From Type Checking by Recursive Descent
to Type Checking by Abstract Machine

llya Sergey and Dave Clarke

DistriNet & IBBT
Katholieke Universiteit Leuven
{ilya.sergey,dave.clarke}@cs.kuleuven.be

LDTA ’11
26 March 2011
Saarbriicken, Germany

27

From Type Checking by Recursive Descent
to Type Checking by Abstract Machine

llya Sergey and Dave Clarke

DistriNet & IBBT
Katholieke Universiteit Leuven
{ilya.sergey,dave.clarke}@cs.kuleuven.be

LDTA ’11
26 March 2011
Saarbriicken, Germany

This work was carried out while the first author was visiting the BRICS PhD School of
Aarhus University in September 2010

27

What is a program semantics?

What is a program semantics?

It is the meaning
of grammatically correct programs

What is a program semantics?

It is the meaning
of grammatically correct programs

Example of a meaning:

What is a program semantics?

It is the meaning
of grammatically correct programs

Example of a meaning: types

Outline

A parade of semantics

Semantics of type checking
Derivation rules for type checking
An abstract machine
Reduction semantics

Semantics equivalence problem
Functional transformation
Toolbox

Inter-derivation

Summary and conclusion

27

Outline

A parade of semantics

4/27

A parade of semantics

Different semantics are aimed to answer different questions
about programs:

27

A parade of semantics

Different semantics are aimed to answer different questions
about programs:

@ Denotational semantics: what does a program mean as a
mathematical object

e C. Strachey, D. Scott

27

A parade of semantics

Different semantics are aimed to answer different questions
about programs:

@ Denotational semantics: what does a program mean as a
mathematical object
e C. Strachey, D. Scott
@ Operational semantics: how to compute a program on some
abstract machine, what is its result
e G. Plotkin

27

A parade of semantics

Different semantics are aimed to answer different questions
about programs:

@ Denotational semantics: what does a program mean as a
mathematical object
e C. Strachey, D. Scott
@ Operational semantics: how to compute a program on some
abstract machine, what is its result
e G. Plotkin
@ Axiomatic semantics: what are properties of the effect of
executing a program
o R.W.Floyd, C.A.R.Hoare

27

Denotational semanitcs gives an intuition about “what a program is”,
but doesn’t say how to execute it.

Denotational semanitcs gives an intuition about “what a program is”,
but doesn’t say how to execute it.

Operational semantics defines how to execute a program.

A diversity of operational semantics

@ Big-step (natural) semantics:

e program evaluation defined inductively on its syntax
e computes a fold over a program’s AST

@ Big-step abstract machine
e Execution traces instead of trees
@ Small-step operational semantics
e Each step: decompose-contract-recompose
@ Reduction semantics
e Contexts and contractions
@ Small-step abstract machine

e Examples: CC, SCC, CK, CEK-machines, Krivine’'s machine,
Landin’s SECD etc.

A diversity of operational semantics

@ Big-step (natural) semantics:

e program evaluation defined inductively on its syntax
e computes a fold over a program’s AST

@ Big-step abstract machine
e Execution traces instead of trees
@ Small-step operational semantics
e Each step: decompose-contract-recompose
@ Reduction semantics
e Contexts and contractions
@ Small-step abstract machine

e Examples: CC, SCC, CK, CEK-machines, Krivine’'s machine,
Landin’s SECD etc.

Related work: Ager-al:PPDP03, Cardelli:TR107, Cousineau-al:SCP87,
Danvy:IFL04, Danvy:ICFPO08, Felleisen-Friedman:FDPC3, Hannan-Miller:MSCS92,
Krivine:04, Landin:CJ64, Launchbury:POPL93, Milne-Strachey:76, Plotkin:JLAP04,
Reynolds:ACM72, Sestoft:JFP97, VanHorn-Might:ICFP10...

27

A diversity of semantic artifacts

Semantics are described via some meta-languages

27

A diversity of semantic artifacts

Semantics are described via some meta-languages

Any expressive programming language
may play a role of a meta-language

27

A diversity of semantic artifacts

Semantics are described via some meta-languages

Any expressive programming language
may play a role of a meta-language
therefore

Semantic formalisms can be directly represented as programs
(or semantic artifacts)

27

Semantics equivalence problem

All these semantics were developed
independently of each other

27

Semantics equivalence problem

All these semantics were developed
independently of each other

Their equivalence should be proved

27

Semantics equivalence problem

All these semantics were developed
independently of each other

Their equivalence should be proved

Can we connect them some other way?

Calculational inter-derivation

Program semantics can be connected
via the inter-derivation of the corresponding semantic artifacts.

0. Danvy, ICFP '08

10/27

This connection has never been done
for type checking

Outline

Semantics of type checking
Derivation rules for type checking
An abstract machine
Reduction semantics

12/27

Type checking: description |

Type checking is a semantics of a “typing language” on top of
the host language’s syntax.

13/27

Type checking: description |

Type checking is a semantics of a “typing language” on top of
the host language’s syntax.

Its natural semantics is a familiar one, in the form of derivation rules.

Ix: Fe: : r
[t'lam] [x Tl] €: T2 [t-var] w
I'FAx:Tie:T1 — T I'kx:z
I'H e1:7T — T
[t-app] I'Fey:ty [t-num] Tk number : num

F|—61622’62

Type system for the simply typed lambda calculus with numbers

13/27

Type checking: description Il

Another semantics of typing language: a small-step abstract

machine with control and result stacks (SEC-machine)?

(S, E, num:C

(S, E[x:>’l:] x:C

(S, E, (Ax:T.e):

(S, E, (e1e2):

(128, E, Lam(ty, S'):
((t1—712):S, E, Fun(ey):
(t1:x:S, E, Arg(ty, T2):

)
)
)
C)
C)
C)
C)

2C. Hankin and D. Le Métayer, POPL '94

(num:S, E, C)

(t:S, E[x=1|, C)
(nil, EL{x=>1}, e:Lam(t, S):C)
(S, E, el:Fun(e;):C)
(t1—=12):S8", E, C)
(1=12):S, E, ex:Arg(ty, 12):C)
(128, E, C)

14/27

Type checking: description Il

Another semantics of typing language: a small-step abstract
machine with control and result stacks (SEC-machine)?

(S, E, num:C)

(S, E[x=1], x:C)

(S, E, (M:tee) :C)

(S, E, (e1€2):C)

(15 :S, E, Lam(ty, ') :C)
((t1—>712):S, E, Fun(ey):C)
(t1:x:8, E, Arg(ty, 12):C)

2C. Hankin and D. Le Métayer, POPL '94

(num:S, E, C)

(t:S, E[x=1], C)
(nil, EU{x=-1} , e: Lam(z, S) :C)
(S, E, el:Fun(ey):C)

((11—7) :S', E, C)
((11—12):S, E, ex:Arg(1y, 12):C)
(12:S, E, C)

15/27

Type checking: description Il

And yet another one: reduction semantics®

i= nlx|Ate|ee|T—e | num
Tel|tT|t—>T]|]]

n= num | T—T

a N o
Il

number

3
\

Hybrid language and type-checking contexts

T[n] w4 T[num] [tc-const]
Thxte] —; Thr—{t/x}e| [tc-lam]
Tl(ti—%) ul —r Tlw] [tc-Tp]

Type-checking reduction rules

3G. Kuan, D. MacQueen and R. B. Findler, ESOP ‘07

16/27

Why should we care about different semantics?

Given formalism for a type systems defines a corresponding
semantic artifact

17/27

Why should we care about different semantics?

Given formalism for a type systems defines a corresponding
semantic artifact

@ Type derivation rules ~ recursive descent

@ Machine-like semantics ~ driver-loop abstract machine (CEK,
SECD etc.)

@ Reduction semantics ~ decompose-contract-recompose loop

17/27

Why should we care about different semantics?

Given formalism for a type systems defines a corresponding
semantic artifact

@ Type derivation rules ~ recursive descent

@ Machine-like semantics ~ driver-loop abstract machine (CEK,
SECD etc.)

@ Reduction semantics ~ decompose-contract-recompose loop

Benefits of non-standard semantics:
@ type debugging

@ optimized computation

17/27

Outline

Semantics equivalence problem

18/27

Semantics equivalence again

Do all these semantics describe
the same type checking procedure?

19/27

Semantics equivalence again

Do all these semantics describe
the same type checking procedure?

Theorem [Hankin and Le Métayer]
(Soundness and Completeness for =)
I'ke:tiff (S,I'e:C)=,(t:5,T,C).

Theorem [Kuan et al.] (Soundness and Completeness for —;)
Foranyeandt,0Fe:Tiffe—; T

19/27

Our concern

Can we inter-derive these semantics a priori
rather than prove their equivalence a posteriori?

20/27

Our contribution

Yes, we can.

21/27

Our contribution

Yes, we can.

via functional inter-derivation

Transformations instead of proofs

21/27

Outline

Functional transformation
Toolbox
Inter-derivation

22/27

Two approaches

A mathematician’s approach: to prove the equivalence
between semantics by induction (or bisimulation by coinduction)

A programmer’s approach:
e take one particular implementation
@ apply a series of transformations to a program
@ be sure that transformations are correct

23/27

Two approaches

A mathematician’s approach: to prove the equivalence
between semantics by induction (or bisimulation by coinduction)

A programmer’s approach:
e take one particular implementation
@ apply a series of transformations to a program
@ be sure that transformations are correct

All transformations are already proved to be correct

23/27

A toolbox

Semantic-preserving functional program transformations

24/27

A toolbox

Semantic-preserving functional program transformations

@ continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

24/27

A toolbox

Semantic-preserving functional program transformations

@ continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

@ defunctionalization (Reynolds)

24/27

A toolbox

Semantic-preserving functional program transformations

@ continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

@ defunctionalization (Reynolds)
@ explicit control stack introduction (Landin, Danvy)

24/27

A toolbox

Semantic-preserving functional program transformations

@ continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

@ defunctionalization (Reynolds)
@ explicit control stack introduction (Landin, Danvy)

All transformations are proved to be correct

24/27

A toolbox

Semantic-preserving functional program transformations

@ continuation-passing style transform
(Plotkin, Steele, Friedman, Wand, Danvy, Filinski)

@ defunctionalization (Reynolds)
@ explicit control stack introduction (Landin, Danvy)

All transformations are proved to be correct

Each one yields a new adequate representation of the algorithm

24/27

Inter-derivation

This work: inter-derivation between a recursive descent
and an abstract machine.

Our goal is SEC-machine®.

Recursive
Descent

Data Stack
Introduction

Evaluator

Stack-Threading ‘ CPS Transformation

Type-Checking
SEC Machine

Control Stack
Introduction
+
Environment
extraction

‘ Defunctionalization

4Result Stack x Environment x Control Stack

Big-Step
CEK machine

25/27

Outline

Summary and conclusion

26/27

Summary and conclusion

27127

Summary and conclusion

@ Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

27/27

Summary and conclusion

@ Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

@ Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved,

27/27

Summary and conclusion

@ Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

@ Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved,

@ Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

27/27

Summary and conclusion

@ Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

@ Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved,

@ Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

@ A tool-chain of transformations is applied to derive those
algorithms;

27/27

Summary and conclusion

@ Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

@ Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved,

@ Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

@ A tool-chain of transformations is applied to derive those
algorithms;

@ All derived algorithms are correct

27/27

Summary and conclusion

@ Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

@ Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved,

@ Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

@ A tool-chain of transformations is applied to derive those
algorithms;

@ All derived algorithms are correct by construction.

27/27

Summary and conclusion

@ Type checking is a computation over a program’s syntax; its
semantics may be described in different ways;

@ Different formalisms and corresponding implementations might
be used, but equivalence between them should be proved,

@ Functional correspondence by program transformations enables
us to derive a family of algorithms for type checking, rather than
invent them from scratch;

@ A tool-chain of transformations is applied to derive those
algorithms;

@ All derived algorithms are correct by construction.

Thank you

27/27

	A parade of semantics
	Semantics of type checking
	Derivation rules for type checking
	An abstract machine
	Reduction semantics

	Semantics equivalence problem
	Functional transformation
	Toolbox
	Inter-derivation

	Summary and conclusion

