
From Type Checking by Recursive Descent
to Type Checking by Abstract Machine

Ilya Sergey and Dave Clarke

DistriNet & IBBT
Katholieke Universiteit Leuven

{ilya.sergey,dave.clarke}@cs.kuleuven.be

LDTA ’11
26 March 2011

Saarbrücken, Germany

This work was carried out while the first author was visiting the BRICS PhD School of
Aarhus University in September 2010

1 / 27

From Type Checking by Recursive Descent
to Type Checking by Abstract Machine

Ilya Sergey and Dave Clarke

DistriNet & IBBT
Katholieke Universiteit Leuven

{ilya.sergey,dave.clarke}@cs.kuleuven.be

LDTA ’11
26 March 2011

Saarbrücken, Germany

This work was carried out while the first author was visiting the BRICS PhD School of
Aarhus University in September 2010

1 / 27

What is a program semantics?

It is the meaning
of grammatically correct programs

Example of a meaning: types

2 / 27

What is a program semantics?

It is the meaning
of grammatically correct programs

Example of a meaning: types

2 / 27

What is a program semantics?

It is the meaning
of grammatically correct programs

Example of a meaning:

types

2 / 27

What is a program semantics?

It is the meaning
of grammatically correct programs

Example of a meaning: types

2 / 27

Outline

A parade of semantics

Semantics of type checking
Derivation rules for type checking
An abstract machine
Reduction semantics

Semantics equivalence problem

Functional transformation
Toolbox
Inter-derivation

Summary and conclusion

3 / 27

Outline

A parade of semantics

Semantics of type checking
Derivation rules for type checking
An abstract machine
Reduction semantics

Semantics equivalence problem

Functional transformation
Toolbox
Inter-derivation

Summary and conclusion

4 / 27

A parade of semantics

Different semantics are aimed to answer different questions
about programs:

Denotational semantics: what does a program mean as a
mathematical object

C. Strachey, D. Scott

Operational semantics: how to compute a program on some
abstract machine, what is its result

G. Plotkin

Axiomatic semantics: what are properties of the effect of
executing a program

R.W.Floyd, C.A.R.Hoare

5 / 27

A parade of semantics

Different semantics are aimed to answer different questions
about programs:

Denotational semantics: what does a program mean as a
mathematical object

C. Strachey, D. Scott

Operational semantics: how to compute a program on some
abstract machine, what is its result

G. Plotkin

Axiomatic semantics: what are properties of the effect of
executing a program

R.W.Floyd, C.A.R.Hoare

5 / 27

A parade of semantics

Different semantics are aimed to answer different questions
about programs:

Denotational semantics: what does a program mean as a
mathematical object

C. Strachey, D. Scott

Operational semantics: how to compute a program on some
abstract machine, what is its result

G. Plotkin

Axiomatic semantics: what are properties of the effect of
executing a program

R.W.Floyd, C.A.R.Hoare

5 / 27

A parade of semantics

Different semantics are aimed to answer different questions
about programs:

Denotational semantics: what does a program mean as a
mathematical object

C. Strachey, D. Scott

Operational semantics: how to compute a program on some
abstract machine, what is its result

G. Plotkin

Axiomatic semantics: what are properties of the effect of
executing a program

R.W.Floyd, C.A.R.Hoare

5 / 27

Denotational semanitcs gives an intuition about “what a program is”,
but doesn’t say how to execute it.

Operational semantics defines how to execute a program.

6 / 27

Denotational semanitcs gives an intuition about “what a program is”,
but doesn’t say how to execute it.

Operational semantics defines how to execute a program.

6 / 27

A diversity of operational semantics

Big-step (natural) semantics:
program evaluation defined inductively on its syntax
computes a fold over a program’s AST

Big-step abstract machine
Execution traces instead of trees

Small-step operational semantics
Each step: decompose-contract-recompose

Reduction semantics
Contexts and contractions

Small-step abstract machine
Examples: CC, SCC, CK, CEK-machines, Krivine’s machine,
Landin’s SECD etc.

Related work: Ager-al:PPDP03, Cardelli:TR107, Cousineau-al:SCP87,

Danvy:IFL04, Danvy:ICFP08, Felleisen-Friedman:FDPC3, Hannan-Miller:MSCS92,

Krivine:04, Landin:CJ64, Launchbury:POPL93, Milne-Strachey:76, Plotkin:JLAP04,

Reynolds:ACM72, Sestoft:JFP97, VanHorn-Might:ICFP10...

7 / 27

A diversity of operational semantics

Big-step (natural) semantics:
program evaluation defined inductively on its syntax
computes a fold over a program’s AST

Big-step abstract machine
Execution traces instead of trees

Small-step operational semantics
Each step: decompose-contract-recompose

Reduction semantics
Contexts and contractions

Small-step abstract machine
Examples: CC, SCC, CK, CEK-machines, Krivine’s machine,
Landin’s SECD etc.

Related work: Ager-al:PPDP03, Cardelli:TR107, Cousineau-al:SCP87,

Danvy:IFL04, Danvy:ICFP08, Felleisen-Friedman:FDPC3, Hannan-Miller:MSCS92,

Krivine:04, Landin:CJ64, Launchbury:POPL93, Milne-Strachey:76, Plotkin:JLAP04,

Reynolds:ACM72, Sestoft:JFP97, VanHorn-Might:ICFP10...

7 / 27

A diversity of semantic artifacts

Semantics are described via some meta-languages

Any expressive programming language
may play a role of a meta-language

therefore

Semantic formalisms can be directly represented as programs
(or semantic artifacts)

8 / 27

A diversity of semantic artifacts

Semantics are described via some meta-languages

Any expressive programming language
may play a role of a meta-language

therefore

Semantic formalisms can be directly represented as programs
(or semantic artifacts)

8 / 27

A diversity of semantic artifacts

Semantics are described via some meta-languages

Any expressive programming language
may play a role of a meta-language

therefore

Semantic formalisms can be directly represented as programs
(or semantic artifacts)

8 / 27

Semantics equivalence problem

All these semantics were developed
independently of each other

Their equivalence should be proved

Can we connect them some other way?

9 / 27

Semantics equivalence problem

All these semantics were developed
independently of each other

Their equivalence should be proved

Can we connect them some other way?

9 / 27

Semantics equivalence problem

All these semantics were developed
independently of each other

Their equivalence should be proved

Can we connect them some other way?

9 / 27

Calculational inter-derivation

Program semantics can be connected
via the inter-derivation of the corresponding semantic artifacts.1

1O. Danvy, ICFP ’08
10 / 27

This connection has never been done
for type checking

11 / 27

Outline

A parade of semantics

Semantics of type checking
Derivation rules for type checking
An abstract machine
Reduction semantics

Semantics equivalence problem

Functional transformation
Toolbox
Inter-derivation

Summary and conclusion

12 / 27

Type checking: description I

Type checking is a semantics of a “typing language” on top of
the host language’s syntax.

Its natural semantics is a familiar one, in the form of derivation rules.

[t-lam]
Γ[x : τ1] ` e : τ2

Γ ` λx : τ1.e : τ1→ τ2
[t-var]

(x : τ ∈ Γ)
Γ ` x : τ

[t-app]
Γ ` e1 : τ1→ τ2

Γ ` e2 : τ1

Γ ` e1e2 : τ2

[t-num] Γ ` number : num

Type system for the simply typed lambda calculus with numbers

13 / 27

Type checking: description I

Type checking is a semantics of a “typing language” on top of
the host language’s syntax.

Its natural semantics is a familiar one, in the form of derivation rules.

[t-lam]
Γ[x : τ1] ` e : τ2

Γ ` λx : τ1.e : τ1→ τ2
[t-var]

(x : τ ∈ Γ)
Γ ` x : τ

[t-app]
Γ ` e1 : τ1→ τ2

Γ ` e2 : τ1

Γ ` e1e2 : τ2

[t-num] Γ ` number : num

Type system for the simply typed lambda calculus with numbers

13 / 27

Type checking: description II

Another semantics of typing language: a small-step abstract
machine with control and result stacks (SEC-machine)2

〈S, E, num:C〉 ⇒t 〈num:S, E, C〉
〈S, E[x⇒τ], x:C〉 ⇒t 〈τ:S, E[x⇒τ], C〉
〈S, E, (λx:τ.e):C〉 ⇒t 〈nil, Et{x⇒τ}, e:Lam(τ, S):C〉
〈S, E, (e1e2):C〉 ⇒t 〈S, E, e1:Fun(e2):C〉

〈τ2:S, E, Lam(τ1, S′):C〉 ⇒t 〈(τ1→τ2):S′, E, C〉
〈(τ1→τ2):S, E, Fun(e2):C〉 ⇒t 〈(τ1→τ2):S, E, e2:Arg(τ1, τ2):C〉
〈τ1:x:S, E, Arg(τ1, τ2):C〉 ⇒t 〈τ2:S, E, C〉

2C. Hankin and D. Le Métayer, POPL ’94
14 / 27

Type checking: description II

Another semantics of typing language: a small-step abstract
machine with control and result stacks (SEC-machine)2

〈S, E, num:C〉 ⇒t 〈num:S, E, C〉
〈S, E[x⇒τ], x:C〉 ⇒t 〈τ:S, E[x⇒τ], C〉
〈S, E, (λx:τ.e) :C〉 ⇒t 〈nil, Et{x⇒τ} , e: Lam(τ, S) :C〉
〈S, E, (e1e2):C〉 ⇒t 〈S, E, e1:Fun(e2):C〉

〈 τ2 :S, E, Lam(τ1, S′) :C〉 ⇒t 〈 (τ1→τ2) :S′, E, C〉
〈(τ1→τ2):S, E, Fun(e2):C〉 ⇒t 〈(τ1→τ2):S, E, e2:Arg(τ1, τ2):C〉
〈τ1:x:S, E, Arg(τ1, τ2):C〉 ⇒t 〈τ2:S, E, C〉

2C. Hankin and D. Le Métayer, POPL ’94
15 / 27

Type checking: description III

And yet another one: reduction semantics3

e ::= n | x | λx:τ.e | e e | τ→e | num

T ::= T e | τ T | τ→T | []

τ ::= num | τ→τ

n ::= number

Hybrid language and type-checking contexts

T[n] 7→t T[num] [tc-const]

T[λx:τ.e] 7→t T[τ→{τ/x} e] [tc-lam]

T[(τ1→τ2) τ1] 7→t T[τ2] [tc-τβ]

Type-checking reduction rules

3G. Kuan, D. MacQueen and R. B. Findler, ESOP ’07
16 / 27

Why should we care about different semantics?

Given formalism for a type systems defines a corresponding
semantic artifact

Type derivation rules ∼ recursive descent

Machine-like semantics ∼ driver-loop abstract machine (CEK,
SECD etc.)

Reduction semantics ∼ decompose-contract-recompose loop

Benefits of non-standard semantics:

type debugging

optimized computation

17 / 27

Why should we care about different semantics?

Given formalism for a type systems defines a corresponding
semantic artifact

Type derivation rules ∼ recursive descent

Machine-like semantics ∼ driver-loop abstract machine (CEK,
SECD etc.)

Reduction semantics ∼ decompose-contract-recompose loop

Benefits of non-standard semantics:

type debugging

optimized computation

17 / 27

Why should we care about different semantics?

Given formalism for a type systems defines a corresponding
semantic artifact

Type derivation rules ∼ recursive descent

Machine-like semantics ∼ driver-loop abstract machine (CEK,
SECD etc.)

Reduction semantics ∼ decompose-contract-recompose loop

Benefits of non-standard semantics:

type debugging

optimized computation

17 / 27

Outline

A parade of semantics

Semantics of type checking
Derivation rules for type checking
An abstract machine
Reduction semantics

Semantics equivalence problem

Functional transformation
Toolbox
Inter-derivation

Summary and conclusion

18 / 27

Semantics equivalence again

Do all these semantics describe
the same type checking procedure?

Theorem [Hankin and Le Métayer]
(Soundness and Completeness for⇒t)
Γ ` e : τ iff 〈S,Γ,e : C〉 ⇒t 〈τ : S,Γ,C〉.

Theorem [Kuan et al.] (Soundness and Completeness for 7→t)
For any e and τ, /0 ` e : τ iff e 7→∗t τ

19 / 27

Semantics equivalence again

Do all these semantics describe
the same type checking procedure?

Theorem [Hankin and Le Métayer]
(Soundness and Completeness for⇒t)
Γ ` e : τ iff 〈S,Γ,e : C〉 ⇒t 〈τ : S,Γ,C〉.

Theorem [Kuan et al.] (Soundness and Completeness for 7→t)
For any e and τ, /0 ` e : τ iff e 7→∗t τ

19 / 27

Our concern

Can we inter-derive these semantics a priori
rather than prove their equivalence a posteriori?

20 / 27

Our contribution

Yes, we can.

via functional inter-derivation

Transformations instead of proofs

21 / 27

Our contribution

Yes, we can.

via functional inter-derivation

Transformations instead of proofs

21 / 27

Outline

A parade of semantics

Semantics of type checking
Derivation rules for type checking
An abstract machine
Reduction semantics

Semantics equivalence problem

Functional transformation
Toolbox
Inter-derivation

Summary and conclusion

22 / 27

Two approaches

A mathematician’s approach: to prove the equivalence
between semantics by induction (or bisimulation by coinduction)

A programmer’s approach:

take one particular implementation

apply a series of transformations to a program

be sure that transformations are correct

All transformations are already proved to be correct

23 / 27

Two approaches

A mathematician’s approach: to prove the equivalence
between semantics by induction (or bisimulation by coinduction)

A programmer’s approach:

take one particular implementation

apply a series of transformations to a program

be sure that transformations are correct

All transformations are already proved to be correct

23 / 27

A toolbox

Semantic-preserving functional program transformations

continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

defunctionalization (Reynolds)

explicit control stack introduction (Landin, Danvy)

All transformations are proved to be correct

Each one yields a new adequate representation of the algorithm

24 / 27

A toolbox

Semantic-preserving functional program transformations

continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

defunctionalization (Reynolds)

explicit control stack introduction (Landin, Danvy)

All transformations are proved to be correct

Each one yields a new adequate representation of the algorithm

24 / 27

A toolbox

Semantic-preserving functional program transformations

continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

defunctionalization (Reynolds)

explicit control stack introduction (Landin, Danvy)

All transformations are proved to be correct

Each one yields a new adequate representation of the algorithm

24 / 27

A toolbox

Semantic-preserving functional program transformations

continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

defunctionalization (Reynolds)

explicit control stack introduction (Landin, Danvy)

All transformations are proved to be correct

Each one yields a new adequate representation of the algorithm

24 / 27

A toolbox

Semantic-preserving functional program transformations

continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

defunctionalization (Reynolds)

explicit control stack introduction (Landin, Danvy)

All transformations are proved to be correct

Each one yields a new adequate representation of the algorithm

24 / 27

A toolbox

Semantic-preserving functional program transformations

continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

defunctionalization (Reynolds)

explicit control stack introduction (Landin, Danvy)

All transformations are proved to be correct

Each one yields a new adequate representation of the algorithm

24 / 27

Inter-derivation

This work: inter-derivation between a recursive descent
and an abstract machine.

Our goal is SEC-machine4.

Recursive
Descent

Data Stack
Introduction

��

Type-Checking
SEC Machine

Stack-Threading
Evaluator

CPS Transformation

Defunctionalization
// Big-Step

CEK machine

Control Stack
Introduction

+
Environment

extraction

OO

4Result Stack × Environment × Control Stack
25 / 27

Outline

A parade of semantics

Semantics of type checking
Derivation rules for type checking
An abstract machine
Reduction semantics

Semantics equivalence problem

Functional transformation
Toolbox
Inter-derivation

Summary and conclusion

26 / 27

Summary and conclusion

Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved;

Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

A tool-chain of transformations is applied to derive those
algorithms;

All derived algorithms are correct by construction.

Thank you

27 / 27

Summary and conclusion

Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved;

Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

A tool-chain of transformations is applied to derive those
algorithms;

All derived algorithms are correct by construction.

Thank you

27 / 27

Summary and conclusion

Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved;

Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

A tool-chain of transformations is applied to derive those
algorithms;

All derived algorithms are correct by construction.

Thank you

27 / 27

Summary and conclusion

Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved;

Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

A tool-chain of transformations is applied to derive those
algorithms;

All derived algorithms are correct by construction.

Thank you

27 / 27

Summary and conclusion

Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved;

Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

A tool-chain of transformations is applied to derive those
algorithms;

All derived algorithms are correct by construction.

Thank you

27 / 27

Summary and conclusion

Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved;

Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

A tool-chain of transformations is applied to derive those
algorithms;

All derived algorithms are correct

by construction.

Thank you

27 / 27

Summary and conclusion

Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved;

Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

A tool-chain of transformations is applied to derive those
algorithms;

All derived algorithms are correct by construction.

Thank you

27 / 27

Summary and conclusion

Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved;

Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

A tool-chain of transformations is applied to derive those
algorithms;

All derived algorithms are correct by construction.

Thank you

27 / 27

	A parade of semantics
	Semantics of type checking
	Derivation rules for type checking
	An abstract machine
	Reduction semantics

	Semantics equivalence problem
	Functional transformation
	Toolbox
	Inter-derivation

	Summary and conclusion

