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Different semantics are aimed to answer different questions
about programs:

@ Denotational semantics: what does a program mean as a
mathematical object
e C. Strachey, D. Scott
@ Operational semantics: how to compute a program on some
abstract machine, what is its result
e G. Plotkin
@ Axiomatic semantics: what are properties of the effect of
executing a program
o R.W.Floyd, C.A.R.Hoare
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A diversity of semantic artifacts

Semantics are described via some meta-languages

Any expressive programming language
may play a role of a meta-language
therefore

Semantic formalisms can be directly represented as programs
(or semantic artifacts)
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All these semantics were developed
independently of each other

Their equivalence should be proved

Can we connect them some other way?



Calculational inter-derivation

Program semantics can be connected
via the inter-derivation of the corresponding semantic artifacts.

0. Danvy, ICFP '08
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This connection has never been done
for type checking
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Type checking: description |

Type checking is a semantics of a “typing language” on top of
the host language’s syntax.

Its natural semantics is a familiar one, in the form of derivation rules.

Ix: Fe: : r
[t'lam] [x Tl] €: T2 [t-var] w
I'FAx:Tie:T1 — T I'kx:z
I'H e1:7T — T
[t-app] I'Fey:ty [t-num] Tk number : num

F|—61622’62

Type system for the simply typed lambda calculus with numbers
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Type checking: description Il

Another semantics of typing language: a small-step abstract

machine with control and result stacks (SEC-machine)?

(S, E, num:C

(S, E[x:>’l:] x:C

(S, E, (Ax:T.e):

(S, E, (e1e2):

(128, E, Lam(ty, S'):
((t1—712):S, E, Fun(ey):
(t1:x:S, E, Arg(ty, T2):

)
)
)
C)
C)
C)
C)

2C. Hankin and D. Le Métayer, POPL '94

(num:S, E, C)

(t:S, E[x=1|, C)
(nil, EL{x=>1}, e:Lam(t, S):C)
(S, E, el:Fun(e;):C)
(t1—=12):S8", E, C)
(1=12):S, E, ex:Arg(ty, 12):C)
(128, E, C)
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Another semantics of typing language: a small-step abstract
machine with control and result stacks (SEC-machine)?

(S, E, num:C)

(S, E[x=1], x:C)

(S, E, (M:tee) :C)

(S, E, (e1€2):C)

(15 :S, E, Lam(ty, ') :C)
((t1—>712):S, E, Fun(ey):C)
(t1:x:8, E, Arg(ty, 12):C)

2C. Hankin and D. Le Métayer, POPL '94

(num:S, E, C)

(t:S, E[x=1], C)
(nil, EU{x=-1} , e: Lam(z, S) :C)
(S, E, el:Fun(ey):C)

((11—7) :S', E, C)
((11—12):S, E, ex:Arg(1y, 12):C)
(12:S, E, C)
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Type checking: description Il

And yet another one: reduction semantics®

i= nlx|Ate|ee|T—e | num
Tel|tT|t—>T]|]]

n= num | T—T

a N o
Il

number

3
\

Hybrid language and type-checking contexts

T[n] w4 T[num] [tc-const]
Thxte] —; Thr—{t/x}e| [tc-lam]
Tl(ti—%) ul —r Tlw] [tc-Tp]

Type-checking reduction rules

3G. Kuan, D. MacQueen and R. B. Findler, ESOP ‘07
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Why should we care about different semantics?

Given formalism for a type systems defines a corresponding
semantic artifact

@ Type derivation rules ~ recursive descent

@ Machine-like semantics ~ driver-loop abstract machine (CEK,
SECD etc.)

@ Reduction semantics ~ decompose-contract-recompose loop

Benefits of non-standard semantics:
@ type debugging

@ optimized computation
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Semantics equivalence again

Do all these semantics describe
the same type checking procedure?
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Semantics equivalence again

Do all these semantics describe
the same type checking procedure?

Theorem [Hankin and Le Métayer]
(Soundness and Completeness for =)
I'ke:tiff (S,I'e:C)=,(t:5,T,C).

Theorem [Kuan et al.] (Soundness and Completeness for —;)
Foranyeandt,0Fe:Tiffe—; T
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Our concern

Can we inter-derive these semantics a priori
rather than prove their equivalence a posteriori?
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Our contribution

Yes, we can.
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Our contribution

Yes, we can.

via functional inter-derivation

Transformations instead of proofs
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Two approaches

A mathematician’s approach: to prove the equivalence
between semantics by induction (or bisimulation by coinduction)

A programmer’s approach:
e take one particular implementation
@ apply a series of transformations to a program
@ be sure that transformations are correct
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A programmer’s approach:
e take one particular implementation
@ apply a series of transformations to a program
@ be sure that transformations are correct

All transformations are already proved to be correct
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A toolbox

Semantic-preserving functional program transformations

@ continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

@ defunctionalization (Reynolds)
@ explicit control stack introduction (Landin, Danvy)

All transformations are proved to be correct

Each one yields a new adequate representation of the algorithm
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Inter-derivation

This work: inter-derivation between a recursive descent
and an abstract machine.

Our goal is SEC-machine®.

Recursive
Descent

Data Stack
Introduction

Evaluator

Stack-Threading ‘ CPS Transformation

Type-Checking
SEC Machine

Control Stack
Introduction
+
Environment
extraction

‘ Defunctionalization

4Result Stack x Environment x Control Stack

Big-Step
CEK machine
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Summary and conclusion

@ Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

@ Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved,

@ Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

@ A tool-chain of transformations is applied to derive those
algorithms;

@ All derived algorithms are correct by construction.

Thank you
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