK solves pure assertions with SMT

59

⊢ Φ ⇒ Ψ
pure assertions

SUSLIK solves pure assertions with SMT

59

Synthesis

⊢ Φ ⇒ Ψ

SMT solver

pure assertions

SUSLIK solves pure assertions with SMT

59

Synthesis

⊢ Φ ⇒ Ψ

SMT solver

Yes/No

?

pure assertions

SUSLIK solves pure assertions with SMT

59

Synthesis Verification

⊢ Φ ⇒ Ψ

constructive proofSMT solver

Yes/No

?
HTT

pure assertions

SUSLIK solves pure assertions with SMT

59

Synthesis Verification

⊢ Φ ⇒ Ψ

constructive proofSMT solver

Yes/No

?
HTT

apply …
rewrite …
apply …

pure assertions

Solution: certified solvers (hammers)

60

Solution: certified solvers (hammers)

•Single-line commands

60

Solution: certified solvers (hammers)

•Single-line commands

•Powerful proof automation

60

Solution: certified solvers (hammers)

•Single-line commands

•Powerful proof automation

•Advanced ATP-guided proof
search on available lemmas

60

Hammer time!

61

Hammer time!

Capture and extract entailments into lemmas

61

Hammer time!

62

Hammer time!

Prove extracted lemma with COQHAMMER2

62

2 Czajka and Kaliszyk ’18

Lemma becomes usable for automation

63

Main proof

???

Lemma becomes usable for automation

64

Main proof

Some advanced benchmarks need manual help
with auxiliary lemmas

65

Some advanced benchmarks need manual help
with auxiliary lemmas

65

Some advanced benchmarks need manual help
with auxiliary lemmas

65

Future work:

a middle ground between

automation and interactivity?

We addressed a fundamental gap

66

synthesis verification

The takeaway

67

The takeaway
• An abstract proof evaluator framework

67

The takeaway
• An abstract proof evaluator framework

• Instantiations for 3 target verifiers 
(HTT, VST, IRIS)

67

The takeaway
• An abstract proof evaluator framework

• Instantiations for 3 target verifiers 
(HTT, VST, IRIS)

• Evaluation on characteristic benchmarks (~15
shared by all three verifiers)

67

The takeaway
• An abstract proof evaluator framework

• Instantiations for 3 target verifiers 
(HTT, VST, IRIS)

• Evaluation on characteristic benchmarks (~15
shared by all three verifiers)

67

Fully certified program synthesis!

