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Assigning Types To Programs
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• Well-typed programs cannot go wrong 

• R. Milner, 1978

• Well-typed programs cannot get stuck

•  A. Wright and M. Felleisen, 1992

• Well-typed programs cannot be blamed

• P.  Wadler, 2009
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A Simple Language
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6 INTRODUCTION AND PROBLEM STATEMENT

Expressions e ::= n | x | λx : τ.e | e e

Numbers n ::= number

Values v ::= n | λx : τ.e
Types τ ::= num | τ → τ
Typing environments Γ ::= /0 | Γ,x : τ

Syntax

(t-var)
(x : τ) ∈ Γ

Γ # x : τ
(t-lam)

Γ, x : τ1 # e : τ2

Γ # λx : τ1.e : τ1 → τ2

(t-app)

Γ # e1 : τ1 → τ2

Γ # e2 : τ1

Γ # e1 e2 : τ2
(t-num)

Γ # number : num

Type checking rules

Figure 1.1: Syntax and Church-style type system of the simply typed lambda calculus.

A well-designed type system makes a tradeoff between the expressiveness of its
definition and the effectiveness of its implementation. The goal of this work is to
bridge this gap and establish a systematic transition from an expressive definition to
an effective implementation.

1.1 Type Checking as Program Semantics

Traditionally, type systems are described as collections of logical inference rules
that are convenient to reason about. Such a representation is, however, not quite
suitable to observe the process of type inference or type checking, which makes the
debugging and optimization of typing algorithms complicated. In order to provide
a more operational view to the procedure of checking and inference types, one can
recall that type systems are often referred to as static program semantics. So, in fact,
a type assignment procedure is just a way of thinking of what a program should do in
terms of its types as opposed to expressions and values.

We start developing this simple observation by considering a type-checking procedure
for the simply typed lambda calculus (STLC) as our running example. In STLC
the only values are lambda-abstractions of the form λx : τ.e, variables or numeric
literals, and expressions are either values or applications. Figure 1.1 describes the
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Another ill-typed program
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Figure 1.2: A sequence of type-checking reductions for an ill-typed term (1.1).

well-known typing rules for Church monomorphic static semantics of STLC [31].
Computationally, such a model, implemented straightforwardly in a functional
programming language, corresponds to a recursive descent over the inductively-
defined language syntax, where a given expression is recursively traversed, so its type
is derived when no typing errors occur. In the case of a typing error, however, it
might be hard to track the true origin of the type error. For example, consider a small
ill-typed program in STLC:

λx : num → num. λy : num. x y (λz : num. x z) (1.1)

From the code, it might not be immediately clear why type checking is going to fail.
Even more, the implementation of typing rules from Figure 1.1 as a recursive descent,
without auxiliary instrumentation for debugging (e.g., logging), does not keep track
of well-typed parts of the program that have been checked already. It is not clear, for
instance, what steps have been taken before the type error occurred and which parts
of the program have been typed successfully.

In order to remedy the problem of being able to reason about computational aspects,
we need to pick more algorithmic representations of the type checking procedure.
Below, we consider two alternative formalisms of type checking: a reduction

semantics and an abstract machine.

1.1.1 Reduction semantics for stepping through the type
checking

A reduction semantics for type checking was proposed initially by Kuan et al. [120].
Defined as a set of term-reduction rules, such a term-rewriting system gives an
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Type Checking via Inference Rules
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Figure 1.2: A sequence of type-checking reductions for an ill-typed term (1.1).

well-known typing rules for Church monomorphic static semantics of STLC [31].
Computationally, such a model, implemented straightforwardly in a functional
programming language, corresponds to a recursive descent over the inductively-
defined language syntax, where a given expression is recursively traversed, so its type
is derived when no typing errors occur. In the case of a typing error, however, it
might be hard to track the true origin of the type error. For example, consider a small
ill-typed program in STLC:

λx : num → num. λy : num. x y (λz : num. x z) (1.1)

From the code, it might not be immediately clear why type checking is going to fail.
Even more, the implementation of typing rules from Figure 1.1 as a recursive descent,
without auxiliary instrumentation for debugging (e.g., logging), does not keep track
of well-typed parts of the program that have been checked already. It is not clear, for
instance, what steps have been taken before the type error occurred and which parts
of the program have been typed successfully.

In order to remedy the problem of being able to reason about computational aspects,
we need to pick more algorithmic representations of the type checking procedure.
Below, we consider two alternative formalisms of type checking: a reduction

semantics and an abstract machine.

1.1.1 Reduction semantics for stepping through the type
checking

A reduction semantics for type checking was proposed initially by Kuan et al. [120].
Defined as a set of term-reduction rules, such a term-rewriting system gives an
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Figure 1.3: A sequence of abstract machine steps for an ill-typed term.

1.1.2 Abstract machine for context exploration and error
recovery

When type-checking a program, one wants the type errors to be detected as early
as possible. At the same time, the type checker should not fail after the first error:
it should instead report it and recover to examine the rest of the program. As we
have seen in the previous example, a reduction semantics for type checking, while it
succeeds in depicting the sequence of steps during type checking, it is not particularly
convenient for observing the remaining type computations after a type error has
occurred.

In order to address this issue, we pick another operational formalism for type
checking: a small-step SEC machine. The machine is a state transition system that
deterministically maps one control triple to another. It is inspired by Landin’s SECD
formalism [121, 56], but lacks the last component of its control state—D, which
we do not need, since there is no “dump” of the control flow in our machine. The
control state of the machine consists of three components (registers): S—a stack for
inferred types, E—a type environment binding variables with their types and C—a
stack of control components, driving the machine. Given a control state, there are
three possible scenarios how the machine can act:

1. The machine makes a step by mapping a state deterministically to another state,
if a matching rule exists in the machine’s semantics.

1We implemented the reduction strategy for type checking of STLC in PLT Redex framework [76], so
the syntax of expressions and types is slightly different from the one in Figure 1.1. The full implementation
can be found in Section A.1 of Appendix A.
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it should instead report it and recover to examine the rest of the program. As we
have seen in the previous example, a reduction semantics for type checking, while it
succeeds in depicting the sequence of steps during type checking, it is not particularly
convenient for observing the remaining type computations after a type error has
occurred.

In order to address this issue, we pick another operational formalism for type
checking: a small-step SEC machine. The machine is a state transition system that
deterministically maps one control triple to another. It is inspired by Landin’s SECD
formalism [121, 56], but lacks the last component of its control state—D, which
we do not need, since there is no “dump” of the control flow in our machine. The
control state of the machine consists of three components (registers): S—a stack for
inferred types, E—a type environment binding variables with their types and C—a
stack of control components, driving the machine. Given a control state, there are
three possible scenarios how the machine can act:

1. The machine makes a step by mapping a state deterministically to another state,
if a matching rule exists in the machine’s semantics.

1We implemented the reduction strategy for type checking of STLC in PLT Redex framework [76], so
the syntax of expressions and types is slightly different from the one in Figure 1.1. The full implementation
can be found in Section A.1 of Appendix A.
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(fib-1)
1 ⇓fib 1

(fib-2)
2 ⇓fib 1

(fib-n)
(n−1) ⇓fib v1 (n−2) ⇓fib v2

n ⇓fib v1 + v2

Figure 2.7: Natural semantics of Fibonacci numbers computation

The result stack component is passed along function calls as an extra parameter. It
stores intermediate values after they have been computed but before they are used.
Evaluating an expression leaves its result on top of the data stack. Function calls,
therefore, expect to find their argument and the to-be-called function on top of this
data stack. In the case of nested calls, the immutable part of the stack is saved by the
caller, whereas, a callee is invoked with a reduced or fresh stack.

Control stack extraction As has been pointed out, the result of defunctionalizing
a program in CPS is a data type representing continuations that typically has a
stack structure, reminiscent of the Zipper or continuations of a CEK machine. In
our transformations, we make this structure explicit by refactoring the result of
defunctionalization into a stack and passing it along to function calls as an extra
argument.

2.4 Pulling it All Together: Inter-Deriving Seman-
tics for Fibonacci Numbers

In the concluding section of this chapter we put all presented components together
and demonstrate the interplay between different semantics and interpreters on a toy
example—Fibonacci numbers.

Big-step semantics for Fibonacci numbers

When presenting Fibonacci numbers, one usually does it in the form of a recurrent
equation. Such an equation can be presented as a “semantics”, whose inputs are just
natural numbers (Figure 2.7). Armed with the knowledge about operational semantics
from Section 2.1.3, the reader can easily recognize that this definition is expressed
using the big-step operational formalism.
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Our goal is to provide a small-step stack-based register abstract machine to compute
Fibonacci numbers. In the subsequent sections we show how to do this by employing
functional correspondence. At each stage of the transformation we increase the index
of the function fib. Parts of the code essential for each derivation are highlighted by
grey boxes .

Initial implementation

Our first step is to implement the formalism from Figure 2.7 in the form of a recursive
evaluator in Standard ML, which brings us to the following definition.

fun fib0 n

= if n = 1 orelse n = 2 then 1

else let val v1 = fib0 (n - 1)

val v2 = fib0 (n - 2)

in v1 + v2 end

Extracting a result stack

We rewrite the procedure fib0 in a way that fixes the order between the computed
intermediate results v1 and v2 by replacing local variables by a result stack passed as
an extra parameter.

fun fib_stack (s: int list , n: int)

= if n = 1 orelse n = 2 then 1 :: s

else let val s1 = fib_stack (s, n - 1)

val s2 = fib_stack (s1, n - 2)

in case s2 of

v1 :: v2 :: s3 => (v1 + v2) :: s3

end

fun fib1 n = fib_stack (nil, n)

The result is a callee-save, explicit stack-threading evaluator [56].

CPS transformation

Our evaluator fib_stack has a number of non-tail calls to itself:

Example: Semantics of Fibonacci Numbers
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fun fib_stack (s: int list , n: int)

= if n = 1 orelse n = 2 then 1 :: s

else let val s1 = fib stack (s, n - 1)

val s2 = fib stack (s1, n - 2)

in case s2 of

v1 :: v2 :: s3 => (v1 + v2) :: s3

end

fun fib1 n = fib_stack (nil, n)

We turn them into tail calls by employing the CPS transformation (see Section 2.3.1).
The CPS-transformed evaluator now looks as follows:

fun fib_cps (s, n, k)

= if n = 1 orelse n = 2 then k (1 :: s)

else fib_cps (s, n - 1, fn s1 =>

fib_cps (s1, n - 2, fn s2 =>

case s2 of

v1 :: v2 :: s3 => k ((v1 + v2) :: s3)))

fun fib2 n = fib_cps (nil, n, fn (x :: ) => x )

Defunctionalization

After we have CPS-transformed our evaluator, we see a number of anonymous
functions representing continuations. We turn these continuations into a first-order
datatype by employing defunctionalization (see Section 2.3.3):

datatype cont = CONT_MT

| CONT_FIB1 of int * cont

| CONT_FIB2 of cont

fun fib_defun (s, n, C)

= if n = 1 orelse n = 2 then continue (1 :: s, C)

else fib_defun (s, n - 1, CONT FIB1 (n, C) )

and continue (s, CONT MT )

= (case s of (x :: _) => x)

| continue (s, CONT FIB1 (n, C) )

= fib_defun (s, n - 2, CONT FIB2 C )

| continue (s, CONT FIB2 C )

= case s of (v1 :: v2 :: s3) => continue ((v1 + v2) :: s3, C)

fun fib3 n = fib_defun (nil, n, CONT MT )
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Unifying control

The result of defunctionalization is used by the function continue to dispatch calls.
The number component is used for dispatch by the function fib_defun. Our next
transformation is control unification: we provide a function fib_defun’ and a
datatype cont’ that implement dispatch on both the structure of integer and the
structure of a continuation:

datatype cont ’ = CONT_MT ’

| CONT_FIB1 ’ of int * cont ’

| CONT_FIB2 ’ of cont ’

| NUM’ of int * cont ’

fun fib_defun ’ (s, NUM’ (n, C) )

= if n = 1 orelse n = 2 then continue1 (1 :: s, C)

else fib_defun ’ (s, NUM’ (n - 1, CONT_FIB1 ’ (n, C)))

and continue1 (s, CONT MT’ )

= (case s of (x :: _) => x)

| continue1 (s, CONT FIB1’ (n, C) )

= fib_defun ’ (s, NUM’ (n - 2, CONT_FIB2 ’ C))

| continue1 (s, CONT FIB2’ C )

= case s of (v1 :: v2 :: s3) => continue1 ((v1 + v2) :: s3, C)

fun fib4 n = fib_defun ’ (nil, NUM’ (n, CONT_MT ’))

Introducing a control stack

The enhanced continuation data type cont’ has a list-like structure with three
constructors taking arguments and CONT_MP playing the role of nil. Let’s turn it into
a traditional ML-style list by introducing a dedicated data type control_element

for control elements. The cont’ data type then turns into a control stack, which is
depicted by the following implementation.
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datatype control_element = NUM of int

| CF1 of int

| CF2

fun fib_control (s, NUM n :: C )

= if n = 1 orelse n = 2 then fib_control (1 :: s, C)

else fib_control(s, NUM (n - 1) :: CF1 n :: C)

| fib_control (s, CF1 n :: C )

= fib_control (s, NUM (n - 2) :: CF2 :: C)

| fib_control (s, CF2 :: C )

= (case s of (v1 :: v2 :: s3) => fib_control ((v1 + v2) :: s3, C))

| fib_control (s, nil )

= (case s of (x :: _) => x)

fun fib5 n = fib_control (nil, NUM n :: nil)

From a big-step to a small-step abstract machine

One can notice that the function fib_control in the previous section is tail-recursive,
i.e., all the calls it performs are tail calls to itself. Such a function is a candidate for
a lightweight separation, which yields the transition function step and driver loop
iterate.

type state = int list * control_element list

(* step : state -> state *)

fun step ( s, NUM 1 :: C )

= (1 :: s, C)

| step ( s, NUM 2 :: C )

= (1 :: s, C)

| step ( s, NUM n :: C )

= (s, NUM (n - 1) :: CF1 n :: C)

| step (s, CF1 n :: C )

= (s, NUM (n - 2) :: CF2 :: C)

| step ( v1 :: v2 :: s3, CF2 :: C )

= ((v1 + v2) :: s3, C)

(* step : state -> int *)

fun iterate (v :: _, nil)

= v

| iterate (s, C)

= iterate (step (s, C))

(* fib6 : int -> int *)

fun fib6 n = iterate (nil, NUM n :: nil)
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〈S, Num(1) :: C〉 ⇒SCfib
〈1 :: S, C〉

〈S, Num(2) :: C〉 ⇒SCfib
〈1 :: S, C〉

〈S, Num(n) :: C〉 ⇒SCfib
〈S, Num(n−1) :: CF1(n) :: C〉

〈S, CF1(n) :: C〉 ⇒SCfib
〈S, Num(n−2) :: CF2 :: C〉

〈v1 :: v2 :: S, CF2 :: C〉 ⇒SCfib
〈(v1 + v2) :: S, C〉

Figure 2.8: A small-step abstract machine for Fibonacci numbers

Based on the correspondence described in Section 2.1.5 and a shape of the function
step, we can easily extract the definition of a small-step operational semantics,
corresponding to an abstract machine with a two-component state. The formal
descriptions of this machine is presented in Figure 2.8. The machine is reminiscent
of Landin’s SECD machine with only two components: a result stack S and a control
stack C. This formal definition ends our derivation.
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fun fib6 n = iterate (nil, NUM n :: nil)



Functional Correspondence, applied

• Evaluators with computational effects [Ager-al:TCS05]

• Object calculi inter-derivation [Danvy-Johannsen:JCSS10]

• Landin’s SECD machine [Danvy-Millikin:LMCS08]

• Abstract machine for call-by-need lambda calculus [Ager-al:IPL04, Danvy-al:FLOPS10]

• Formalizing semantics of Scheme [Biernacka-Danvy:LNCS5700]

• Abstract Interpretation-based analyses [VanHorn-Might:ICFP10]

• ...
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Employed Program Transformations

• CPS Transformation

• Direct-style 
transformation

• Defunctionalization

• Refunctionalization

• Transition compression

• Lightweight Fusion

• Lambda Lifting

• Closure Conversion

• Control Stack Extraction

• Refocusing



The Resulting Derivation
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Figure 1.4: Inter-derivation of type-checking semantic artifacts.
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Summary

1. Type checking is a computation over a program’s syntax; 
its semantics may be described in different ways;

2. Different formalisms and corresponding implementations might be used, 
but equivalence between them should be proved;

3. Functional correspondence makes it possible to derive a family of 
algorithms for type checking, rather than invent them from scratch;

4. A tool-chain of program transformations is applied 
to derive those algorithms;

5. All derived semantics correspond to each other by construction.



Contributions I

1. A mechanical correspondence between 
type checking via reductions and 
type checking via evaluation

2. A mechanical correspondence between 
type checking via evaluation and 
type checking via an abstract machine

3. A family of novel, semantically equivalent  artifacts 
for type checking

4. A proof-of-concept implementation of the derivation in 
Standard ML and PLT Redex, available at 
http://github.com/ilyasergey/typechecker-transformations

https://github.com/ilyasergey/typechecker-transformations
https://github.com/ilyasergey/typechecker-transformations


Applications

1. Type debugging

• Figuring out what has gone wrong during type checking

2. Incremental type checking

• Since a type checker is just an interpreter, the usual 
memoization techniques can be applied

3. Conservative type checking via abstract interpretation

• Can be applied for effect inference systems, e.g., strictness 
analysis in the form of a type system



Future Work I

1. Handling type system evolution

• Transformations should not be re-done again

2. Tool support for transformations

• The transformations should be automated

3. Mechanization of the metatheory

• So far, done only for some of the transformations 
from the toolchain
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Well-Typed Programs Still Don’t Go Wrong
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Domain-Specific Type Systems
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Some Domain-Specific Type Systems

• NonNull Types  [Fändrich-Leino:OOPSLA03] 

• Types for Information Flow Control [Myers:POPL99, Hunt:POPL06 ]

• Uniqueness Type Systems  [Aldrich-al:OOPSLA02, Boyland:SPE01]

• Universe Types [Cunningham-al:FMCO07]

• Ownership Types [Clarke-al:OOPSLA98]



A program should not run,
when something is actually Wrong.

A program should be executable,
even if it might possibly go Wrong.

The Problem

but



A Solution

Gradual Domain-Specific Type Systems

Inspired by Gradual Types of J. Siek, W. Taha.



Gradual Domain-Specific Type Systems
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Gradual Domain-Specific Type Systems
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This Work

Making 
a Domain-Specific Type System

Gradual

A Case Study



• data-race freedom [Boyapati-Rinard:OOPSLA01]

• disjointness of effects  [Clarke-Drossopoulou:OOPSLA02]

• various confinement properties [Vitek-Bokowski:OOPSLA99]

• modular reasoning about aliasing [Müller:VSTTE05]

• effective memory management [Boyapati-et-al:PLDI03]

Ownership Types



• Verbosity of ownership types is a problem 
for practical adaptation

• Sometimes, the imposed invariant is too restrictive

• A type debugging support would require 
to trace the execution of programs

But also



Operational Aspects of Type Systems
Inter-Derivable Semantics of Type Checking

Gradual Types for Object Ownership

and



Based on the Publications

• Ilya Sergey and Dave Clarke
Gradual Ownership Types 
In proceedings of the 21th European Symposium on Programming (ESOP 2012), 
April 2012.  Volume 7211 of LNCS, Springer.

• Ilya Sergey and Dave Clarke  
Gradual Ownership Types, the Accompanying Technical Report 
CW Reports, volume CW613. KU Leuven. December 2011.

• Ilya Sergey and Dave Clarke 
Towards Gradual Ownership Types 
In International Workshop on Aliasing, Confinement and Ownership (IWACO 2011). 
July 2011.



Ownership



Merida, may I 
borrow your bow?Dad, shall I use 

your cloak?

Granny, may I use
your seal?

Yes, shoot!

It’s yours.

Of course, 
darling.

Uncle Gru, may I use
your wonderful car?

No way!
We’re not so related.



class List { 
  Link head; 
  void add(Data d) {
    head = new Link(head, d);
  } 
  Iterator makeIterator() { 
    return new Iterator(head);
  }
}
class Link { 
  Link next; 
  Data data; 
  Link(Link next, Data data) { 
    this.next = next; this.data = data;
  }
}
class Iterator { 
  Link current; 
  Iterator(Link first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}

owner
Data Data

List

Link Link

Iterator

Reference

Ownership Types
(a bit more formally)

Clarke, Noble, Potter, OOPSLA ‘98

*



owner
Data Data

List

Link Link

Iterator

Reference
Encapsulation Boundary

class List { 
  Link head; 
  void add(Data d) {
    head = new Link(head, d);
  } 
  Iterator makeIterator() { 
    return new Iterator(head);
  }
}
class Link { 
  Link next; 
  Data data; 
  Link(Link next, Data data) { 
    this.next = next; this.data = data;
  }
}
class Iterator { 
  Link current; 
  Iterator(Link first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}

Ownership Types



owner
Data Data

List

Link Link

Iterator

Reference
Encapsulation Boundary
Illegal Reference

Ownership Types

class List { 
  Link head; 
  void add(Data d) {
    head = new Link(head, d);
  } 
  Iterator makeIterator() { 
    return new Iterator(head);
  }
}
class Link { 
  Link next; 
  Data data; 
  Link(Link next, Data data) { 
    this.next = next; this.data = data;
  }
}
class Iterator { 
  Link current; 
  Iterator(Link first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}



Ownership Types

owner
Data Data

List

Link Link

Iterator

Reference
Encapsulation Boundary
Illegal Reference

data

World

Owner

class List { 
  Link head; 
  void add(Data d) {
    head = new Link(head, d);
  } 
  Iterator makeIterator() { 
    return new Iterator(head);
  }
}
class Link { 
  Link next; 
  Data data; 
  Link(Link next, Data data) { 
    this.next = next; this.data = data;
  }
}
class Iterator { 
  Link current; 
  Iterator(Link first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}



Ownership Types

owner
Data Data

List

Link Link

Iterator

data

World

Owners-as-Dominators
(OAD)

class List { 
  Link head; 
  void add(Data d) {
    head = new Link(head, d);
  } 
  Iterator makeIterator() { 
    return new Iterator(head);
  }
}
class Link { 
  Link next; 
  Data data; 
  Link(Link next, Data data) { 
    this.next = next; this.data = data;
  }
}
class Iterator { 
  Link current; 
  Iterator(Link first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}



class List<owner, data> { 
  Link head<this, data>; 
  void add(Data<data> d) {
    head = new Link<this, data>(head, d);
  } 
  Iterator<this, data> makeIterator() { 
    return new Iterator<this, data>(head);
  }
}
class Link<owner, data> { 
  Link<owner, data> next; 
  Data<data> data; 
  Link(Link<owner, data> next, Data<data> data) { 
    this.next = next; this.data = data;
  }
}
class Iterator<owner, data> { 
  Link<owner, data> current; 
  Iterator(Link<owner, data> first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data<data> elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}

Ownership Types

owner
Data Data

List

Link Link

Iterator

data

World

Owners-as-Dominators
(OAD)



owner
Data Data

List

Link Link

Iterator

Reference
Encapsulation Boundary
Illegal Reference

data

World

Owner

class List<owner, data> { 
  Link head<this, data>; 
  void add(Data<data> d) {
    head = new Link<this, data>(head, d);
  } 
  Iterator<this, data> makeIterator() { 
    return new Iterator<this, data>(head);
  }
}
class Link<owner, data> { 
  Link<owner, data> next; 
  Data<data> data; 
  Link(Link<owner, data> next, Data<data> data) { 
    this.next = next; this.data = data;
  }
}
class Iterator<owner, data> { 
  Link<owner, data> current; 
  Iterator(Link<owner, data> first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data<data> elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}

The Essence of Ownership Types



class List<owner, data> { 
  Link head<this, data>; 
  void add(Data<data> d) {
    head = new Link<this, data>(head, d);
  } 
  Iterator<this, data> makeIterator() { 
    return new Iterator<this, data>(head);
  }
}
class Link<owner, data> { 
  Link<owner, data> next; 
  Data<data> data; 
  Link(Link<owner, data> next, Data<data> data) { 
    this.next = next; this.data = data;
  }
}
class Iterator<owner, data> { 
  Link<owner, data> current; 
  Iterator(Link<owner, data> first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data<data> elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}

The Essence of Ownership Types
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Can we implement 
the same intention with a 

fewer amount of annotations?



• Programmers may omit type annotations 
and run the program immediately

• Run-time checks are inserted to ensure type safety

• Programmers may add type annotations 
to increase static checking

• When all sites are annotated, 
all type errors are caught at compile-time

The Essence of Gradual Types



Gradual Ownership



Okay, you can have my car
and pretend it’s yours.

Nothing wrong will happen
as long as you’re careful with it.

But if you try to give it 
to someone else, I will know.

Yay!



Car ≡ Car<?, ?>

A syntactic type parametrized with owners:

Car<Gru, Dad_Of_Gru>

Gradual Ownership Types

Some owners might be unknown:

Car<?, Dad_Of_Gru>

Or even all of them:

Car



Type equality: types T1 and  T2 are equal: 

C<owner, outer> = C<owner, outer>

Type equality: types T1 and  T2 are consistent 

C<owner, ?> ~ C<?, outer>

T1 and T2  might correspond 
to the same runtime values



Subtyping:  T1 is a subtype of  T2 

C<owner, outer> ≤ D<owner>

class D<MyOwner> {...}

class C<Owner1, Owner2> extends D<Owner1> {...}

E;B � p ⇤ p⇧

(CON-REFL)

E;B � p
E;B � p ⇤ p

(CON-RIGHT)

E;B � p
E;B � ? ⇤ p

(CON-LEFT)

E;B � p
E;B � p ⇤?

(CON-DEPENDENT1)

E;B � p E;B � xc.i

E;B � p ⇤ xc.i

(CON-DEPENDENT2)

E;B � p E;B � xc.i

E;B � xc.i ⇤ p

E;B � t � t ⇧

(SUB-REFL)

E;B � t
E;B � t � t

(SUB-TRANS)

E;B � t � t ⇧ E;B � t ⇧ � t ⇧⇧

E;B � t � t ⇧⇧

(SUB-CLASS)

E;B � c ⇥⌦
class c �i⌃1..n⌦ extends c⇧ ri⌃1..n⇧ ⌦{. . .}

E;B � c ⇥⌦ � c⇧ ⇥(ri)i⌃1..n⇧ ⌦

E;B � t ⇤ t ⇧ E;B � t � t ⇧ E;B � t

(CON-TYPE)

E;B � c pi⌃1..n⌦ E;B � c qi⌃1..n⌦
pi ⇤ qi⌥i ⌃ 1..n

E;B � c pi⌃1..n⌦ ⇤ c qi⌃1..n⌦

(GRAD-SUB)

E;B � c ⇥⌦ � c⇧ ⇥⇧⌦
E;B � c⇧ ⇥⇧⌦ ⇤ c⇧ ⇥⇧⇧⌦
E;B � c ⇥⌦ � c⇧ ⇥⇧⇧⌦

(G-TYPE)

arity(c) = n
E;B � p1 ⇥ pi ⌥i ⌃ 1..n

E;B � c pi⌃1..n⌦

Figure 5: Type consistency and subtyping

Definition 3.1 (Well-formed typing environment). A typing environment E is well-formed if ⌅ is a partial
order on {r | r ⌃ dom(E)}.

3.3 Type consistency and subtyping
Types can be constructed from any class using any owner in scope (including an unknown owner “?”),
as long as the correct number of arguments are supplied and the owner (the first parameter), if present, is
provably consistently-inside all other parameters. The corresponding relation E;B � t is defined in Figure 5.
This is a relaxed requirement to ensure that the OAD property is maintained.

The type consistency relation answers the question: which pairs of static types could possibly cor-
respond to comparable run-time types? It allows the type checker to compare types with dependent and
unknown owners. Since two types sharing the same class name can differ in the owner substitutions, we de-
fine the type consistency relation ⇤ on types parametrized with partially known and dependent owners via
the rules in Figure 5 (the relation E;B � t ⇤ t ⇧). The definition of the subtyping is standard for parametrized
object-oriented type systems (Figure 5, E;B � t � t ⇧).

In order to eliminate non-determinacy from the type-checking algorithms we need to construct a rela-
tion that combines two kinds of subsumption of types: type consistency and subtyping. This relation is
used then in type rules whenever an implicit upcast is necessary Pierce (2002). Siek and Taha suggest a
way to design such consistent-subtyping relation for the calculus Ob<: of Abadi and Cardelli Abadi and
Cardelli (1996). However, the proposed approach handles structural rather than nominal subtyping. The
latter one is typical for Java-like languages and is the norm in mainstream object-oriented programming
languages.

If two types t = c ⇥⌦ and t ⇧ = c⇧ ⇥⇧⇧⌦ are related via the consistent-subtyping relation, i.e., t � t ⇧, they
can differ along both directions: the type consistency relation ⇤ and the subtyping relation �. This is

8
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Traditional Subtyping



class D<MyOwner> {...}

class C<Owner1, Owner2> extends D<Owner1> {...}

Gradual Subtyping

C<?, outer>  D<owner>.

D<owner>

C<?, outer>

D<?>

.

⇠
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Types can be constructed from any class using any owner in scope (including an unknown owner “?”),
as long as the correct number of arguments are supplied and the owner (the first parameter), if present, is
provably consistently-inside all other parameters. The corresponding relation E;B � t is defined in Figure 5.
This is a relaxed requirement to ensure that the OAD property is maintained.

The type consistency relation answers the question: which pairs of static types could possibly cor-
respond to comparable run-time types? It allows the type checker to compare types with dependent and
unknown owners. Since two types sharing the same class name can differ in the owner substitutions, we de-
fine the type consistency relation ⇤ on types parametrized with partially known and dependent owners via
the rules in Figure 5 (the relation E;B � t ⇤ t ⇧). The definition of the subtyping is standard for parametrized
object-oriented type systems (Figure 5, E;B � t � t ⇧).

In order to eliminate non-determinacy from the type-checking algorithms we need to construct a rela-
tion that combines two kinds of subsumption of types: type consistency and subtyping. This relation is
used then in type rules whenever an implicit upcast is necessary Pierce (2002). Siek and Taha suggest a
way to design such consistent-subtyping relation for the calculus Ob<: of Abadi and Cardelli Abadi and
Cardelli (1996). However, the proposed approach handles structural rather than nominal subtyping. The
latter one is typical for Java-like languages and is the norm in mainstream object-oriented programming
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Type-Directed Compilation
Runtime checks are inserted 

basing on the type information.

E;B � b : s

(T-NEW)

E;B � c�ri�1..n✏
E;B � new c�ri�1..n✏ : c�ri�1..n✏

(T-LKP)

E;B � z : c�⇥✏
Fc( f ) = t

E;B � z. f : ⇥z(t)

(T-LET)

E;B � b : t
E,x : fill(x, t);B � e : s

E;B � let x = b in e : s

(T-UPD)

E;B � z : c�⇥✏ Fc( f ) = t
E;B � y : s

E;B � s � ⇥z(t)
E;B � z. f = y : ⇥z(t)

(T-CALL)

E;B � y : s M T c(m) = (y⌥, t ⌃ t ⌥)
E;B � z : c�⇥✏ E;B � s � ⇥z(t)

⇥⌥ ⇥ ⇥�{y⌥  ⌃ y}
E;B � z.m(y) : ⇥⌥z(t ⌥)

(VAL-w)

E;B � � w : s � E
E;B � w : s

(VAL-NULL)

E;B � t
E;B � null : t

E � t ⌥ m(t y) {e} � P; e

(METHOD)

E,y : fill(y, t) � e : s E � s � t ⌥

E � t ⌥ m(t y) {e}

(PROGRAM)

� class j ⌦class j � P
E � e : t
E � P; e

E � c

(CLASS-OBJECT)

� class Object��1✏ { }

(CLASS)

E ⇥ �1 ⇧ world,(�1 ⇧ �i)i � 2..n,this : c��i�1..n✏
E � c⌥�⇥✏ owner(c��i�1..n✏) = owner(c⌥�⇥✏)

{ fi�1..m}↵dom(Fc⌥) = /0 E � t j�1..m E � methk�1..p

⌦ m � names(methk�1..p)
↵ dom(M T c⌥)

�
⇤

⇥

M T c(m)⇥ t ⌃ t ⌥
M T c⌥(m)⇥ t ⌥⌥ ⌃ t ⌥⌥⌥
t ⇥ ⇥(t ⌥⌥) t ⌥ ⇥ ⇥(t ⌥⌥⌥)

� class c��i�1..n✏ extends c⌥�⇥✏ {t j f j�1..m; methk�1..p}

Figure 6: Typing rules of JO?. Grayed parts mark explicit consistent-subtyping checks that may lead to the
insertion of dynamic checks.

illustrated by the diagram on the left:

C�owner✏

C�?,outer✏

�
⇤⇤⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

D�?✏ ⌅ �� D�owner,outer✏

C�?,outer✏
�

⇥⇥������������
⇤

⌅⌅

The “upper-left mediator” (the right part of the diagram) is a connecting link between two types. This
intuition is formalized via the rule (GRAD-SUB) in Figure 5.

The diagram on the right shows one possible way to define the � relation through the intermediate type
c⌥�⇥⌥⌥✏ such that the whole diagram commutes. According the definition of the type-consistent relation it
is easy to see that the class type of this mediator should be equal to c⌥. In fact, if c⌥ is a superclass of
class c, the necessary substitution can be computed in a straightforward way by just ascending the chain
of superclasses. The correspondence between “bottom-right” and “upper left” mediators is stated by the
following lemma:
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Gradual subtyping
might cause 

check insertion

Field update Method call

Method return



Gradual Typing and Compilation
(informally)

Theorem 1:
No unknown owners ⇒ no dynamic casts

Corollary :
No unknown owners ⇒ static invariant guaranty   

(And also, no runtime overhead and failed casts)

Theorem 2:
A (gradually) well-typed program is compiled 
into a (statically) well-typed program.



You convinced me that you’re not 
going to give my car to unknown people,

so I will not have to check it.



Theorem 3:
A (statically) well-typed program does not violate 
the OAD invariant but might fail on a dynamic check.

Corollary:
A gradually well-typed program, being compiled, 
does not violate the OAD invariant.

Type Safety Result
(informally)



Ok, that’s enough!
Give me the keys back!

Hey,  Astrid! 
I’ve just got my uncle’s car.
Do you want to try it out?



Implementation

• Implemented in JastAddJ [Ekman-Hedin:OOPSLA07]

• Extended JastAddJ compiler for Java 1.4

• 2,600 LOC (not including tests and comments)

• Check insertion ⇒ compilation warning

• Source-to-source translation



Experience

• Java Collection Framework (JDK 1.4.2)

• 46 source files, ~8,200 LOC

• Securing inner Entries of collections

• Questions addressed:

• How many annotations are needed minimally?

• What is the execution cost?

• How many annotations for full static checking?



Experience
• Minimal amount of annotations

• LinkedList - 17

• LinkedMap - 15

• Performance overhead

•  ~1.5-2 times (for extensive updates)

• Full migration

• LinkedList - yes, 34 annotations

• LinkedMap - no, because of static factory methods

• (best - 28 annotations)



Contributions II

1. A formalization of a gradual ownership type system and 
a type-directed compilation for a Java-like language 

• Proofs of safety result for type-directed compilation

2. An implementation of a translating compiler for gradual ownership types

• Supports full Java 1.4

• Available at http://github.com/ilyasergey/Gradual-Ownership 

3. A report on program migration using gradual ownership types

• Migrated several classes from Java Collection Framework 1.4.2

4. A discussion on gradualization of type systems for object ownership

https://github.com/ilyasergey/typechecker-transformations
https://github.com/ilyasergey/typechecker-transformations


Future Work II

1. Gradual ownership types in higher-order languages

• Introduced notion of dependent owners is similar to 
blame labels

2. Gradual ownership types meet shape and pointer analysis

• Imposed dynamic encapsulation invariant can be employed 
when inferring shape information of data structures

3. IDE Support

• Gradual compiler emits warning messages that can be used 
to indicate invariant violations statically
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And also



Types for Web Security

Semantics and Types for Safe Web Programming
A. Guha, PhD Thesis, 2012

• Secure contexts for JavaScript evaluation 
are modeled by sandboxes

• Sandboxes can be modeled as 
a type system, 
resulting in static verification wrap wrap(e)

e
eval

untyp
able

typable

typable

Gradual 

Untypable Forbidden 6=



Gradual Ownership Types
and Ownership Types Inference*

Gradual Ownership
Types

Ownership Types
Inference

Straightforward 
correspondence to the TS

Modular

Effective debugging
of type checking

Well-typed ~
full static safety

Minimal amount of 
annotations

No runtime overhead

+ -
+ -
+ -
- +

required optional

- +
* Huang-Milanova:IWACO11


