Calculating Graph Algorithms for
Dominance and Shortest Path

llya Sergey Jan Midtgaard Dave Clarke

MPC 2012

How to derive
two graph algorithms
by means of

Abstract Interpretation

Algebra of Programming

Richard Bird

PrinCiples y “ | = & and Oege De Moor

of Program
»_Analysis

SYSTEMATIC DESIGN OF PROGRAM ANALYSIS FRAMEWORKS

Patrick Cousot™

and Radhia Cousot™™

Laboratoire d'Informatique,U.S.M.G., BP.53X
38041 Grencble cedex, France

1. INTRODUCTION and SUMMARY

Semantic analysis of programs is essential in
optimizing compilers and program verification sys-
tems. It encompasses data flow analysis, data type
determination, generation of approximate invariant
assertions, etc.

Several recent papers (among others Cousot &
Cousot[77al, Graham & Wegman[761, Kam & Ullman[76],
Kildalll 73], Rosen[78], Tarjanl[76], Wegbreit[75])
have introduced abstract approaches to program anal-
yesis which are tantamocunt to the use of a program
analysis framework (A,t,Y) where A is a lattice of
(approximate) assertions, t is an (approximate) pred-
icate transformer and Y is an often implieit func-
tion specifying the meaning of the elements of A.

/(This paper is devoted to the systematic and correct)
design of program analysis frameworks with respect
to a formal semantics.

Preliminary definitions are given in Section 2
concerning the merge over all paths and (least)

\fixpoint program-wide analysis methods., In Section g}
we briefly define the (forward and backward) deduc-
tive semantics of programs which is later used as a
formal basis in order to prove the correctness of the
approximate program analysis frameworks. Section 4
very shortly recall the main elements of the lattice
theoretic approach to approximate semantic analysis
Of programs.

in Section 6 we study and examplify various
methods which can be used in order to define a space
of approximate assertions or equivalently an approx-
imation function. They include the characterization
of the least Moore family containing an arbitrary set
of assertions, the construction of the least closure
pperator greater than or equal to an arbitrary approx-
imation function, the definition of closure operators
by composition, the definition of a space of approxi-
mate assertions by means of a complete Join congruence
relation or by means of a family of principal ideals.

Section 7 is dedicated to the design of the
approximate predicate transformer induced by a space
of approximate assertions, First we look for a rea-
sonable definition of the correctness of approximate
predicate transformers and show that a local correct-
ness condition can be given which has to be verified
for every type of elementary statement. This local
correctness condition ensures that the (merge over
all paths or fixpoint) global analysis of any program
is correct. Since isotony is not required for approx-
imate predicate transformers to be carrect it is shown
that non-isotone program analysis frameworks are man-
ageable although it is later argued that the isotony
hypothesis is natural. We next show that amaong all
possible approximate predicate transformers which can
be used with a given space of approximate assertions
there exists a best one which provides the maximum
infaormation relative to a program-wide analysis
method The best approximate predicate transformer

— [o GG R E i B e L R e T

This paper is devoted to the systematic and correct
design of program analysis frameworks with respect
to a formal semantics.

Preliminary definitions are given in section Z
concerning the merge over all paths and (least)
Tixpoint program-wide analysis methods, In Section 3

approximate program analysis +rameworks. oSection 4
very shortly recall the main elements of the lattice

theoretic apprcach to approximate semantic analysis
OT pIrograms.

Fixed-Point Calculus

Mathematics of Program Construction Group*

October 14, 1994

Abstract

The aim of this paper is to present a small calculus of extreme fixed points and to
show it in action. The fixed-point theorem that was the main incentive for writing
this paper is the fusion theorem presented in Section (3). It exploits the calculational

properties of Galois connections.

1 Introduction

Solving equations is fundamental to computing. Yet, rules for doing so are seldomly explic-
itly taught or used, and certainly not in a calculational way. This paper summarizes a small
selection of such rules and shows their use in a series of examples. Most results obtained in
these applications are well-known; 1t i1s the method —purely equational reasoning— that

1s novel.

QOur universes of discourse are complete lattices — in some applications augmented with
a regular-algebra structure — and all functions considered are monotonic. We present a
calculus of least fixed points; its counterpart for greatest fixed points follows by dualization.

Our universes of discourse are complete lattices — in some applications augmented with

a regular-algebra structure — and all functions considered are monotonic. We present a
calculus of least fixed points; its counterpart for greatest fixed points follows by dualization.

Abstract Interpretation

Abstract Interpretation
(a brief history)

P. Cousot, R. Cousot, Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints. POPL77

\/

P. Cousot, R. Cousot, Systematic Design of
Program Analysis Frameworks. POPL'79

Abstract Interpretation
(a brief list of applications in PL)

strictness analysis

type system design

state reachability
control-flow analysis
information flow properties
static error detection

constant propagation

escape analysis
points-to analysis

state reachability
model checking
data-flow optimizations

loop detection

CPR analysis

Abstract Interpretation
(an essence)

Not Interpretation as Ve Know |t

Abstract Interpretation
(an essence)

® Partial orders and lattices
® Monotone functions and fixed points

® (alois connections

Partial Orders and Lattices

Complete lattice (C;C, L, T,u,)
Partial order <C, :>
Least upper bound |

Greatest lower bound [|

TOP — UC
Bottom 1 =1nc

Monotone Functions

1fp

Least Fixed Points

Least Fixed Points

Kleene iteration

(C,C),f:C—C

Semantics: .
f is monotone

Interpretation: |fp [f

Concrete Interpretation
(an example)*

Partial trace collecting semantics

* P. Cousot, R. Cousot, Basic concepts of abstract interpretation

Partial trace collecting semantics

System states S € 2,

Transition relation ¢ C Y X)]

Initial states >0 C X

Partial trace O = 8051 ...5n,8; €2

Partial trace collecting semantics

Semantic functional

F(X)={s|seXgtU{oss |ose X N{s,s) et}
F:p(ET) = p(E7)

j IS monotone

Partial trace collecting semantics

Lattice

(P(27), S, 0,27, U,N)

Interpretation

fpc F = U F(0)

n>0

Partial trace collecting semantics
(an example)

23::{80,81,82} z3()::{50}
t = {<S(), 81>, <81, 81>, <517 52>}

FO0) =10
FH(0) = {so0}
F* {50, 5051}

(0) =
3(@) { 0,80817808182,808181}
(0) =

{So,8081,808182,808181,80818181780818182}

fpcF

is undecidable

is undecidable

Q{ - property, “‘abstraction”

J is defined by (X and

Abstraction

a:{C,L) —{4,<5)

o 1S monotone

Abstraction

Concretization

v: (4, <) — (C,E)

v 1S monotone

Concretization

4— ..
Ny
Ny
~§
N

e ”
.
~ -
il R

Galois Connections

(G, C) == {4,5)

X

iff

| a(c) <a = cEr(a)

Galois Connection Properties

Compositional construction

> (A, <q) (A1, <) ¢ =

aq a2

> <A27 <2>

Y1072

X201

<C, ;> < > <A27§2>

Galois Connection Properties

Fixed point fusion

F.:(C,C) = (C,C) F,:(A,<)— (A,<)

N——

usually finite

F., I'y are monotone

aoF,<F,oa = a(lfp F.) < Ifp F,

aoF.=F,oa = |a(lfp F,) = Ifp F},

a(lfp F,.) = lfp F,
decidable

How to find an abstract functional
(a recipe)

oo F.,

IR

a ©

A property of
trace-based interpretation

Partial trace collecting semantics
(abstracted)

a(X) = last states of all traces in X

a(X)={s| os € X for some o}

(p(S1),C,0,5,U,N) == (p(X),C,0,%,U,N)

84

| S — S —
Partial traces Reachable states

Partial trace collecting semantics
(abstracted)

(p(£7),C,0,5F,U,n) == (p(2),C,0,%,U,n)
— B

Partial traces Reachable states

F(X)={s|seXptU{oss' | ose X N{(s,s) et}

F(X)={s|seStU{s |seXAlss) et}

aoF =Foad =|a(fpcF) =Ifpc F

* Proof: P. Cousot, R. Cousot, Basic concepts of abstract interpretation

Reachable states semantics
(an example)

> = {S(), S1, 82} 2.0 = {SO}
t ={(sg,51),(S1,81), (S1,S52)}

FO0) =10

F1(0) = {s0}

J’EQ(@) = {50, 51}

F3(0) = {s0, 51,52}

Graphs

Directed Rooted Graph
G = <V, E, U()>

Edges: ECV xV

Root node: vg € V'

Paths in Rooted Graphs

(u —v) <= (u,v) € K

Finite non-empty paths

occ VT

O =Uup...Un \V’Z'El...n,(uz’—lﬁui)

Enumerating All Paths

A finite path functional

pa (V') — p(VT)
pg(X) ={o,v:0€ X AN(last(o) — v) : ov}

last : VT =V
last(ou) = u

All Paths in a Fixpoint Form

A lattice {(p(V ™), C)

Pg = Ifp(AX {vo} U pg (X))

Dominance

A node 1 dominates node v
if u belongs to every path
from the initial node vy to v.

Preliminary Ideas

® Dominance is a property of all paths in a
graph

® Dominance is a relation on graph nodes

® Dominance is a finite (i.e., computable) property

Goal

Compute a dominance algorithm
from the definition of dominance

Formal Definition of Dominance

dom : (V1) — p(V x V)
udom(X)v=(Vo:0€ X'Nlast(oc)=v:u in o) |

where
inCVxVT
in = Ifp(AX.last U X o pre)

and

pre CVT x V™
pre={o,v:0€ VT Aocve VT :{(o,ov)}

Formal Definition of Dominance

X is a set of paths v 1s a last node of o
~ N e N——
udom(X)v=(Vo:0€ X'Nlast(oc)=v:u in o) |
\—— —— ——

for every o€X uco

Dominance in a Graph

dom (pe(0)) = {{vo,v0), (vo, a), (v, b), (vo, c), {vo, d),
(@, v0), {a, a), <a b), (a; >><a,d>>

Dominance in a Graph

' p(0) = {vo}

dom (p¢;(0)) = {(vo, vo), (vo, a), {vo, b), (vo, c), (v, d),
(@, ><ab>< c), {a, d),
(b, @), (b,b), (b, c), (b,d),

(¢, a), (¢, D), (¢, c), (¢, d),
(d; a),(d,b),{d,c),{d,d)}

Dominance in a Graph

Dominance in a Graph

. pG(@) = {UQ,UQCL Uod UoCLb UodC}

Dominance in a Graph

v
/.O\ pe(0) = {vg, voa, vod, voab, vodc, voabe, vodca}
de @
(¢, 0),
(d,d)}

A fixed point for dominance is reached

ldea

® As a set of paths increases, a dominance
can only decrease

® A possible case to establish a Galois
Connection

A Galois Connection for Dominance

Y
(p(VT),C) == (p(V x V), D)
Finite paths Dominance relations

What is (¢?

What about dom!

Recall:
dom: (V") — o(V x V)
udom(X)v=(No:0€ XNlast(o)=v:u in o) |

Goals

|. Prove a Galois Connection To do |

(p(V), Q) = (p(V x V), 2) |

dom

dom

j =~

2.Find F 9 such that
dom o pg = F g o dom

then

dom(Pg) = Ifp5 (AX.dom({vo}) N Fap (X))

|. A Galois Connection
for Dominance

Decomposing Dominance

dom =gqgo f

Establish a connection compositionally

Intermezzo:
Compositions and Factors®

*With gratitude to Reviewer #|

Compositions

RCAXxB SCBxC(C

RoS={x,y,z: (x,y) € RN (y,2) € S:(x,2)}

Factors

RCAxB SCBxC TCAxC

Left factor:

cT/Sy=Nz:ySz:aT z) |

Right factor:

c R\Ty=(NVz:2Rx:2zTyvy)]

A Nice Thing about Factors

RCAxB SCBxC TCAxC

A Nice Thing about Factors

RCAxB SCBxC TCAxC

(415 RN TANRY]
‘T/SDOR S C R\T |
(B % C).C) — (T4 X B, D)

(T'/)
W(X)=T/X y(X)=2\T

Back to Dominance

Decomposing Dominance

u dom(X) v=(Vo:0 € XuNflddt@) =v:u in 0)]

in/ f(X)

f(X)={{0:0€ X :(last(o),0)}

Decomposing Dominance

‘u dom(X) v = (Vadom = (in/)(Xf o ;U in o)]

in/ f(X)

f(X)={{0:0€ X :(last(o),0)}

Decomposing Dominance

dom = (in/) o f

| Factors In the paper
| (\in) i1 f 7.
| (p(1ast),C) oy x V2 e) £ (p(1ast), C)
¢ /)C' = {0 .0 € X

(p(VH),C) =22 (o(V x V), D)

dom

Goals

. |.Prove a Galois Connection Done |

- (p(VF),9) ¢

SoRIo

dom

(p(V xV),2) |

dom

' 2.Find F ¢ such that To do |

dom o DG = f@ o dom

2. Computing a
Dominance Functional

dom =6 = (1n/)o(f e g

k(X) ={o,u,v:(u,0) € X\ (u—v):(v,00)}

fopg=Fkef

dom o pg = (in/) o

k(X) ={o,u,v:(u,0) € X\ (u—v):(v,00)}
fopg=Fkef

Details in the paper

domopgz@/)@of
—{fz?gfx%u Jlg%%up ezg (v, oV)

vpredu=u— v |

fopag=Fkof
(in/) o k = Fg o (in/)

Details in the paper

dom o pc = (p 9 (Akp) f f

Fop(X)=1d U X /pred

vpredu=u— v |

(in/) e k = Fg o (in/)

Details in the paper

dom © p = Fg o (awy) o f
Foz(X)=1id U X /pred

vpredu=u— v |

(in/) e k = Fg o (in/)

Details in the paper

dom o pg = F 4 o dom
Fop(X)=1d U X /pred

vpredu=u— v |

lI]. \LL o (111
/f> o k= Fg o (3 4) ()

(AX.dom({vg})

dom

Goals

. |.Prove a Galois Connection Done |

(p(V),C) == (p(V x V),2) |

dom

dom

ST 4 SEre

' 2.Find F ¢ such that Done |

dom o pg = F4 o dom

dom(Pg) = Ifp5 (AX.dom({vo}) N Fap (X))

Algorithm

Dom(v) = {u : u dom(Pg) v : u}

A Straightforward Algorithm

for v V do
—I— { Dom|v| «— V
Dom’ «+ dom({vg}) N Fg(Dom)
dom({vo})) while Dom # Dom’ do

L Ifp(...) Dom <« Dom’
Dom’ «+ dom({vg}) N Fg(Dom)

Can we do better?

Dominance Equivalences

' u dom(Pg) vg <= u =1yg |

' udom(Pg) v <= u=0vV (Yw:w —v:udon(Pg) w) |

Dominance Equations

Dom(v) = ﬂ Dom(w) U {v}

wEpred(v)

An Optimized Algorithm”

for v e V do
Dom|v| «— V
Dom|vg| « {vg}
Changed « true
while Changed do
Changed « false

for v eV do
newsSet «— (ﬂwepred(v) Dom[w]) U {v}
if newSet # Dom|v| then

Dom|v| < newSet
Changed < true

* K. D. Cooper,T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm.

Complexity

for v € V do
(9(|V\2){ Dom[v]| « V

Dom|vg| <+ {vg}

Changed < true

while Changed do
Changed « false

for v eV do
newoet «— (ﬂwépred(v) DOHI[QU]) U {U}
if newSet £ Dom|v] then

Dom|v| <+ newSet
Changed «— true

for v eV do
(9(|V\2){ Dom|v| « V

Dom|vg| < {vg}

Changed < true

while Changed do
Changed « false

for veV do
newset «— (ﬂwépred(v) DOHI[QU]) U {U}
O(|V] x |E|) if newSet # Dom|v| then
Dom|v]| «— newSet
Changed «— true

for v eV do
(9(|V\2){ Dom[v] «— V

Dom|vg| <+ {vg}

Changed < true

while Changed do
Changed « false

for v €V do
OV x [E)] mewSet (Myepraarn) Domlu]) U{v)
if newSet £ Dom|v] then

Dom|v]| «— newSet
Changed «— true

O(|V[* x |E])

Bottleneck:
nalve iteration

for v eV do
Dom|v] <+ V
Dom|vg| <+ {vg}
Changed < true
while Changed do

Cha «— false

for v eV do
NEwoet «— mepred(v) DOHl[QU]) U {U}
if newSet £ Dom|v] then

Dom|v| <+ newSet
Changed < true

Usual Hacks for Performance®

Reverse postorder

O(|V] x |FE|)

Using priority queue

O(IV[)

* K. D. Cooper,T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm.

The Pattern Summarized

|.A concrete domain (p(VT),C)

2.A concrete functional pg: (V') — (V™)

3.An abstract domain (p(V x V), D)

4.An abstraction dom = (in/) o f

5.A Galois connection (p(V"),C) : : (p(V x V), 2)
6.“Pushing alphas” dom o pe = Fg o dom

/.An iterative algorithm fp5 Fo

Shortest Path Algorithm
(an overview)

|.A concrete domain (p(V.T), C)

2.A concrete functional pa., : o(V.F) — (V1)

3.An abstract domain (V — (NU {oco}),

4.An abStraCt|On dist(X) = v.min{r: 7€ X A last(r)=v:]| 7|}

dist

5.A Galois connection (©(V,),C) ——= (V — (NU {c0}),>)

dist

6."Pushing alphas” dist o pg, = Fs o dist

/.An iterative algorithm Ifps Fs

Details in the paper

An algorithm

for u e V do
Olu] «— oo
5[2}0] — 0
Changed <+ true
while Changed do
Changed « false
for v € V do
for u € pred(v) do
if 0lu| + Wlu,v| < d|v] then
olv] «— dlu| + Wlu, v
Changed <+ true

* R. Bellman. On a routing problem. 1958

Conclusion

Various graph problems can be formulated as
properties of sets of finite paths

Sets of paths can be taken as a concrete domain

A property can be taken as an abstract domain

A mapping from paths to a property can be proved
to be a lower adjoint in a Galois connection

Fixpoint fusion law to obtain an algorithm

Correctness is by construction

i ‘ >/ Algebra of Programming
. Richard Bird
Principles < and e De Moor
of Program —_—
°
+_Analysis QY

iGracias!

