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“My life goal: Replace myself 
with a           macro.”LATEX

Abstract Interpreters for Free, SAS 2010

Matthew Might



M. Might, “Abstract Interpreters for Free”

small-step concrete semantics (interpreter) 

small-step abstract semantics (analysis)

=>



This Work



Replace myself with a library 
of reusable functions.

This Work



This Work

and

small-step concrete semantics implementation 

small-step abstract semantics implementation



(for the price of one +    )

This Work

and

small-step concrete semantics implementation 

small-step abstract semantics implementation
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design

How do you

an abstract interpreter?



implement

How do you

an abstract interpreter?



Our perspective



Separate 
the interpreter machinery 

from a program analysis logic



Separate 
the interpreter machinery 

from a program analysis logic

Make different aspects of a program analysis 
reusable between languages and semantics

and also



Monads for
the separation of concerns



Starting point:
Concrete vs.  Abstract



Concrete CPS semantics

2.2 Concrete semantics (II)

& 2 ⌃ = Call⇥ Env ⇥ Store

⇢ 2 Env = Var ! Addr

clo 2 Clo = Lam⇥ Env

� 2 Store = Addr ! Clo

a 2 Addr is an infinite set.

A : AExp⇥ Env ⇥ Store ! Clo

A(v, ⇢,�) = �(⇢(v))

A(lam, ⇢,�) = (lam, ⇢)

([[(f æ1 . . .æn)]], ⇢,�) ) (call , ⇢

00
,�

0
), where

([[(� (v1 . . . vn) call)]], ⇢0) = A(f, ⇢,�)

⇢

00
= ⇢

0
[vi 7! ai]

�

0
= �[ai 7! A(æi, ⇢,�)]

ai = alloc(vi,�)

2.3 Abstract semantics

&̂ 2 ˆ

⌃ = Call⇥ d
Env ⇥ [

Store

⇢̂ 2 d
Env = Var ! Addr

c
clo 2 d

Clo = Lam⇥ d
Env

�̂ 2 [
Store =

[
Addr ! d

Clo

a 2 Addr is an infinite set.

ˆA : AExp⇥ d
Env ⇥ [

Store ! P
⇣
d
Clo

⌘

ˆA(v, ⇢̂, �̂) = �̂(⇢̂(v))

ˆA(lam, ⇢̂, �̂) = {(lam, ⇢̂)}
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Abstract CPS semantics

([[(f æ1 . . .æn)]], ⇢̂, �̂) ; (call , ⇢̂

00
, �̂

0
), where

([[(� (v1 . . . vn) call)]], ⇢̂0) 2 ˆA(f, ⇢̂, �̂)

⇢̂

00
= ⇢̂

0
[vi 7! âi]

�̂

0
= �̂ t [âi 7! ˆA(æi, ⇢̂, �̂)]

âi =
[
alloc(vi, �̂)

↵ : ⌃ ! ˆ

⌃

↵(call , ⇢,�) = (call ,↵(⇢),↵(�))

↵(⇢) = �v.↵(⇢(v))

↵(�) = �â.

G

↵(a)=â

{↵(�(a))}

↵(lam, ⇢) = {(lam,↵(⇢))}
↵(a) is to be continued...

2.4 Time-stamped concrete semantics

& 2 ⌃ = Call⇥ Env ⇥ Store ⇥ Time

⇢ 2 Env = Var ! Addr

clo 2 Clo = Lam⇥ Env

� 2 Store = Addr ! Clo

a 2 Addr is an infinite set

t 2 Time is an infinite set of times.

&z }| {
([[(f æ1 . . .æn)]], ⇢,�, t) ) (call , ⇢

00
,�

0
, t

0
), where

clo = A(f, ⇢,�)

([[(� (v1 . . . vn) call)]], ⇢0) = clo

⇢

00
= ⇢

0
[vi 7! ai]

�

0
= �[ai 7! A(æi, ⇢,�)]

t

0
= tick(clo, &)

ai = alloc(vi, t
0
, clo, &)
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where

2.2 Store-factored concrete semantics
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Similar, but not the same!
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How can we unify 
their implementations?





Commonalities

Differences





Commonalities



Commonalities

Shape of the computation

2.2 Cutting recursion with a store

To arrive at a finite state-space, the systematic method detailed in
“Abstracting Abstract Machines” [23] calls for transforming the
abstract machine into store-passing style, which cuts the recursive
knot between environments and closures by introducing addresses.
With the introduction of a store, σ ∈ Store = Addr ⇀ D, the
store-passing transform produces the following state-space:

ς ∈ Σ = Call× Env × Store

ρ ∈ Env = Var ⇀ Addr

d ∈ D = Clo

clo ∈ Clo = Lam× Env

a ∈ Addr is an infinite set of addresses.

The modification of the transition relation is straightforward:

ς︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ,σ)⇒ (call , ρ′′,σ′), where

([[(λ (v1 . . . vn) call)]], ρ′) = A(f, ρ,σ)

di = A(æi, ρ,σ) ai = alloc(vi, ς)

ρ′′ = ρ′[vi $→ ai] σ′ = σ[ai $→ di].

The evaluator A : AExp × Env × Store ⇀ D is modified to
take the store as an additional argument:

A(v, ρ,σ) = σ(ρ(v)) A(lam, ρ,σ) = (lam, ρ).

And, the (presently opaque) address-allocator alloc : Var ×
Σ→ Addr yields a fresh address for each variable.

2.3 A second attempt at abstraction

With the recursion sliced from the state-space by the store-passing
transformation, a structural abstraction succeeds in producing a
finite abstract state-space:

ς̂ ∈ Σ̂ = Call× Ênv × Ŝtore

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr → P(D̂)

d̂ ∈ D̂ = Ĉlo

ĉlo ∈ Ĉlo = Lam× Ênv

â ∈ Âddr is a finite set of abstract addresses,

and it induces a straightforward abstract transition relation:

ς̂︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ̂, σ̂) ! (call , ρ̂′′, σ̂′), if

([[(λ (v1 . . . vn) call)]], ρ̂′) ∈ Â(f, ρ̂, σ̂)

d̂i ∈ Â(æi, ρ̂, σ̂) âi = âlloc(vi, ς̂)

ρ̂′′ = ρ̂′[vi $→ âi] σ̂′ = σ̂ & [âi $→ {d̂i}].

Branching to every possible abstract closure introduces a subtle
nondeterminism.

Naturally, the abstract argument evaluator wraps closures as
singletons, but looks up variables as in the concrete version:

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v)) Â(lam, ρ̂, σ̂) = {(lam, ρ̂)} .

The join on the abstract store allows each address in the finite
set of abstract addresses to soundly represent multiple concrete
addresses:

σ̂ & σ̂′ = λâ.σ̂(â) ∪ σ̂′(â).

And, it should now be clear that the abstract allocator âlloc :
Var× Σ̂→ Âddr determines the polyvariance of the analysis (i.e.,
distinguishing between bindings of the same variable in different

evaluation contexts [22, 19]) because âlloc determines how many
abstract variants are associated with each variable. For instance,
allocating each time a new address corresponds to associating just
one value with a variable at each moment of the program execution.

2.3.1 Example: Monovariant analysis (0CFA)

For example, a classical monovariant analysis (0CFA) comes from
defining the set of abstract addresses to be the set of variables

(Âddr 0CFA = Var), and then using variables as their own abstract
addresses:

âlloc0CFA(v, ς̂) = v.

2.4 Introducing context with time-stamps

Van Horn and Might [23] realize that the abstract state-space as it
stands lacks sufficient information to instantiate classical strategies
for polyvariance (like k-CFA). To fix this, they introduce time-
stamps (to the concrete and abstract semantics) as a new component
of the state.

Time-stamps are used to remember execution context, and are
directly responsible for the context-sensitivity of the analysis:

ς̂ ∈ Σ̂ = Call × Ênv × Ŝtore × T̂ime

t̂ ∈ T̂ime is a finite set of abstract times.

Each transition augments the time through an opaque function,

t̂ick : Ĉlo× Σ̂→ T̂ime and by giving the allocator âlloc : Var×
T̂ime → Âddr access to this context instead of the whole state:

ς̂︷ ︸︸ ︷
([[(f æ1 . . .æn)]], ρ̂, σ̂, t̂) ! (call , ρ̂′′, σ̂′, t̂′), if

([[(λ (v1 . . . vn) call)]], ρ̂′)
︸ ︷︷ ︸

ĉlo

∈ Â(f, ρ̂, σ̂)

d̂i ∈ Â(æi, ρ̂, σ̂) t̂′ = t̂ick(ĉlo, ς̂)

âi = âlloc(vi, t̂
′) ρ̂′′ = ρ̂′[vi $→ âi]

σ̂′ = σ̂ & [âi $→ {d̂i}].

2.4.1 Example: k-CFA-style context-sensitivity

The introduction of this component makes it possible to model k-
CFA [22] by defining times to be sequences of up to k call sites and
addresses to be pairs of variables and call sites:

T̂imek-CFA = Call!k

Âddrk-CFA = Var × T̂imek-CFA,

and using corresponding definitions

t̂ickk-CFA(ĉlo, (call , . . . , t̂)) = (call : t̂)k

âllock-CFA(v, (. . . , t̂
′)) = (v, t̂′)

where (·)k limits its argument to at most length k.

3. Abstracting through a Monad

In flow analysis, interaction with the store determines essential
properties of the analysis. Thus, by abstracting away interaction
with the store through a monad, we introduce an abstraction layer
for these essential properties.

In pure functional programming, the introduction of store-
passing style to mimic side effects is an anti-pattern. The estab-
lished remedy for this anti-pattern is the use of monadic form in

Concrete

Abstract
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t̂ick : Ĉlo× Σ̂→ T̂ime and by giving the allocator âlloc : Var×
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σ̂′ = σ̂ & [âi $→ {d̂i}].

2.4.1 Example: k-CFA-style context-sensitivity

The introduction of this component makes it possible to model k-
CFA [22] by defining times to be sequences of up to k call sites and
addresses to be pairs of variables and call sites:

T̂imek-CFA = Call!k
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([[(f æ1 . . .æn)]], ⇢,�) ) (call , ⇢

00
,�

0
), where

([[(� (v1 . . . vn) call)]], ⇢0) = A(f, ⇢,�)

⇢

00
= ⇢

0
[vi 7! ai]

�

0
= �[ai 7! A(æi, ⇢,�)]

ai = alloc(vi,�)

2.3 Abstract semantics

&̂ 2 ˆ

⌃ = Call⇥ d
Env ⇥ [

Store

⇢̂ 2 d
Env = Var ! Addr

c
clo 2 d

Clo = Lam⇥ d
Env

�̂ 2 [
Store =

[
Addr ! d

Clo

a 2 Addr is an infinite set.

ˆA : AExp⇥ d
Env ⇥ [

Store ! P
⇣
d
Clo

⌘

ˆA(v, ⇢̂, �̂) = �̂(⇢̂(v))

ˆA(lam, ⇢̂, �̂) = {(lam, ⇢̂)}

2

([[(f æ1 . . .æn)]], ⇢̂, �̂) ; (call , ⇢̂

00
, �̂

0
), where

([[(� (v1 . . . vn) call)]], ⇢̂0) 2 ˆA(f, ⇢̂, �̂)

⇢̂

00
= ⇢̂

0
[vi 7! âi]

�̂

0
= �̂ t [âi 7! ˆA(æi, ⇢̂, �̂)]

âi =
[
alloc(vi, �̂)

↵ : ⌃ ! ˆ

⌃

↵(call , ⇢,�) = (call ,↵(⇢),↵(�))

↵(⇢) = �v.↵(⇢(v))

↵(�) = �â.

G

↵(a)=â

{↵(�(a))}

↵(lam, ⇢) = {(lam,↵(⇢))}
↵(a) is to be continued...

2.4 Time-stamped concrete semantics

& 2 ⌃ = Call⇥ Env ⇥ Store ⇥ Time

⇢ 2 Env = Var ! Addr

clo 2 Clo = Lam⇥ Env

� 2 Store = Addr ! Clo

a 2 Addr is an infinite set

t 2 Time is an infinite set of times.

&z }| {
([[(f æ1 . . .æn)]], ⇢,�, t) ) (call , ⇢

00
,�

0
, t

0
), where

clo = A(f, ⇢,�)

([[(� (v1 . . . vn) call)]], ⇢0) = clo

⇢

00
= ⇢

0
[vi 7! ai]

�

0
= �[ai 7! A(æi, ⇢,�)]

t

0
= tick(clo, &)

ai = alloc(vi, t
0
, clo, &)
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Implementing and Refactoring
time-stamped k-CFA for CPS



1.1 Overview

Van Horn and Might’s systematic abstraction relies on breaking
down recursive structure in the concrete state-space and threading
that structure through a store. This refactoring of the state-space
imposes a corresponding store-passing-style transformation on the
semantics.

Were we writing an interpreter in Haskell rather than a for-
mal semantics, we would recognize store-passing style as an anti-
pattern: in Haskell, monads are the right generalization for captur-
ing artifacts like a store in a purely functional manner. When we
apply a monadic transformation in lieu of a store-passing transfor-
mation to a concrete semantics, the resulting monad erupts as the
catalyst for unifying what appeared as ad hoc choices in the design
of classical static analyses. Even the nondeterminism that arises
during abstraction of an operational semantics can be captured, ex-
plained and throttled entirely monadically.

By delegating interaction with the store into a monad, the
monad determines not only the polyvariance and context-sensitivity
of the analysis, but also the degree to which the analysis prunes the
abstract heap based on reachability (abstract garbage collection)
and bounds the cardinality of abstract addresses for shape analysis.
In fact, it suggests a refactoring of the traditional fixed-point iter-
ation such that path-sensitivity and flow-sensitivity also fall out as
natural parameters.

Our monadic abstraction of the semantics orthogonalizes the
classic dimensions of static analysis, independent of the specific
semantics in use.

We illustrate a systematic method for transforming a concrete
semantics into a monadically-parameterized machine, comprising
both concrete and abstract interpretation, such that the monad de-
termines the classical properties of an analysis. As in recent work
on abstracting abstract machines [23], our semantic transformation
implicitly utilizes the techniques of Danvy et al. [1, 2, 7] in order to
calculate an abstract1 machine equivalent to the concrete semantics.
It diverges with this line of work by applying a monadic-normal-
form transformation [6] (instead of a store-passing-style transfor-
mation) to the rules for the machine.

1.2 Contributions

• The central theoretical contribution of the paper is identifying
and employing monads as a mechanism to abstract over the
fundamental characteristics of the analysis.

• The central practical contribution is an executable proof-of-
concept implementation of the described decomposition for a
series of calculi.2

• We decouple the interpretation of the semantics from a mono-
tonic fixed-point computation, which makes it possible to define
analysis widening strategies independently of the semantics and
of the analysis’ other parameters.

• We illustrate degrees of freedom when constructing the analysis
using our framework and show that components implementing
non-deterministic transitions, polyvariance and abstract count-
ing are semantics-independent and can be reused for different
calculi (e.g., Java and the lambda calculus) and analysis fami-
lies.

1 Abstract in the sense that it models the salient intensional behavior of a
program.
2 The implementation is available for the lambda-calculus (both in the form
of CPS [15] and CESK-machine [23]) and Featherweight Java [19]:

http://github.com/ilyasergey/monadic-cfa

v ∈ Var is a set of identifiers

lam ∈ Lam ::= (λ (v1 . . . vn) call)

f,æ ∈ AExp = Var + Lam

call ∈ Call ::= (f æ1 . . .æn)+ Exit

ς ∈ Σ = Call× Env ρ ∈ Env = Var ⇀ D

d ∈ D = Clo clo ∈ Clo = Lam× Env

Figure 1: A grammar for CPS and a concrete state-space.

2. Setting the Scene: Analyzing
Continuation-Passing Style

We start our discovery of the monadic refactoring process with
a minimalist higher-order language: continuation-passing style λ-
calculus (CPS). We will apply the systematic abstraction process
as described by Van Horn and Might [23] in full to CPS. After-
ward, we’ll modify the process by transforming the semantics into
monadic normal form after the store-passing transformation. Thus,
all interaction with the store will pass through a monad. Because
interaction with the store is central to describing facets of mod-
ern flow analysis, such as context-sensitivity and heap-cloning, we
will be able to describe these facets independently of a particular
semantics.

In CPS (Figure 1), the lambda calculus is partitioned into two
worlds: call sites and atomic expressions. Atomic expressions are
lambda terms and variable references. Call sites encode the appli-
cation of a function to arguments. A classical abstract machine for
CPS [9] needs only two components in its state-space Σ—see Fig-
ure 1—a control component (Call) and an environment (Env). The
domain D contains denotable values. CPS is so simple that there is
only one kind of denotable value—closures.

The injector I : Call→ Σ maps a program into this state-space:

I(call) = (call , []),

In CPS, there is only one rule to describe the transition relation,
(⇒) ⊆ Σ×Σ. We don’t write index ranges explicitly for series of
meta-expressions, assuming i = 1..n is obvious form the context.

([[(f æ1 . . .æn)]], ρ)⇒ (call , ρ′′), where

([[(λ (v1 . . . vn) call)]], ρ′) = A(f, ρ)

di = A(æi, ρ) ρ′′ = ρ′[vi &→ di],

where the evaluator A : AExp × Env ⇀ Clo evaluates an atomic
expression:

A(v, ρ) = ρ(v) A(lam, ρ) = (lam, ρ).

2.1 Attempting structural abstraction

A structural abstraction carries abstraction component-wise across
the state-space and then lifts naturally over internal domains. How-
ever, a structural abstraction of the state-space for CPS yields:

Σ̂ = Call× Ênv Ênv = Var ⇀ D̂

D̂ = P(Ĉlo) Ĉlo = Lam× Ênv .

A structural abstraction preserves mutual recursion between clo-
sures and environments, and with it, the unboundedness of the ab-
stract state-space. Since our goal with this abstraction was a finite
abstract state-space (hence a trivially computable abstract seman-
tics), structural abstraction alone is insufficient.

&̂ 2 ⌃̂ = Call⇥ d
Env ⇥ [

Store ⇥\
Time

⇢̂ 2 d
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Addr

�̂ 2 [
Store = [

Addr ! P(D̂)

d̂ 2 D̂ = d
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c
clo 2 d
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Time

t̂ 2 \
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var
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data CExp = Call AExp [AExp ]
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
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type Store = Addr ⇀ P Val
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tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
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next :: Σ→ [Σ ]
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And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
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The function next uses the list comprehension notation to more
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:
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Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
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To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.
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proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
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In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
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tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.
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let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
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return (call , ρ′′, t ′)
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.
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into Haskell, starting with the syntax for CPS:
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:
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type k ⇀ v = Map k v
type Env = Var ⇀ Addr
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deriving (Eq ,Ord)
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type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:
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next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
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we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
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deriving (Eq ,Ord)
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type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
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The function arg is the transliteration of the argument evaluator,
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And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
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σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
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which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
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sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:
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data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:
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type k ⇀ v = Map k v
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deriving (Eq ,Ord)
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type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:
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Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
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we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
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ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:
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let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
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The function arg is the transliteration of the argument evaluator,
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we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:
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Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:
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type k ⇀ v = Map k v
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deriving (Eq ,Ord)
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type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
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The function arg is the transliteration of the argument evaluator,
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And, the function alloc is the transliteration of the âlloc function.
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[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.
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We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
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which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
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proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
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let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
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return (call , ρ′′, t ′)
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
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The function arg is the transliteration of the argument evaluator,
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[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
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arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:
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mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
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σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)
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ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
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where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.
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data AExp = Ref Var
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type k ⇀ v = Map k v
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The function arg is the transliteration of the argument evaluator,
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class Monad m ⇒ CPSInterface m where
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where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:
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data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:
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type k ⇀ v = Map k v
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type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
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[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
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Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
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fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
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where the type PΣ encodes a partial state (with no store):
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Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
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comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.
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type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:
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let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
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into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:
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type k ⇀ v = Map k v
type Env = Var ⇀ Addr
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data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
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Since function evaluation is the only source of nondeterminism,
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a special version of arg for evaluating functions:
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where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
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Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
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lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
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ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
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tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.
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3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
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( &→) :: Addr → Val → m ()
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where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
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The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.
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The function next uses the list comprehension notation to more
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We can tiptoe into monadic normal form by expanding the list
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.
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proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:
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mnext ς@(Call f aes, ρ,σ, t) = do
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return (call , ρ′′,σ′, t ′)
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
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ds = mapM (arg (ρ,σ)) aes
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In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
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( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
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conjunction with a state-transformer monad. We can apply this
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where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
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next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
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proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς



conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
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The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
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σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
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lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
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a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
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alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
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ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
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class Monad m ⇒ CPSInterface m where
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( &→) :: Addr → Val → m ()
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where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
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into Haskell, starting with the syntax for CPS:
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data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var
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data CExp = Call AExp [AExp ]
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
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deriving (Eq ,Ord)
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type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:
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next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
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And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.
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The function next uses the list comprehension notation to more
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
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lists as well (hence fun and arg now have the same type):
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In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
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ds ← mapM (arg ρ) aes
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return (call , ρ′′, t ′)
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:
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mnext ς@(Call f aes, ρ,σ, t) = do
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σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
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which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
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In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
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fun :: Env → AExp → m Val
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( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
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tion and the math as close as possible (e.g., writing P Val instead
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syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]
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tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:
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ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
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where the type PΣ encodes a partial state (with no store):
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Under this interface, we can separate the specification of the ab-
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
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deriving (Eq ,Ord)
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type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:
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The function arg is the transliteration of the argument evaluator,
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And, the function alloc is the transliteration of the âlloc function.
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[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.
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remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)
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ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
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3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:
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mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
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tion and the math as close as possible (e.g., writing P Val instead
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next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,
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the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,
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mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:
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next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
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let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
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σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):
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which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.
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3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
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( &→) :: Addr → Val → m ()
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where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
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deriving (Eq ,Ord)
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type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
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The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.
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The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
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We can tiptoe into monadic normal form by expanding the list
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
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return (call , ρ′′,σ′, t ′)
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
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let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
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into Haskell, starting with the syntax for CPS:
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The set Call from the definition of the state-space corresponds to
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type k ⇀ v = Map k v
type Env = Var ⇀ Addr
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data Val = Clo (Lambda,Env)
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where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:
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Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
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of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
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let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)
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ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):
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· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
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t ′ ← tick proc ps
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that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
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Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):
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which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.
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3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
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class Monad m ⇒ CPSInterface m where
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( &→) :: Addr → Val → m ()
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tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
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t ′ ← tick proc ps
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ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
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ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]
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The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:
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let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
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where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:
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[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
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syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
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( &→) :: Addr → Val → m ()
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where the type PΣ encodes a partial state (with no store):
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Under this interface, we can separate the specification of the ab-
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The set Call from the definition of the state-space corresponds to
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is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
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tion and the math as close as possible (e.g., writing P Val instead
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Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
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where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
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The function arg is the transliteration of the argument evaluator,
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
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To reformulate this function fully into monadic normal form, we
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lists as well (hence fun and arg now have the same type):
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arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]
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where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:
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proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
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σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
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tick :: Val → State → [Time ]
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which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.
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3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
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class Monad m ⇒ CPSInterface m where
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Under this interface, we can separate the specification of the ab-
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data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
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ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:
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let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
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The function arg is the transliteration of the argument evaluator,
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:
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To make the presentation unambiguous (and executable), we
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into Haskell, starting with the syntax for CPS:
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data AExp = Ref Var
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data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
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data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
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The function arg is the transliteration of the argument evaluator,
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And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.
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syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
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which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.
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mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
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let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
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sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
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The function arg is the transliteration of the argument evaluator,
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[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
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fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
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To reformulate this function fully into monadic normal form, we
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In this section, we subtly reformulate the semantics in terms of
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abstracting over five functions that form a semantic interface of the
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where the type PΣ encodes a partial state (with no store):
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Under this interface, we can separate the specification of the ab-
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:
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type k ⇀ v = Map k v
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type Store = Addr ⇀ P Val
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deriving (Eq ,Ord)
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type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
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The function arg is the transliteration of the argument evaluator,
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And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.
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The function next uses the list comprehension notation to more
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We can tiptoe into monadic normal form by expanding the list
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.
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let as = mapM (alloc (t ′, proc, ς)) vs
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3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
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where the type PΣ encodes a partial state (with no store):
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Under this interface, we can separate the specification of the ab-
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next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
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mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
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class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
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where the type PΣ encodes a partial state (with no store):
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Under this interface, we can separate the specification of the ab-
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mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.
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first transliterate the abstract semantics (for k-CFA at the moment)
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type k ⇀ v = Map k v
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where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
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a CPSInterface type class that hides interaction with the store,
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where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
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into Haskell, starting with the syntax for CPS:
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
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type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
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[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
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a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

mnext :: (CPSInterface m) ) P⌃ ! m P⌃
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
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ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
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The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
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let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:
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ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,
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And, the function alloc is the transliteration of the âlloc function.
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:
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Thus, we can rewrite mnext :
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a special version of arg for evaluating functions:
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proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
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lists as well (hence fun and arg now have the same type):
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In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
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( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
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return (call , ρ′′, t ′)
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
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The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.
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the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
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lists as well (hence fun and arg now have the same type):
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3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
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class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
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3.1 Capturing nondeterminism in the monad
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3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
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class Monad m ⇒ CPSInterface m where
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arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
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tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
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mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
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data AExp = Ref Var
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data CExp = Call AExp [AExp ]
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The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:
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type k ⇀ v = Map k v
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type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
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[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
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Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
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ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
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( &→) :: Addr → Val → m ()
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where the type PΣ encodes a partial state (with no store):
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Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
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mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
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To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
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type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:
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The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:
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Since function evaluation is the only source of nondeterminism,
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a special version of arg for evaluating functions:
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the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
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a special version of arg for evaluating functions:
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In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
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where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
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which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)
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ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
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σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

mnext :: (CPSInterface m) ) P⌃ ! m P⌃

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
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3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.
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t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)
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ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
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t ′ ← tick proc ps
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mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
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ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
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ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:
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return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς

mnext :: (CPSInterface m) ) P⌃ ! m P⌃

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.
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3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the
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class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)
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implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.
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conjunction with a state-transformer monad. We can apply this
remedy to our semantics as well.

To make the presentation unambiguous (and executable), we
first transliterate the abstract semantics (for k-CFA at the moment)
into Haskell, starting with the syntax for CPS:

type Var = String
data Lambda = [Var ]⇒ CExp deriving (Eq ,Ord)
data AExp = Ref Var

| Lam Lambda deriving (Eq ,Ord)
data CExp = Call AExp [AExp ]

| Exit deriving (Eq ,Ord)

The set Call from the definition of the state-space corresponds to
the type CExp in the implementation. The type for the state-space
is a 4-tuple:

type Σ = (CExp,Env ,Store,Time)
type k ⇀ v = Map k v
type Env = Var ⇀ Addr
type Store = Addr ⇀ P Val
data Val = Clo (Lambda,Env)

deriving (Eq ,Ord)
type Addr = (Var ,Time)
type Time = [CExp ]

where we utilize Haskell’s unicode support to keep the implementa-
tion and the math as close as possible (e.g., writing P Val instead
of Set Val ). The transition relation becomes a function next on
states into lists of states:

next :: Σ→ [Σ ]
next ς@(Call f aes, ρ,σ, t) = [(call , ρ′′,σ′, t ′) |
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ)),
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]]

next ς = [ς ]

The function arg is the transliteration of the argument evaluator,

Â. The function tick is the transliteration of the t̂ick function.
And, the function alloc is the transliteration of the âlloc function.
Finally, the utility infix operator (//) :: Ord k ⇒ (k ⇀ v) →
[(k , v)] → (k ⇀ v) is used to update a map with a list of key-
value pairs, and (=⇒) is just a synonym for pair constructor.

3.1 Capturing nondeterminism in the monad

The function next uses the list comprehension notation to more
closely mimic the formalism. The list comprehension notation is
syntactic sugar for the list comprehension monad.

We can tiptoe into monadic normal form by expanding the list
comprehension [(call , ρ′′,σ′, t ′) | ... ] into its monadic form:

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← Set .toList (arg (f , ρ,σ))
let t ′ = tick (proc, ς)

as = [alloc (v , t ′, proc, ς) | v ← vs ]
ds = [arg (æ, ρ,σ) | æ← aes ]
ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
σ′ = σ $ [a =⇒ d | a ← as | d ← ds ]

return (call , ρ′′,σ′, t ′)
mnext ς = return ς

Since function evaluation is the only source of nondeterminism,
we can clean up these semantics by creating a new function fun as
a special version of arg for evaluating functions:

fun :: (AExp,Env ,Store)→ [Val ]
fun = Set .toList ◦ arg

Thus, we can rewrite mnext :

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (f , ρ,σ)
· · · -- the rest is unchanged

To reformulate this function fully into monadic normal form, we
must refactor and recurry fun , arg , tick , alloc to return singleton
lists as well (hence fun and arg now have the same type):

fun :: (Env ,Store)→ AExp → [Val ]
arg :: (Env ,Store)→ AExp → [Val ]
tick :: Val → State → [Time ]
alloc :: (Time,Val ,State)→ Var → [Addr ]

which allows us to rewrite mnext in monadic normal form, re-
placing list comprehensions with a standard function mapM ::
Monad m ⇒ (a → m b) → [a ] → m [b ] from a monadic
toolset.

mnext :: Σ→ [Σ ]
mnext ς@(Call f aes, ρ,σ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun (ρ,σ) f
t ′ ← tick proc ς
let as = mapM (alloc (t ′, proc, ς)) vs

ds = mapM (arg (ρ,σ)) aes
· · · -- the rest is unchanged

3.2 Pulling the store into the monad

In the previous section, we refactored the abstract semantics so
that nondeterminism is explicitly threaded through the list monad.
In this section, we subtly reformulate the semantics in terms of
a CPSInterface type class that hides interaction with the store,
abstracting over five functions that form a semantic interface of the
CPS calculus:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( &→) :: Addr → Val → m ()
alloc :: Time → Var → m Addr
tick :: Val → PΣ→ m Time

where the type PΣ encodes a partial state (with no store):

PΣ = (CExp,Env ,Time)

Under this interface, we can separate the specification of the ab-
stract semantics from the specific details of how it interacts with
the store:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ, t) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
t ′ ← tick proc ps
as ← mapM (alloc t ′) vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a &→ d | a ← as | d ← ds ]
return (call , ρ′′, t ′)

mnext ς = return ς
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3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.
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3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.
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3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.
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3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

Monadic Small-Step Transition

Fixed
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3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.
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3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.
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3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.
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3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

Addresses



3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

Read / Write



3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.
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3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.
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3.3 Pulling time into the monad

Like the store, time-stamps were another ad hoc addition to the
original semantics to engineer them into a form favorable for static
analysis. We can lift time-stamps out of partial states and into
monads as well, so that PΣ = (CExp,Env).

The analysis monad can now assume internal access to the
current time, which simplifies the interface:

class Monad m ⇒ CPSInterface m where
fun :: Env → AExp → m Val
arg :: Env → AExp → m Val
( #→) :: Addr → Val → m ()
alloc :: Var → m Addr
tick :: Val → PΣ→ m ()

Because the allocator alloc can assume access to time (and the
store) inside the monad, it no longer needs to take it as a parameter,
leaving the variable to be bound as its only remaining parameter.
The simplification in the analysis monad is reflected in a simpli-
fication of the definition for transition function mnext as well, as
time is no longer a component of the abstract states datatype PΣ:

mnext :: (CPSInterface m)⇒ PΣ→ m PΣ
mnext ps@(Call f aes, ρ) = do
proc@(Clo (vs ⇒ call , ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
· · · -- the rest is unchanged

3.4 Abstracting over addresses

At this point, we have a monadically abstracted abstracted3 abstract
machine. Plugging in a monad controls nondeterminism, context
and access to the store. However, we still have one component left
to be abstracted.

Until now, we have assumed that abstract addresses are repre-
sented by a fixed datatype. In practice, the nature of the addresses
determines the polyvariance and context-sensitivity of the analysis,
since they usually divide bindings according to different contexts
(also known as contours [22]). For example, Shivers’ 1CFA allo-
cates distinct contexts for each call site. Lakhotia et al. [12] intro-
duce "-contexts to build a static analysis for obfuscated x86 bina-
ries, employing finite sequences of unique enclosed function calls.
Finally, one can take a bounded set of naturals {n ∈ N | n ≤ N}
for some N as contexts, which will give a good precision for suffi-
ciently big N .

Thus, we must abstract over the structure of addresses in or-
der to cover at least all the options from above. Unfortunately,
addresses form a part of the state-space as a codomain of Env ;
thus, we need to parameterize our semantic domains by the type of
addresses—a:

type PΣ a = (CExp,Env a)
type Env a = Var ⇀ a
data Val a = Clo (Lambda,Env a)

deriving (Eq ,Ord)
type Store a = a ⇀ P (Val a)

With this shift, we are no longer attached to the k-CFA-like repre-
sentation of addresses, as both Addr and Time are gone.

Of course, the signature of the CPSInterface monad and
mnext change accordingly, although the body of mnext remains
unchanged. The final definition of the CPSInterface class and the
function mnext are represented in Figure 2 and are not going to
change in the remainder of our story. What is going to change is the

3 This is not a typo.

class Monad m ⇒ CPSInterface m a where

fun :: Env a → AExp → m (Val a)
arg :: Env a → AExp → m (Val a)
( #→) :: a → Val a → m ()
alloc :: Var → m a
tick :: Val a → PΣ a → m ()

mnext :: CPSInterface m a ⇒ PΣ a → m (PΣ a)
mnext ps@(Call f aes, ρ) = do

proc@(Clo (vs ⇒ call ′, ρ′))← fun ρ f
tick proc ps
as ← mapM alloc vs
ds ← mapM (arg ρ) aes
let ρ′′ = ρ′ // [v =⇒ a | v ← vs | a ← as ]
sequence [a #→ d | a ← as | d ← ds ]
return (call ′, ρ′′)

mnext ς = return ς

Figure 2: Semantic interface and a small-step semantics of CPS in
a monadic form.

implementation of the semantic interface CPSInterface as well as
the choice of the underlying monad for the analysis logic.

4. Recovering a Concrete Interpreter

With non-determinism, interaction with the store and time pulled
into an analysis monad, and addresses abstracted, our semantics has
become highly parameterized. As a result, we can easily recover
a concrete interpreter as a “sanity” check for adequacy. With the
standard IO monad as an underlying analysis monad, we can use
the “real” heap as the store and implement mutable references as a
datatype IOAddr containing essentially a pointer:

data IOAddr = IOAddr {lookup :: IORef (Val IOAddr)}

We will also need two simple administrative functions in order to
write to and read from IOAddrs:

readIOAddr :: IOAddr → IO (Val IOAddr)
readIOAddr = readIORef ◦ lookup

writeIOAddr :: IOAddr → Val IOAddr → IO ()
writeIOAddr = writeIORef ◦ lookup

The implementation of the CPSInterface type class directly
mimics the concrete semantics defined in Section 2.2:

instance CPSInterface IO IOAddr where
fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = readIOAddr (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = readIOAddr (ρ ! v)

addr #→ v = writeIOAddr addr v
alloc v = liftM IOAddr $ newIORef ⊥
tick = return ()

When a new address is allocated, we pass the function newIORef
⊥ as the initial value of the new reference, since the actual value to
be bound at this address is not yet defined at the moment of alloca-
tion. The function tick is a no-op: in the real world, time advances
without our help.

With this interpretation of the semantic interface, the concrete
interpreter is simply a recursively defined driver loop that iter-
ates the semantic transition function mnext until an Exit state is
reached.

Addr

z }| {

Monad

z}|{

Semantic Functions for 
Concrete Semantics



Driver Loop

interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
where go :: (PΣ IOAddr)→ IO (PΣ IOAddr)

go s = do s ′ ← mnext s
case s ′ of x@(Exit , )→ return x

y → go y

5. Recovering a Collecting Semantics

In this section, we recall key notions from lattice theory and ab-
stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.

5.1 Basics of lattice theory and abstract interpretation

A complete lattice 〈C;$,⊥,&,',(〉 is a partial order 〈C;$〉
such that there exists a least upper bound (or join)'S and a greatest
lower bound (or meet) (S of all subsets S ⊆ C. In particular
'C = & and (C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given
two partial orders, 〈C,$〉 and 〈A,≤〉, a function f of type C → A
is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
Tarski fixed-point theorem a monotone functional f over a com-
plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
Algorithmically the least fixed point of a monotone function f over
a complete lattice of finite height can be computed by Kleene iter-
ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since

lfp" f =
⊔

i≥0

f i(⊥). (1)

A Galois connection is a pair of functions α, γ connecting two
partial orders 〈C,$〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒
c $ γ(a). We typeset Galois connections as: 〈C,$〉 −−→←−−α

γ
〈A,≤〉.

Given a Galois connection 〈C,$〉 −−→←−−α
γ
〈A,≤〉 and a monotone

function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X ) = Σ0 ∪
{
s′ | s ∈ X ∧ s ! s′

}
. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].



Driver Loop

interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
where go :: (PΣ IOAddr)→ IO (PΣ IOAddr)

go s = do s ′ ← mnext s
case s ′ of x@(Exit , )→ return x

y → go y

5. Recovering a Collecting Semantics

In this section, we recall key notions from lattice theory and ab-
stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.

5.1 Basics of lattice theory and abstract interpretation

A complete lattice 〈C;$,⊥,&,',(〉 is a partial order 〈C;$〉
such that there exists a least upper bound (or join)'S and a greatest
lower bound (or meet) (S of all subsets S ⊆ C. In particular
'C = & and (C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given
two partial orders, 〈C,$〉 and 〈A,≤〉, a function f of type C → A
is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
Tarski fixed-point theorem a monotone functional f over a com-
plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
Algorithmically the least fixed point of a monotone function f over
a complete lattice of finite height can be computed by Kleene iter-
ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since

lfp" f =
⊔

i≥0

f i(⊥). (1)

A Galois connection is a pair of functions α, γ connecting two
partial orders 〈C,$〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒
c $ γ(a). We typeset Galois connections as: 〈C,$〉 −−→←−−α

γ
〈A,≤〉.

Given a Galois connection 〈C,$〉 −−→←−−α
γ
〈A,≤〉 and a monotone

function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X ) = Σ0 ∪
{
s′ | s ∈ X ∧ s ! s′

}
. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].
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interpret e = go (e,Map.empty)
where go :: (PΣ IOAddr)→ IO (PΣ IOAddr)

go s = do s ′ ← mnext s
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crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.

5.1 Basics of lattice theory and abstract interpretation

A complete lattice 〈C;$,⊥,&,',(〉 is a partial order 〈C;$〉
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plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
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ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since

lfp" f =
⊔

i≥0

f i(⊥). (1)

A Galois connection is a pair of functions α, γ connecting two
partial orders 〈C,$〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒
c $ γ(a). We typeset Galois connections as: 〈C,$〉 −−→←−−α

γ
〈A,≤〉.

Given a Galois connection 〈C,$〉 −−→←−−α
γ
〈A,≤〉 and a monotone

function Fc : C → C, an abstract function Fa can be constructed
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theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.
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tional F , where
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}
. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
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In this section, we recall key notions from lattice theory and ab-
stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.
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such that there exists a least upper bound (or join)'S and a greatest
lower bound (or meet) (S of all subsets S ⊆ C. In particular
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A point x is a fixed point of a function f if f(x) = x. Given
two partial orders, 〈C,$〉 and 〈A,≤〉, a function f of type C → A
is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
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partial orders 〈C,$〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒
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γ
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function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X ) = Σ0 ∪
{
s′ | s ∈ X ∧ s ! s′

}
. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].
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interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
where go :: (PΣ IOAddr)→ IO (PΣ IOAddr)
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5. Recovering a Collecting Semantics

In this section, we recall key notions from lattice theory and ab-
stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.
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F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
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We define a type class for a lattice following its algebraic definition:

class Lattice a where
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& :: a
($) :: a → a → Bool
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We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:
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instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
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The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):
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kleeneIt f = loop ⊥
where loop c = let c′ = f c in
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following function, mapping a transition function step and an ini-
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where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
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Collecting m (PΣ a) fp)⇒
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grees of freedom that can be changed in order to obtain different
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specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and
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interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
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In this section, we recall key notions from lattice theory and ab-
stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.
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such that there exists a least upper bound (or join)'S and a greatest
lower bound (or meet) (S of all subsets S ⊆ C. In particular
'C = & and (C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given
two partial orders, 〈C,$〉 and 〈A,≤〉, a function f of type C → A
is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
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plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
Algorithmically the least fixed point of a monotone function f over
a complete lattice of finite height can be computed by Kleene iter-
ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since

lfp" f =
⊔

i≥0

f i(⊥). (1)

A Galois connection is a pair of functions α, γ connecting two
partial orders 〈C,$〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒
c $ γ(a). We typeset Galois connections as: 〈C,$〉 −−→←−−α

γ
〈A,≤〉.

Given a Galois connection 〈C,$〉 −−→←−−α
γ
〈A,≤〉 and a monotone

function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X ) = Σ0 ∪
{
s′ | s ∈ X ∧ s ! s′

}
. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].
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Tarski fixed-point theorem a monotone functional f over a com-
plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
Algorithmically the least fixed point of a monotone function f over
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such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
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The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:
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The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
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(a → m a)→ a → fp

exploreFP step c = kleeneIt F
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It is now straightforward to implement a function that, given an
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runAnalysis :: (CPSInterface m a,Lattice fp,
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grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and
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putation that extracts the result of a single step from the analysis
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F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
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We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
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We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by
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stract interpretation, crucial for constructing an interpreter for con-
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demonstrate an implementation of a simple collecting semantics.

5.1 Basics of lattice theory and abstract interpretation

A complete lattice 〈C;$,⊥,&,',(〉 is a partial order 〈C;$〉
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such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .
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over computation of a small-step collecting semantics for CPS.
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We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
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We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
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The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
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The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
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specific state components (i.e., time and store),
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the one in Figure 2), and
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following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by
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interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
where go :: (PΣ IOAddr)→ IO (PΣ IOAddr)

go s = do s ′ ← mnext s
case s ′ of x@(Exit , )→ return x

y → go y

5. Recovering a Collecting Semantics

In this section, we recall key notions from lattice theory and ab-
stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.

5.1 Basics of lattice theory and abstract interpretation

A complete lattice 〈C;$,⊥,&,',(〉 is a partial order 〈C;$〉
such that there exists a least upper bound (or join)'S and a greatest
lower bound (or meet) (S of all subsets S ⊆ C. In particular
'C = & and (C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given
two partial orders, 〈C,$〉 and 〈A,≤〉, a function f of type C → A
is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
Tarski fixed-point theorem a monotone functional f over a com-
plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
Algorithmically the least fixed point of a monotone function f over
a complete lattice of finite height can be computed by Kleene iter-
ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since

lfp" f =
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A Galois connection is a pair of functions α, γ connecting two
partial orders 〈C,$〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒
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〈A,≤〉.

Given a Galois connection 〈C,$〉 −−→←−−α
γ
〈A,≤〉 and a monotone

function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
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〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where
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. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
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abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
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The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:
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The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):
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following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by
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F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
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runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by
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function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X ) = Σ0 ∪
{
s′ | s ∈ X ∧ s ! s′

}
. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].
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an endo-function, prevents us from using it directly as a relation
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2. An implementation of the semantic interface of a language (e.g.,
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over computation of a small-step collecting semantics for CPS.
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($) :: a → a → Bool
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We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
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The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):
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kleeneIt f = loop ⊥
where loop c = let c′ = f c in
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Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by
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is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
Tarski fixed-point theorem a monotone functional f over a com-
plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
Algorithmically the least fixed point of a monotone function f over
a complete lattice of finite height can be computed by Kleene iter-
ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since

lfp" f =
⊔

i≥0

f i(⊥). (1)

A Galois connection is a pair of functions α, γ connecting two
partial orders 〈C,$〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒
c $ γ(a). We typeset Galois connections as: 〈C,$〉 −−→←−−α

γ
〈A,≤〉.

Given a Galois connection 〈C,$〉 −−→←−−α
γ
〈A,≤〉 and a monotone

function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X ) = Σ0 ∪
{
s′ | s ∈ X ∧ s ! s′

}
. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
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⊥ :: a
& :: a
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abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
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The monadic interpretor from Figure 2, which we presented
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collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
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abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:
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It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].
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interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
where go :: (PΣ IOAddr)→ IO (PΣ IOAddr)

go s = do s ′ ← mnext s
case s ′ of x@(Exit , )→ return x

y → go y

5. Recovering a Collecting Semantics

In this section, we recall key notions from lattice theory and ab-
stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.

5.1 Basics of lattice theory and abstract interpretation

A complete lattice 〈C;$,⊥,&,',(〉 is a partial order 〈C;$〉
such that there exists a least upper bound (or join)'S and a greatest
lower bound (or meet) (S of all subsets S ⊆ C. In particular
'C = & and (C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given
two partial orders, 〈C,$〉 and 〈A,≤〉, a function f of type C → A
is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
Tarski fixed-point theorem a monotone functional f over a com-
plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
Algorithmically the least fixed point of a monotone function f over
a complete lattice of finite height can be computed by Kleene iter-
ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since

lfp" f =
⊔

i≥0

f i(⊥). (1)

A Galois connection is a pair of functions α, γ connecting two
partial orders 〈C,$〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒
c $ γ(a). We typeset Galois connections as: 〈C,$〉 −−→←−−α

γ
〈A,≤〉.

Given a Galois connection 〈C,$〉 −−→←−−α
γ
〈A,≤〉 and a monotone

function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X ) = Σ0 ∪
{
s′ | s ∈ X ∧ s ! s′

}
. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].
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is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
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function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X ) = Σ0 ∪
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. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].

interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
where go :: (PΣ IOAddr)→ IO (PΣ IOAddr)
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In this section, we recall key notions from lattice theory and ab-
stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.
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such that there exists a least upper bound (or join)'S and a greatest
lower bound (or meet) (S of all subsets S ⊆ C. In particular
'C = & and (C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given
two partial orders, 〈C,$〉 and 〈A,≤〉, a function f of type C → A
is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
Tarski fixed-point theorem a monotone functional f over a com-
plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
Algorithmically the least fixed point of a monotone function f over
a complete lattice of finite height can be computed by Kleene iter-
ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since
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A Galois connection is a pair of functions α, γ connecting two
partial orders 〈C,$〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒
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γ
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function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X ) = Σ0 ∪
{
s′ | s ∈ X ∧ s ! s′

}
. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].

interpret :: CExp → IO (PΣ IOAddr)
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5. Recovering a Collecting Semantics
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such that there exists a least upper bound (or join)'S and a greatest
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plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
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function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
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F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.
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We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
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We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
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The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):
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following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.
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exploreFP step c = kleeneIt F
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It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
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runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
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interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
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stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.
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such that there exists a least upper bound (or join)'S and a greatest
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ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since

lfp" f =
⊔

i≥0

f i(⊥). (1)

A Galois connection is a pair of functions α, γ connecting two
partial orders 〈C,$〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒
c $ γ(a). We typeset Galois connections as: 〈C,$〉 −−→←−−α

γ
〈A,≤〉.

Given a Galois connection 〈C,$〉 −−→←−−α
γ
〈A,≤〉 and a monotone

function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X ) = Σ0 ∪
{
s′ | s ∈ X ∧ s ! s′

}
. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].



interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
where go :: (PΣ IOAddr)→ IO (PΣ IOAddr)

go s = do s ′ ← mnext s
case s ′ of x@(Exit , )→ return x

y → go y

5. Recovering a Collecting Semantics

In this section, we recall key notions from lattice theory and ab-
stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.

5.1 Basics of lattice theory and abstract interpretation

A complete lattice 〈C;$,⊥,&,',(〉 is a partial order 〈C;$〉
such that there exists a least upper bound (or join)'S and a greatest
lower bound (or meet) (S of all subsets S ⊆ C. In particular
'C = & and (C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given
two partial orders, 〈C,$〉 and 〈A,≤〉, a function f of type C → A
is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
Tarski fixed-point theorem a monotone functional f over a com-
plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
Algorithmically the least fixed point of a monotone function f over
a complete lattice of finite height can be computed by Kleene iter-
ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since

lfp" f =
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function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where
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. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
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interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
where go :: (PΣ IOAddr)→ IO (PΣ IOAddr)

go s = do s ′ ← mnext s
case s ′ of x@(Exit , )→ return x

y → go y

5. Recovering a Collecting Semantics

In this section, we recall key notions from lattice theory and ab-
stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.

5.1 Basics of lattice theory and abstract interpretation

A complete lattice 〈C;$,⊥,&,',(〉 is a partial order 〈C;$〉
such that there exists a least upper bound (or join)'S and a greatest
lower bound (or meet) (S of all subsets S ⊆ C. In particular
'C = & and (C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given
two partial orders, 〈C,$〉 and 〈A,≤〉, a function f of type C → A
is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
Tarski fixed-point theorem a monotone functional f over a com-
plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
Algorithmically the least fixed point of a monotone function f over
a complete lattice of finite height can be computed by Kleene iter-
ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since
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A Galois connection is a pair of functions α, γ connecting two
partial orders 〈C,$〉 and 〈A,≤〉, such that ∀a, c : α(c) ≤ a ⇐⇒
c $ γ(a). We typeset Galois connections as: 〈C,$〉 −−→←−−α

γ
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Given a Galois connection 〈C,$〉 −−→←−−α
γ
〈A,≤〉 and a monotone

function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where

F(X ) = Σ0 ∪
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}
. (2)

F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
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interpret :: CExp → IO (PΣ IOAddr)
interpret e = go (e,Map.empty)
where go :: (PΣ IOAddr)→ IO (PΣ IOAddr)

go s = do s ′ ← mnext s
case s ′ of x@(Exit , )→ return x
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stract interpretation, crucial for constructing an interpreter for con-
crete or abstract small-step collecting semantics of a program. We
proceed by translating the theory into programs in Haskell and
demonstrate an implementation of a simple collecting semantics.
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A complete lattice 〈C;$,⊥,&,',(〉 is a partial order 〈C;$〉
such that there exists a least upper bound (or join)'S and a greatest
lower bound (or meet) (S of all subsets S ⊆ C. In particular
'C = & and (C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given
two partial orders, 〈C,$〉 and 〈A,≤〉, a function f of type C → A
is monotone if ∀x, y : x $ y =⇒ f(x) ≤ f(y). By the Knaster-
Tarski fixed-point theorem a monotone functional f over a com-
plete lattice has a least fixed point lfp" f = ({x | f(x) $ x}.
Algorithmically the least fixed point of a monotone function f over
a complete lattice of finite height can be computed by Kleene iter-
ation: ⊥ $ f(⊥) $ f2(⊥) $ f3(⊥) $ . . . since
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function Fc : C → C, an abstract function Fa can be constructed
as α ◦ Fc ◦ γ ≤̇ Fa. Therefore, by the fixed-point transfer
theorem [5], we have α(lfp Fc) ≤ lfp Fa when Fa is monotone.

The reachable states collecting semantics for a set of pro-
gram states Σ, a transition function (!) ⊆ Σ × Σ, and a
set of initial states Σ0 ⊆ Σ is defined on a complete lattice
〈P(Σ),⊆, ∅,Σ,∪,∩〉 as a least fixed point of a monotone func-
tional F , where
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}
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F is uncomputable in general, which makes it a usual starting point
for construction of an abstract, monotone transition function F̂ ,
such that α ◦ F ◦ γ ≤̇ F̂ and computing an approximate fixed
point as lfp F̂ .

In the remainder of the section we will systematically abstract
over computation of a small-step collecting semantics for CPS.

5.2 Implementing lattices and fixed point computations

We define a type class for a lattice following its algebraic definition:

class Lattice a where
⊥ :: a
& :: a
($) :: a → a → Bool
(') :: a → a → a
(() :: a → a → a

We provide the following instances of Lattice for the standard
container types that we use heavily for systematic abstraction of
abstract machines [15]: unit, pairs, powersets and maps:

instance Lattice ()
instance (Lattice a,Lattice b)⇒ Lattice (a, b)
instance (Ord s,Eq s)⇒ Lattice (P s)
instance (Ord k ,Lattice v)⇒ Lattice (k ⇀ v)

The monadic interpretor from Figure 2, which we presented
at the end of Section 3, is reminiscent of the definition (2) of the
collecting semantics. However, the fact it uses a monad and is not
an endo-function, prevents us from using it directly as a relation
(!) in a functional F . What we can do is to explicitly make a
separation of concerns between mnext as an implementation of an
abstract transition function and a computation of a least fixed point.
We define the type class Collecting to let the implementor of the
analysis define the logic of initiating the semantics (i.e., providing
an initial set Σ0 from (2)) and “making a step”:

class Collecting m a fp | fp → a, fp → m where
applyStep :: (a → m a)→ fp → fp
inject :: a → fp

The functional dependencies fp → a and fp → m state
that the choice of a domain fp determines in which monad m
the step function should be interpreted [11], as well as what the
transition’s domain and co-domain a should be.4 The computation
of the collecting semantics as a least fixed point can be then defined
directly from the Kleene iteration (1):

kleeneIt :: (Lattice a)⇒ (a → a)→ a
kleeneIt f = loop ⊥
where loop c = let c′ = f c in

if c′ $ c then c else loop c′

Finally, the collecting semantics (2) translates gracefully to the
following function, mapping a transition function step and an ini-
tial state c to a result of the analysis.

exploreFP :: (Lattice fp,Collecting m a fp)⇒
(a → m a)→ a → fp

exploreFP step c = kleeneIt F
where F s = inject c ' applyStep step s

It is now straightforward to implement a function that, given an
expression, runs the analysis:

runAnalysis :: (CPSInterface m a,Lattice fp,
Collecting m (PΣ a) fp)⇒
CExp → fp

runAnalysis e = exploreFP mnext (e,Map.empty)

The signature of runAnalysis outlines precisely the three de-
grees of freedom that can be changed in order to obtain different
collecting semantics:

1. A monad, accounting for nondeterminism and passing analysis-
specific state components (i.e., time and store),

2. An implementation of the semantic interface of a language (e.g.,
the one in Figure 2), and

3. The analysis lattice and an implementation of a fixed point com-
putation that extracts the result of a single step from the analysis
monad and augments the lattice argument appropriately.

5.3 StorePassing—a simple implementation of a collecting
semantics for CPS

At this point we are ready to reconstruct a simple abstract inter-
preter computing a collecting, store-passing semantics of CPS by

4 Alternatively, we could use associated types to express the same sort of
dependencies [3].

s0



Implementing 
Collecting Abstract Interpreter

in 3 steps



gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [ ])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a "→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id
tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a
modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where
runStep ((ς, t), s) =

Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((%) ◦ f ) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (%).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract
Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .
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gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [ ])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a "→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id
tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a
modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where
runStep ((ς, t), s) =

Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((%) ◦ f ) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (%).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract
Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .
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gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [ ])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a "→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id
tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a
modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where
runStep ((ς, t), s) =

Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((%) ◦ f ) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (%).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract
Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .
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gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [ ])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a "→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id
tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a
modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where
runStep ((ς, t), s) =

Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((%) ◦ f ) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (%).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract
Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .
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gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [ ])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a "→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id
tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a
modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where
runStep ((ς, t), s) =

Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((%) ◦ f ) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (%).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract
Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .
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gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [ ])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a "→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id
tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a
modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where
runStep ((ς, t), s) =

Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((%) ◦ f ) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (%).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract
Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .

3. Starting and Stepping



gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [ ])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a "→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id
tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a
modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where
runStep ((ς, t), s) =

Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((%) ◦ f ) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (%).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract
Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .
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gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [ ])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a "→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id
tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a
modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where
runStep ((ς, t), s) =

Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((%) ◦ f ) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (%).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract
Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .
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gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [ ])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a "→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id
tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a
modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where
runStep ((ς, t), s) =

Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((%) ◦ f ) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (%).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract
Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .



gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [ ])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a "→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id
tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a
modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where
runStep ((ς, t), s) =

Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((%) ◦ f ) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (%).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract
Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .
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gradually instantiating three main aspects of the analysis, outlined
at the end of the previous section.

5.3.1 A two-level analysis monad

We start from constructing a monad for a simple collecting, store-
passing semantics by employing standard monad transformers
StateT and the list monad:

type StorePassing s g = StateT g (StateT s [ ])

The analysis parameters of type s and g carry state components.
They carry the store and the analysis’ guts respectively, where the
latter can contain for example a “time” value.

In a desugared form, the type StorePassing is equivalent to the
functional type g → s → [((a, g), s)] for some a , g and s , so the
stack representation of a monad should be read “inside-out”. That
is, a value of type StorePassing produces a set (represented by a
list) of results of type a , coupled with components of type g and s .

5.3.2 A simple implementation of a CPS semantic interface

To turn the StorePassing monad into an interpretation of the
semantics, we have to implement the CPSInterface type class.
So far, we choose to implement addresses as Haskell Integers for
simplicity. The store is represented as a map from integer addresses
to sets of values. The implementation of the semantic interface is
provided below.

instance CPSInterface
(StorePassing (Store Integer) Integer) Integer
where

fun ρ (Lam l) = return $ Clo (l , ρ)
fun ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

arg ρ (Lam l) = return $ Clo (l , ρ)
arg ρ (Ref v) = lift $ getsNDSet $ λσ → σ ! (ρ ! v)

a "→ d = lift $modify $
Map.insert a (singleton d)

alloc v = gets id
tick proc ps = modify $ λt → t + 1

The function getsNDSet is a crux of handling non-determinism
in a monadic implementation of the analysis as a stateful monad.
It allows one to examine the state, get multiple results and non-
deterministically choose one. Its signature needs explanation:

getsNDSet :: (MonadPlus m,MonadState s m)⇒
(s → Set a)→ m a

However, the type class constraints before⇒ provide a clue. One
can see that m is required to be a state monad, i.e., carry an implicit
state component of type s , which can be accessed and modified.
The argument type s → Set a accounts for the non-deterministic
result of type a that might come out of examining the state s .
Finally, MonadPlus m is a constraint that ensures that m has
a notion of non-deterministic choice, so the obtained results can
be combined in a wrapped result m a . What comes as a nice
surprise is that StorePassing is an instance of both MonadPlus
and MonadState.

lift is a standard Haskell function for explicit management of
the monadic stack, which is used explicitly to disambiguate the tar-
gets of accesses to the monad stack [13, 21]. In our implementation
of CPSInterface the outermost state is reserved to carry “guts”
(i.e., the time component), so we need to employ lift to access the
store σ, located on a “second level” of the monad stack. Finally,
gets and modify are standard higher-order functions that allow one
to examine and modify internal state of the monad.

gets ::MonadState s m ⇒ (s → a)→ m a
modify ::MonadState s m ⇒ (s → s)→ m ()

For instance, the implementation of tick modifies the time com-
ponent on the first level of the monadic stack (therefore, no explicit
lifting is required).5

5.3.3 Computing a collecting semantics of CPS

The last missing ingredient we need to compute the collecting
semantics of CPS is the definition of a fixed point computation that
uses the StorePassing monad. We can reach a fix-point of type
P ((PΣ a, g), s) step by step with the following definitions of
applyStep and inject .

instance (Ord s,Ord a,Ord g ,HasInitial g ,Lattice s)⇒
Collecting (StorePassing s g)

(PΣ a)
(P ((PΣ a, g), s)) where

inject p = singleton $ ((p, initial),⊥)

applyStep step fp = joinWith runStep fp where
runStep ((ς, t), s) =

Set .fromList $ runStateT (runStateT (step ς) t) s

The implementation of inject instruments a provided state with
initial “guts”, defined by the value initial of the class HasInitial
for g and the lattice minimum⊥ for s , and wraps it into a singleton
set. The class HasInitial is defined as

class HasInitial g where initial :: g

and its implementation for Integers is trivial (e.g., initial = 0).
The most interesting element of the implementation is the utility

function joinWith , defined as follows:

joinWith :: (Lattice a)⇒
(b → a)→ Set b → a

joinWith f = Set .foldr ((%) ◦ f ) ⊥

That is, given a set of values of type b and a function f of type
b → a for a lattice a , joinWith traverses the structure, applying
f to each of its leaf elements and combines the results using the
lattice join (%).

In the definition of applyStep, joinWith takes a function that
simply passes the state ς and the components t and s to the pro-
vided function step, runs a monad and collects the result into a set.
This function is applied to all states in fp and the results are joined.

All ingredients to run the analysis are now in place, and all we
need to do is to use the function runAnalysis from Section 5.2 to
compute the result:

exp :: CExp = ...
runAnalysis exp :: P ((PΣ Integer , Integer),Store Integer)

6. Monadic Parameters for Abstract Abstract
Machines

In Section 5 we have demonstrated how to restore a simple collect-
ing semantics from the monadically-parametrized semantic inter-
face, presenting a StorePassing monad and an analysis with do-
main P ((PΣ Integer , Integer),Store Integer). More complex
analyses differ from this simple analysis in a number of aspects.
In this section, we will discuss how our StorePassing monad and
CPSInterface and Collecting instances can be abstracted further
to accomodate this. Specifically, we show how to control polyvari-
ance, store representation, abstract counting, abstract garbage col-
lection and store cloning.

5 In the present implementation, we allow the time component to grow
infinitely for simplicity, so in principle some implementation of the analysis
may not terminate, which can be restricted by modifying the function tick .

| {z }
(P⌃ Addr)⇥ Time ⇥ (Store Addr)

where Addr = Integer

Time = Integer

a program
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