
The Scilla Journey:  
From Proof General to Thousands of Nodes

Ilya Sergey

ilyasergey.net

http://ilyasergey.net

The Technology

Prologue

Blockchain Consensus

blockchain
consensus protocol

• transforms a set of transactions into  
a globally-agreed sequence

• “distributed timestamp server” (Nakamoto 2008)

transactions
can be anything

Blockchain Consensus

Blockchain Consensus

Blockchain Consensus

GB = genesis block

• Executed locally, alter the replicated state.

• Simplest variant: transferring funds from A to B,  
 consensus: no double spending.

• More interesting: deploying and executing replicated computations

Smart Contracts

Transactions

| {z }

Smart Contracts (Account Model)
• Stateful mutable objects replicated via a consensus protocol

• State typically involves a stored amount of funds/currency

• One or more entry points: invoked reactively by a client transaction

• Main usages:
• crowdfunding and ICO
• multi-party accounting
• voting and arbitration
• puzzle-solving games with distribution of rewards

• Supporting platforms: Ethereum, Tezos, Concordium, Libra, Cardano*,…

contract Accounting {
 /* Define contract fields */
 address owner;
 mapping (address => uint) assets;

 /* This runs when the contract is executed */
 function Accounting(address _owner) {
 owner = _owner;
 }

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }
}

Mutable fields

Constructor

Entry point

• msg argument is implicit
• funds accepted implicitly
• can be called as a function 

from another contract

contract Accounting {
 /* Define contract fields */
 address owner;
 mapping (address => uint) assets;

 /* This runs when the contract is executed */
 function Accounting(address _owner) {
 owner = _owner;
 }

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }

 function stealMoney() {
 if (msg.sender == owner) { owner.send(this.balance) }
 }
}

The Givens of Smart Contracts

Deployed in a low-level language

Must be Turing-complete

Code is law

Uniform compilation target

Run arbitrary computations

What else if not the code?

Difficult for audit and verification

Complex semantics, exploits

One should understand the code  
to understand the contract

The Givens of Smart Contracts

Deployed in a low-level language

Must be Turing-complete

Code is law

Sending a Message or Calling?
contract Accounting {
 /* Other functions */

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }

 function withdrawBalance() {
 uint amount = assets[msg.sender];
 if (msg.sender.call.value(amount)() == false) {
 throw;
 }
 assets[msg.sender] = 0;
 }
}

contract Accounting {
 /* Other functions */

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }

 function withdrawBalance() {
 uint amount = assets[msg.sender];
 if (msg.sender.call.value(amount)() == false) {
 throw;
 }
 assets[msg.sender] = 0;
 }
}

Can reenter and 
withdraw again

Sending a Message or Calling?

What’s the Right Model  
of thinking  

about Smart Contracts?

The Analogy

Chapter I

A Concurrent Perspective  
on Smart Contracts

Ilya Sergey Aquinas Hobor

7 April 2017
1st Workshop on Trusted Smart Contracts

Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.

Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.

Reentrancy (Un)cooperative multitasking

call/send context switching

contract state object state—

—

—

Reentrancy and multitasking

1010 // Burn DAO Tokens

1011 Transfer(msg.sender, 0, balances[msg.sender]);
1012 withdrawRewardFor(msg.sender); // be nice, and get his rewards

1013 totalSupply -= balances[msg.sender];
1014 balances[msg.sender] = 0;
1015 paidOut[msg.sender] = 0;
1016 return true;
1017 }

Fig. 2. DAO code fragment [23].

Unfortunately, the DAO internal state still indicates that the account is funded
since its account balance has not yet been zeroed out in line 1014. Accordingly,
a malicious msg.sender can initiate a second withdrawal by calling back into the
DAO contract, which will in turn send a second payment when control reaches
line 1012 again. In fact, the malicious msg.sender can then initiate a third, fourth,
etc. withdrawal, all of which will result in payment. Only at the end is his account
zeroed out, after being paid many multiples of its original balance.

Previous analyses of this bug have indicated that the problem is due to re-
cursion or unintended reentrancy. In a narrow sense this is true, but in a wider
sense what is going on is that sequential code is running in what is in many
senses a concurrent environment.

3 Interference and Synchronization

Having showed that concurrent-type behavior exists and causes problems in
real contracts on the Blockchain, we will now examine other ways that our
concurrent-objects-as-contracts viewpoint can help us understand how contracts
can behave on the blockchain.

3.1 Atomic updates in shared-memory concurrency

Figure 3 depicts a canonical example (presented in a Java 8-like pseudocode) of
a wrongly used concurrent object, which is supposed to implement an “atomic”
counter with methods get and set. The implementation of the concurrent
counter on the left is obviously thread-safe (i.e., data race-free), thanks to the use
of synchronized primitives [17]. What is problematic, though, is how an instance
of the Counter class is used in the multithreaded client code on the right.

Specifically, with two threads running in parallel and their operations inter-
leaving, the call to incr() within thread2’s body could happen, for instance,
between the assignment to a and the call c.set(a + 1) within the incr() call of
thread1. This would invalidate the condition in the following assert statement,
making the overall program fail non-deterministically for a certain execution!

The issue arises because the implementation of incr() on top of Counter does
not provide the atomicity guarantees, expected by the client code. Specifically,
the code on the right is implemented in the assumption that there will be no

interference between the statements of incr(), hence the counter c is going to be
incremented by 1, and a and b will be the same by the end of its execution. Indeed,

6

Reentrancy and multitasking

DAO: withdrawRewardFor()

Manipulation with DAO_recipient.call.value(…):

balances[msg.sender] = 0

1010 // Burn DAO Tokens

1011 Transfer(msg.sender, 0, balances[msg.sender]);
1012 withdrawRewardFor(msg.sender); // be nice, and get his rewards

1013 totalSupply -= balances[msg.sender];
1014 balances[msg.sender] = 0;
1015 paidOut[msg.sender] = 0;
1016 return true;
1017 }

Fig. 2. DAO code fragment [23].

Unfortunately, the DAO internal state still indicates that the account is funded
since its account balance has not yet been zeroed out in line 1014. Accordingly,
a malicious msg.sender can initiate a second withdrawal by calling back into the
DAO contract, which will in turn send a second payment when control reaches
line 1012 again. In fact, the malicious msg.sender can then initiate a third, fourth,
etc. withdrawal, all of which will result in payment. Only at the end is his account
zeroed out, after being paid many multiples of its original balance.

Previous analyses of this bug have indicated that the problem is due to re-
cursion or unintended reentrancy. In a narrow sense this is true, but in a wider
sense what is going on is that sequential code is running in what is in many
senses a concurrent environment.

3 Interference and Synchronization

Having showed that concurrent-type behavior exists and causes problems in
real contracts on the Blockchain, we will now examine other ways that our
concurrent-objects-as-contracts viewpoint can help us understand how contracts
can behave on the blockchain.

3.1 Atomic updates in shared-memory concurrency

Figure 3 depicts a canonical example (presented in a Java 8-like pseudocode) of
a wrongly used concurrent object, which is supposed to implement an “atomic”
counter with methods get and set. The implementation of the concurrent
counter on the left is obviously thread-safe (i.e., data race-free), thanks to the use
of synchronized primitives [17]. What is problematic, though, is how an instance
of the Counter class is used in the multithreaded client code on the right.

Specifically, with two threads running in parallel and their operations inter-
leaving, the call to incr() within thread2’s body could happen, for instance,
between the assignment to a and the call c.set(a + 1) within the incr() call of
thread1. This would invalidate the condition in the following assert statement,
making the overall program fail non-deterministically for a certain execution!

The issue arises because the implementation of incr() on top of Counter does
not provide the atomicity guarantees, expected by the client code. Specifically,
the code on the right is implemented in the assumption that there will be no

interference between the statements of incr(), hence the counter c is going to be
incremented by 1, and a and b will be the same by the end of its execution. Indeed,

6

DAO: withdrawRewardFor()

Manipulation with DAO_recipient.call.value(…):

Inv(contract.state, balance)

c.atomicMethod()

Environment

c.atomicMethod() c.atomicMethod()

Environment

Inv Inv Inv Inv Inv Inv

Inv balances[msg.sender] = 0

Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.

Reentrancy (Un)cooperative multitasking

call/send context switching

contract state object state—

—

—

Invariants Atomicity—

Querying an Oracle

Transaction 1
c.prepareRequest()

o.raiseEvent()

o.respond()

c.__callback(data)

Transaction 2

Querying an Oracle

Transaction 1
c.prepareRequest()

o.raiseEvent()

o.respond()

c.__callback(data)

Transaction 2

Block N Block N+M

function enter() {
 if (msg.value < 50 finney) {
 msg.sender.send(msg.value);
 return;
 }
 warrior = msg.sender;
 warriorGold = msg.value;
 warriorBlock = block.number;
 bytes32 myid =
 oraclize_query(0,”WolframAlpha","random number between 1 and 9");
}

BlockKing via Oraclize

function __callback(bytes32 myid, string result) {
 if (msg.sender != oraclize_cbAddress()) throw;
 randomNumber = uint(bytes(result)[0]) - 48;
 process_payment();
}

Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.

Reentrancy (Un)cooperative multitasking

call/send context switching

contract state object state—

—

—

Invariants Atomicity—

Non-determinism data races—

Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.

Reentrancy (Un)cooperative multitasking

call/send context switching

contract state object state—

—

—

Invariants Atomicity—

Non-determinism data races—

Can we avoid those with  
better Programming Language design?

Facilitate Reasoning about  
High-Level Behaviour of Contracts 

(as of Concurrent Objects)

The Goal of PL Design for
Smart Contracts

The Prototype

Chapter 2

• State-of-the art verification framework
• Based on dependently typed functional language
• Interactive — requires a human in the loop
• Very small trusted code base
• Used to implement fully verified

• compilers
• operating systems
• distributed protocols (including blockchains)

Coq Proof Assistant

The Model

• Contracts are (infinite) State-Transition Systems

• Interaction between contracts via sending/receiving messages

• Messages trigger (effectful) transitions (sequences of statements)

• Most computations are done via pure expressions

• Contract's state is immutable parameters, mutable fields, balance

Account X

Contract Execution Model

m6Contract C

Contract D Contract E

Account YAccount Z

Account X
m1

m2

m3

m4

m5

Contract Execution Model

ConfC Conf0C

Conf0DConfD

ConfE Conf0E

Conf00C
m1

m2

m4

m6

Final contract states

Fixed MAX length of call sequence

z}|{
Contract Execution Model

ConfC Conf0C

Conf0DConfD

ConfE Conf0E

Conf00C
m1

m2

m4

m6

Contract Execution Model

Working Example: Crowdfunding contract

• Parameters: campaign's owner, deadline (max block), funding goal

• Fields: registry of backers, "campaign-complete" boolean flag

• Transitions:

• Donate money (when the campaign is active)

• Get funds (as an owner, after the deadline, if the goal is met)

• Reclaim donation (after the deadline, if the goal is not met)

Q since P as long R ≝  
 ∀ conf conf′, conf →R* conf′, P(conf) ⇒ Q(conf, conf′)

•“Token price only goes up”

•“No payments accepted after the quorum is reached”

•“No changes can be made after locking”

•“Consensus results are irrevocable”

ConfC Conf0C Conf00C
m m′

P holds here Q holds here

Temporal Properties

R holds for intermediate messages

z}|{

Temporal Properties
Q since P as long R ≝  
 ∀ conf conf′, conf →R* conf′, P(conf) ⇒ Q(conf, conf′)

Definition since_as_long
 (P : conf ! Prop)
 (Q : conf ! conf ! Prop)
 (R : bstate * message ! Prop) :=
 ∀ sc conf conf',
 P st !
 (conf ⇝ conf' sc) ⋀ (∀ b, b ∈ sc ! R b) !
 Q conf conf'.

Specifying properties of Crowdfunding

• Lemma 1: Contract will always have enough balance to refund everyone.

• Lemma 2: Contract will not alter its contribution records.

• Lemma 3: Each contributor will be refunded the right amount,  
 if the campaign fails.

• Lemma 2: Contract will not alter its contribution records.

Definition donated (b : address) (d : amount) conf :=
 conf.backers(b) == d.

Definition no_claims_from (b : address)
 (q : bstate * message) :=
 q.message.sender != b.

Lemma donation_preserved (b : address) (d : amount):
 since_as long (donated b d) (fun c c' => donated b d c')
 (no_claims_from b).

b donated amount d

b didn’t try to claim

b’s records are preserved by the contract

The Proposal

Chapter 3

Sure, I’d love to!

We’re building this cool sharded blockchain.  
 

Would you like to help us a language for
provably safe smart contracts?

In fact, I might already
have what you need…

… except you cannot
really run in it yet.

The Wish-List
• Safety: basic fault avoidance checked ensured deployment

• Minimalism: simple to formalise and maintain

• Expressiveness: possible to implement common idioms

• Verification friendliness: tractable for automated and
mechanised reasoning

• Performance: should not slow down the system’s throughput 

The Essence of Smart Contracts

Simple Computations

State Manipulation

Effects

Communication

self-explanatory

changing contract's fields

accepting funds, logging events

sending funds, calling other contracts

Computations

State Manipulation

Effects

Communication

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Verified Specification

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Verified Specification

abstraction level

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Scilla

Computations

State Manipulation Effects

Communication

Verified Specification

Verified Specification

Principled model for computations

Not Turing-complete

Explicit Effects

Communication

System F with small extensions

Only primitive recursion/iteration

State-transformer semantics

Contracts are autonomous actors

Types
Safer Smart Contract Programming with Scilla 185:5

(signed integers) int ::= i32 | i64 | i128 | i256

(unsigned integers) uint ::= u32 | u64 | u128 | u256

(byte strings) bst ::= bystrx n | bystr

(primitive types) pt ::= int | uint | bst |

string | bnum | msg

(algebraic types) D ::= unit | bool | nat | option |

pair | list | U

(general Types) t ::= pt | map t t | t → t |

D t | α | forall α . t

(a) Types

(unit) unit ::= Unit

(booleans) bool ::= True | False

(Peano numbers) nat ::= Zero | Succ nat

(options) option α ::= None | Some α

(pairs) pair α1 α2 ::= Pair α1 α2
(lists) list α ::= Nil | Cons α

(variants) U α ::= C1 α | . . . | Cn α

(b) Algebraic data type definitions

(strings) bltstring ::= concat | substr | strlen | to_string

(blocks) bltbnum ::= blt | badd | bsub

(hashes) blthash ::= sha256 | keccak256 | ripemd160 | to_bystr | schnorr_verify | ecdsa_verify

(maps) bltmap ::= contains | put | get | remove | to_list | size

(numeric) bltnum ::= add | sub | mul | div | rem | pow

(integers) bltint ::= to_int32 | to_int64 | to_int128 | to_int256

(u. integers) bltuint ::= to_uint32 | to_uint64 | to_uint128 | to_uint256 | to_nat

(built-ins) blt ::= eq | bltstring | bltbnum | blthash | bltmap | bltnum | bltint | bltuint

(c) Built-in operations

(identifiers) i, c ::= alpha-numeric string

(Values) v ::= str :: string | κ :: int | υ :: uint | b :: bnum | bsx n s :: bystrx n | bs s :: bystr |

ms (str "→ v) :: msg | mp tk tv (vk "→ vv) :: map tk tv | d :: D t |

clo :: Value → EvalRes Value | tclo :: Type → EvalRes Value

(patterns) pat ::= _ | i | constr c pat

(Expressions) e ::= val v | var i | message (str "→ i) | constr c t i | builtin blt i |

let i = e1 in e2 | fun (i : t)⇒ e | app i ij | tfun α ⇒ e | inst i t |

match i pat ⇒ e | fix (i : t, e)

(d) Values and expressions

(statements) s ::= i1 ← i2 | i1 := i2 | i = e |

i1 [ik] := i2 | i1 ← i2 [ik] | i1 ← exists i2 [ik] |

delete i1 [ik] | i1 ← &i2 | accept | send i | event i |

match i pat ⇒ s

(library functions) L ::= let i = e

(fields) F ::= if : tf = ef

(transitions) T ::= ⟨iT , ij : tj , s⟩

(contracts) C ::= ⟨iC , L, ip : tp, F, T ⟩

(e) Statements, transitions, and contracts

Fig. 1. Abstract syntax of Scilla. Grayed parts are not available at the program level.

and/or acceptance of funds, the emission of a series of new messages to be sent, and zero or more
events, used to inform the external blockchain clients about certain outcomes of the interaction.

Intermezzo 1 (On DAO and Reentrancy Vulnerability). The DAO2 vulnerability, which is one of
the most famous exploits in the history of Ethereum smart contracts, was caused by the fact that
a contract can transfer control to another, potentially malicious contract in the midst of its own
execution by simply calling the other contract as a function. That would allow a malicious contract
to call the vulnerable contract back, thus potentially exploiting the consequences of the vulnerable

2Decentralised Autonomous Organization (Ethereum Foundation 2018a).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Expressions (pure)
Term Meaning Description

Expression e ::= f simple expression
let x h: T i = f in e let-form

Simple expression f ::= l primitive literal
x variable
{ hentryik } Message
fun (x : T) => e function
builtin b hxk i built-in application
x hxk i application
tfun � => e type function
@x T type instantiation
C h {hTk i} i hxk i constructor instantiation
match x with h | selk i end pattern matching

Selector sel ::= pat => e
Pattern pat ::= x variable binding

C hpatk i constructor pattern
(pat) paranthesized pattern
_ wildcard pattern

Message entrry entry ::= b : x
Name b identi�er

Figure 2. Syntax of ��� expressions.

Operation Symbol Parameters Result type Result Remarks

Structural equality eq (x : T) (� : T) bool x = � T is any ground type
Integer addition add (x : Int) (� : Int) Int x b+ � cf. details in §2.2.2
Integer subtraction sub (x : Int) (� : Int) Int x b� � cf. details in §2.2.2
Integer multiplication mult (x : Int) (� : Int) Int x b⇥ � cf. details in §2.2.2
Integer division div (x : Int) (� : Int) Int x b/ � cf. details in §2.2.2
Integer remainder mod (x : Int) (� : Int) Int x dmod � cf. details in §2.2.2
Integer comparison lt (x : Int) (� : Int) bool x < � cf. details in §2.2.2
Hashing hash (x : T) Hash SHA3 256 hash
Time comparison tlt (x : btime) (� : btime) bool x < �
Block # comparison blt (x : BNum) (� : BNum) bool x < �

Type conversions

nat to Int conversion toint (x : nat) Option Int
Some x as Int if x MAXINT
None otherwise

Int to nat conversion tonat (x : Int) Option nat
Some x as nat if x � 0
None otherwise

Figure 3. Built-in operations and conversions on primitive data types.

2.3 Static Semantics
(Ilya: Standard typing rules for System F)

2.4 Operational Semantics for ��� Expressions
(Ilya: TODO: CEK machine comes here)

2.5 Examples
Let us now see several examples of actual programs written in ���.

(Ilya: TODO: provide example programs.)

3 Computations and Commands
The following categories are present, all commands are in the CPS
style, ending via either send or return.

• Modifying contract �elds;
• Interacting with the blockchain (what are the primitives)?
• try/catch
• Exceptions;
• Events;
• Accepting funds (inverse of payable);
• Sending funds;

3

Structural Recursion in ScillaData type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> list �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Nat in
13 let rec_nat_nat = @ rec_nat Nat in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Nat Nat) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Nat Nat) =>
5 match res with
6 | And x y => let z = add x y in
7 And {Nat Nat} z x
8 end
9 in
10 let zero = Zero in
11 let one = Succ zero in
12 let init_val = And {Nat Nat} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Natural numbers (not Ints!)

Result type

Value for 0

| {z }

constructing the next value

number of
iterations

final result

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Value for 0: (1, 0)

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Iteration

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

(x, y) → (x + y, x)

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

The result of iteration
is a pair of integers

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Iterate n times

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

return the first component  
of the result pair

Structural Recursion with Lists

Result type

Element type

Value for Nil

| {z }

Iterator for non-empty list

argument list

result

list_foldr: ∀ ‘A ‘B. ('A -> 'B -> 'B) -> 'B -> (List 'A) -> 'B

More Structural Recursion with Lists

|{z}

“postponed” recursive call

list_foldk: ∀ ‘A ‘B. ('B -> 'A -> ('B -> 'B) -> 'B) ->  
  
 'B -> (List 'A) -> 'B

More Structural Recursion with Lists

Statements (effectful)
x <- f

f := x

x = e

match x with〈pat => s〉end

x <- &B

accept

event m

send ms

throw

in-place map operations

s ::= read from mutable field
store to a field
assign a pure expression
pattern matching and branching
read from blockchain state
accept incoming payment
create a single event
send list of messages
abort the execution
efficient manipulation with maps

Statement Semantics

BlockchainState Immutable global data (block number etc.)

JsK : BlockchainState ! Configuration ! Configuration

Configuration = Env ⇥ Fields ⇥ Balance ⇥ Incoming ⇥ Emitted

Immutable bindings

Mutable fields

Contract's 
own funds

Funds sent to contract

Messages 
to be sent

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Structure of the incoming message

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Reading from blockchain state

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Using pure library functions 
(defined above in the contract)

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Manipulating with fields

Accepting incoming funds

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Creating and sending messages

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Amount of own funds  
transferred in a message

transition Donate (sender: Address, amount: Int)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Numeric code to inform the recipient

Contract Structure

Library of pure functions

Immutable parameters

Mutable fields

Transition 1

Transition N

...

On-Chain Deployment

• Scilla contracts are interpreted (not compiled before deployment)

• A contract cannot explicitly refer to another contract’s state

• However, pure libraries can be freely reused

• One may deploy a library even without a contract

Gas Accounting

• Simple term reductions: 1

• Pattern matching: (size of patterns) * (number of branches)

• Built-in operations: proportional to the size of arguments

• Map manipulations: proportional to the size of maps

• Also charging parser and the type-checker (run by miners)

• Core: about 200 LOC of OCaml

• Monadic style:  
error handling, gas accounting,
continuation passing

• Changes in gas accounting  
have not affected the core
interpreter

• Lots of performance bottlenecks
fixed without ever touching the
evaluator (CPS refactoring)

Scilla Interpreter

The Evaluation

Chapter 4

Expressivity

Expressivity
Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

• Standard Library: ~1 kLOC

Verification-Friendliness

• A framework for staged static analyses (optional)

• Two instances:

• Gas-Usage Analysis

• Cash-Flow Analysis

Gas Usage Analysis
• Soundly derives a gas usage polynomial
• Folds allow for simple recurrences, solved statically
• Compositional, GU signatures are cached

Safer Smart Contract Programming with Scilla 185:9

the recursion principles of Scilla are provably terminating via a syntactic measure, and as such
are provided to the end programmers.7

Intermezzo 4 (Predictable gas consumption). A contract execution can be interrupted if the amount
of the computational resources it has consumed (aka gas) exceeds a certain limit (Wood 2014).
General recursion and while-loops make it difficult to reason about gas consumption, and also
makes contracts prone to so-called “out-of-gas”-related exploits (Chen et al. 2017; Grech et al. 2018).
By replacing loops and recursion with structural folds, whose consumption depends only on the
consumption of the iterated function and the size of a data value, Scilla enables effective static
analysis of gas usage (cf. Sec. 5.1).

1 (* forall 'A. forall 'B. ('A→ 'B)→ List 'A→ List 'B *)

2 let list_map = tfun 'A⇒ tfun 'B⇒
3 fun (f : 'A→ 'B)⇒ fun (l : List 'A)⇒
4 let folder = @list_foldr 'A (List 'B) in

5 let init = Nil {'B} in

6 let iter = fun (h : 'A)⇒ fun (z : List 'B)⇒
7 let h1 = f h in

8 Cons {'B} h1 z

9 in folder iter init l

Fig. 4. An implementation of List’s map combinator.

The folds are sufficient to im-
plement a rich standard library of
higher-order functions for manipulat-
ing lists and natural numbers. To wit,
Fig. 4 shows an implementation of the
canonical list_map, which is explic-
itly polymorphic, having 'A and 'B as
its type parameters. All type applica-
tions in Scilla are explicit (i.e., there
is no implicit elaborations (Pollack 1990) except for built-ins): type variables 'A and 'B are used to
instantiate the typing schema of list_foldr (@-syntax stands for the inst i t form from Fig. 1d), as
well as the List constructors Cons and Nil.

3 EXECUTION SEMANTICS

The big-step semantics for Scilla contracts is provided by a reference big-step monadic definitional
interpreter (Reynolds 1998), which is currently employed to execute contract-affecting transactions
on top of our host blockchain protocol. In our description of Scilla executions, we give up the
customary formalism for big-step semantics, which is known to suffer from explosion of the number
of rules in the presence of run-time failures and other threaded computational effects (Charguéraud
2013). Instead, we present our big-step semantics with possible run-time failures in a more concise,
(but, arguably, less orthodox) monadic Haskell-like style (Owens et al. 2016; Shali and Cook 2011),
while explaining, in plain English, the semantics of the involved meta-functions.

3.1 Evaluation of Expressions and Statements

The semantics of expressions (Fig. 5, top) is defined by the meta-function E⟦e⟧ ρ, which maps an
expression e and a run-time environment ρ to the evaluation result of meta-type EvalRes Value. Run-
time closures (value- and type-parameterised) are represented as the meta-language functions with
the of type EvalRes Value (the symbol→ in their ascribed types is thus a type of meta-functions).

For now, let us take EvalRes to be an Option-like type Result α with two constructors: Success α
and Failure, for successful and failing computations, correspondingly. The bind operation, enabling
the Haskell-style do-notation chains successful computations, while propagating a failure, and
return x simply constructs an instance of Success x .
In Fig. 5 failures are only produced explicitly in the evaluation rule for constr c t i, but the

application of meta-semantic functions may produce failures implicitly. For instance, lookup ρ i
returns a value bound by i in ρ and fails if i ! dom(ρ). Similarly, tryApply f args attempts to

7Dependently-typed proof assistants, such as Coq, provide a mechanism for automatically deriving recursion principles for
inductively-defined data types, along with the proofs of their termination. In future versions of Scilla we will consider the
possibility of implementing this mechanism, even though it might complicate the analyses (Sec. 5).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Gas Usage Analysis

Safer Smart Contract Programming with Scilla 185:17

Analysing folds. The reason why resource analysis in Scilla is not entirely trivial is the presence
of folds (Fig. 4), which are the modicum of bounded iteration. To tackle them soundly, the resource
analyser domain features a special size abstraction for application of folds—foldacc (Fig. 8), capturing
the resulting size of the accumulator of a fold operation (over natural numbers or lists). Specifically,
in foldacc i sr , i is a reference to the function to be applied iteratively (the “foldee”), and sr are
the parameters of the fold parameters (including the initial value of the accumulator). When fully
applied and processed, this size abstraction expresses the final size of the accumulator of a fold
operation over a linear structure, such as a natural number or a list, in terms of the structure’s size
(e.g., list’s length) and the initial value of the accumulator. As common in algorithms with iteration,
this requires finding a closed-form solution for a recurrence, arising from the way the accumulator
is threaded at each “step” of a fold. At the moment, we only solve constant and first-order linear
recurrences (i.e., of the form f (n + 1) = f (n) + const) to determine the size of the accumulator
in a closed-form solution. For other derived recurrences, the analyser returns the top element ⊤,
indicating the failure to analyse the gas consumption.

Analysis rules. The analysis for expressions is phrased as an inference system for a judgement
Φ ⊢ e ! ϕ, which reads as "in the analysis environment Φ, e has the signature ϕ".10 Some
representative rules of the analysis are shown in Fig. 9. For instance, the resource consumption of a
function fun (i : t)⇒ e is represented by a signature ⟨i, ij ; s;д⟩, derived from analysing its body
and parameterised by i. This signature is “unleashed” when the function is applied to an argument,
using the auxiliary function applySig. For the primitive commands and statements, the analysis uses
cost assignments of the evaluator (Tab. 1). In the analysis rule for pattern matching, the function
maxAdd takes a list of signatures and takes a sum, separately, of the size abstractions and gas use
polynomials with the exception that if a polynomial term is present in both the operands of the
sum, the maximum of the coefficients is taken, rather than adding them up.

The derived signature for list_map (Fig. 4), with the size component omitted, is as follows:

Parameter list: [f, l]

Gas consumption: 5(a) + 1(a)(b) + 11

Legend: a: Length of: l; b: Cost of calling f on (Element of: l)

On soundness, completeness, and the virtues of the analyser. The resource analysis is compositional
and, hence, is linear in the size of the contract and external libraries it uses (so far we do not cache
the analysis results, but this is not difficult to implement). Thanks to the design of Scilla, in which
state-manipulating inter-contract calls are impossible by design, the resource analysis of a contract
can be done entirely in isolation, which is known to be not the case for Ethereum (Wang 2019).
Even though we did not conduct a formal soundness proof, we conjecture that our analyser is

sound (i.e., it derives a correct upper boundary on gas consumption), as (a) it employs the costs
of primitive operations directly from their gas signatures, (b) it does not under-approximate the
results of iteration, and (c) it treats the branching conservatively wrt. resource consumption using
maxAdd. The analyser is, however, incomplete and does not derive the tightest possible resource
bound. The main source of incompleteness is the analyser’s inability to solve non-linear recurrences,
in which case it returns ⊤. As our experience demonstrates (Sec. 6.1) non-trivial nested loops in
contracts are uncommon, and in the current state of the implementation, we are able to analyse all
list functions currently being used in contracts developed in-house and the community, except for
the library list_sort function, which is non-linear in nature. In the future, we are planning to rely
on specialised tools for solving recurrences for this purpose (Albert et al. 2008).

10We omit the analysis description for statements, which is straightforward.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Cash-Flow Analysis
• Soundly determines what fields represent money
• Takes use input for custom tokens
• Based on simple abstract interpretation

185:18 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Contrary to the common perception that the main virtue of a sound and complete gas analyser
for smart contracts is to predict dynamic gas consumption (Marescotti et al. 2018; Wang 2019), we
believe the main benefit of such an analysis is the possibility to detect gas inefficiency patterns
prior to contract deployment (Chen et al. 2017). With this regard, the ⊤ result of our analysis is
still informative, as it indicates worse-than-linear gas consumption, which is usually a design flaw.

5.2 Cash-Flow Analysis

The second major application of the checker framework is the cash-flow analysis. Each deployed
contract constitutes an independent account on the network, and the contract’s transitions can
access the current balance of its account through the implicitly declared balance field. However, a
contract such as the Crowdfunding needs to keep track not only of its total balance, but also how
much money each of the backers has contributed to the crowdfunding campaign.

τ ::= Money | NotMoney | Map τ | t τ | ⊤ | ⊥
t ::= Option | Pair | List | . . .

(maps) Map τ ⊑ Map τ ′ iff τ ⊑ τ ′

(algebraic types) t τ ⊑ t′ τ ′ iff t = t′ and τi ⊑ τ ′i for all i
(bottom) ⊥ ⊑ τ for all τ
(top) τ ⊑ ⊤ for all τ

Fig. 10. Tags and partial ordering on them.

The cash-flow analysis attempts to deter-
mine which parts of the contract’s state (i.e.,
its fields) represent an amount of money, in or-
der to ensure that money is being accounted for
in a consistent way. To do so we apply standard
techniques of abstract interpretation (Cousot
and Cousot 1977), so each field, parameter, local
variable, and subexpression in the contract is
given a tag indicating if and how it is used wrt. representing money.

Lattice of tags. The tags (ranged over by τ) mimic the type system and are summarised in
Fig. 10. Money indicates that an expression represents money; NotMoney indicates that an
expression certainly is not money;Map τ is for maps whose co-domain has tag τ ;11 t τ indicates
that an expression is of the algebraic type t, where the type parameters of t are tagged with τ .12

The meanings of ⊥ is nothing is known about the component, and ⊤ represents an apparent
inconsistency.
The collection of all contract parameters, fields, transition parameters and local parameters,

along with their respective tags, form the elements of a lattice with the ordering described in Fig. 10
applied pointwise to each typed AST node. The lattice is finite, since the depth of a combination of
Map and t is finite for well-typed contracts. The complexity of cash-flow analyser’s procedure is
determined by the height of the abstract domain lattice and, hence, is quadratic in the size of the
program at worst.

Transfer function. The main transfer function (Muchnick 1997)! is defined on the lattice of pairs
Ψ, s, where an environment Ψ maps fields and variables to their current tags and s is a sequence
of statements that are being annotated with tags (Fig. 11). It analyses the usage of variables, and
generating new tags representing the least upper bound (lub, %) of their current tags and their
usage. This constitutes a monotone function within the lattice, and repeated applications of the
function (starting from the element where all variables are tagged with ⊥) are thus guaranteed to
reach a fixpoint.

An environment Ψ is threaded through a list of statements, which is analysed backwards in order
to analyse usage before declarations (Fig. 11, top left). Once a variable declaration i1 is reached
(Fig. 11, top middle), it is tagged with the current tag ⟨i1,τ ⟩, and the variable is removed from the

11We are unaware of a use case where a map domain represents money.
12We make exceptions for the types nat and bool (as well as user-defined types isomorphic to bool), which in Scilla are
algebraic types, but which are treated as base types in the cashflow analysis. Values of those types are tagged with Money
or NotMoney depending on the usage.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Lattice of Cash Tags Results for Crowdfunding

Safer Smart Contract Programming with Scilla 185:19

Ψ, s! Ψ
′′
, s′

Ψ
′′
, sj ! Ψ

′
, s′j

Ψ, sj ; s! Ψ
′
, s′j ; s

′

Ψ(i1) = τ
′
1 Ψ(i2) = τ

′
2 τ = τ ′1 " τ

′
2

Ψ
′′
= remove(i1, Ψ) Ψ

′
= replace(i2, τ , Ψ

′′)

Ψ, ⟨i1, τ1 ⟩ ← i2 ! Ψ
′
, ⟨i1, τ ⟩ ← i2

Ψ(i) = τ ′′ Ψ
′′
= remove(i, Ψ)

Ψ
′′ ⊢ e ↓ τ ′′! Ψ

′
, ⟨e′, τ ′ ⟩

Ψ, ⟨i, τ ⟩ = e! Ψ
′
, ⟨i, τ ′ ⟩ = e′

Ψ(i) = τ τ ′ = τe " τ
Ψ
′
= replace(i, τ ′, Ψ)

Ψ ⊢ var i ↓ τe ! Ψ
′
, ⟨var i, τ ′ ⟩

ψ = τe ;Ψ(i) ψ ′ = ψ " sigs(blt)

ψ ′′ =
!

ψ ′ τ ′e ; τ
′
= ψ ′′ Ψ

′
= replace(i, τ ′, Ψ)

Ψ ⊢ builtin blt i ↓ τe ! Ψ
′
, ⟨builtin blt i, τ ′e ⟩

stra = “amount” Ψ(ia) = τ
′
a τa = Money " τ ′a Ψa = replace(ia, τa, Ψ)

strr = “recipient” Ψa (ir) = τ
′
r τr = NotMoney " τ ′r Ψ

′
= replace(ir , τr , Ψa) τ ′e = τe " NotMoney

Ψ ⊢ message (str (→ i) ↓ τe ! Ψ
′
, ⟨message (str (→ i), τ ′e ⟩

Fig. 11. Selected rules for the cash-flow transfer function.

environment Ψ′. The per-contract field environment is initialised with the implicit field balance,
mapped toMoney, the implicit field this_address, mapped to NotMoney, and with the contract
parameters and fields, mapped to ⊥. The local environment for a transition is initialised with the
message fields amount and sender, mapped toMoney and NotMoney respectively.

In our backwards analysis, expressions are analysed top-down (Ψ ⊢ e ↓ τ ! Ψ′, ⟨e,τ ′⟩) with the
use of an expected tag τ , which represents a lower tag bound that the expression must have. This
bound is derived from the context in which the expression is used in a statement (cf. Fig. 11, top-
right). The initial sources of theMoney tag are the balance field, and the amount fields of incoming
and outgoing messages. Whenever these fields are read from or assigned to, the expressions or
variables used as the target of the read or the source of the assignment are known to represent
money. The initial sources of the NotMoney tag are the current block number of the blockchain
(accessed using BLOCKNUMBER), the this_address field, and the sender/recipient message fields.

When variables are used, their usage and their current tags are analysed to determine if their tags
need to be changed. For instance, if the variable v with tagMoney is used as the right-hand side

of a map update statementm [k] := v , thenm must have the tag which is greater than or equal to
Map Money. Similarly, if the variable r with tag Option NotMoney is used as the left-hand side

of a lookup statement r ←m [k], thenm must have a tag that is not smaller thanMap NotMoney.
Arithmetic built-in functions such as add and mul have multiple consistent usages. For add we

require both of the arguments and the result to have the same tag, since the addition of Money
and NotMoney is inconsistent. Conversely, applying mul toMoney and NotMoney (in any order)
is consistent and produces Money, whereas applying mul to Money and Money is considered
inconsistent. We analyse calls to builtin functions by generating a signatureψ (an expected return
tag followed by the list of argument tags) based on the current tags at the call site (Fig. 11, middle-
right). We then take the pointwise least upper bound of that signature and all possible signatures
of the function being called. The greatest lower bound of the resulting set of signatures constitutes
the new tags for the variables used at the call site. If an inconsistency is found in the usage, the
variables in question are tagged with Top (the lub of inconsistent tags).

Field/Param Tag

owner NotMoney
max_block NotMoney

goal Money

backers Map Money
funded NotMoney

Example. Running the analysis on the crowdfunding contract (Fig. 2)
results in the fields of the contract being tagged as listed in the table on
the right. Notice that the goal field is being tagged withMoney. The goal
field represents the amount of money the owner of the contract is trying
to raise, rather than an amount of money owned by the contract. However,
the field is still tagged with Money, since its value is regularly compared
to the value of the balance field.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Analysis Results

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Gas Usage Analysis

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Cash-Flow Analysis

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

non-native  
tokens

Cash-Flow Analysis

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Cash-Flow Analysis

non-fungible  
tokens

Relative Code Size

185:22 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Tab. 3. Breakdown of contract run-times (in ms): initialisation, execution, serialisation, and output.

init exec serialise write

Transition/State size 10k 100k 500k 10k 100k 500k 10k 100k 500k 10k 100k 500k
ft-transfer 67 709 4,208 0.05 0.05 0.07 25 501 2,506 14 244 1,976
nft-setApproveForAll 239 3,011 15,382 1.92 39 206 41 568 3,546 23 242 1,719
auc-bid 61 665 3,480 0.83 0.96 0.10 23 456 1,860 17 221 1,515
cfd-pledge 68 723 3,705 1.96 42 207 23 500 2,057 20 216 1,368

0

10

20

init exec serialize write

size: ft-tr nft-safa auc-bid cfd-plg

T
im

e
(s

)

10

20

init exec serialize write

(a) Relative time breakdown

T
im

e
(m

s)

500

1,000

1,500

ft-10 ft-50nft-10 nft-50auc-10 auc-50 cfd-50cfd-10

(b) Scilla/EVM execution times

Si
ze

 (
by

te
s)

ft nft auc cfd

5k

10k

(c) Code size comparison

Fig. 12. Runtime and size statistics on some representative smart contracts.

For our evaluation we have chosen the most common kinds of contracts used on Ethereum:
ERC20 (ft), ERC721 (nft), auction (auc) and crowdfunding (cfd). Performance experiments were
conducted on a commodity Intel Core i5 machine with 8GB RAM.17

To answer question (1), we have evaluated the interpreter performance on the most expensive
transitions of the chosen contracts (e.g., ERC20’s transfer), with the size of the largest affected
contract state component (e.g., a map field) ranging from 10k to 500k entries.18 The results are shown
in Tab. 3 and Fig. 12a. It is clear that the evaluator’s performance overhead is negligible (less than
1%) compared to the time taken by input/output of the contract state: reading from blockchain
(init), serialising and writing it back—those machineries operate with JSON representation of state
and their performance deteriorates linearly with the state size. This issue is orthogonal to our study
of the language design presented in this paper, and in Sec. 7, we discuss possible ways to address
it in the future. That said, even with the suboptimal IO implementation, in most of the cases the
observed transaction times are under 10s, which is acceptable for blockchain computations.
The implementation of Scilla is agnostic with regard to the underlying blockchain protocol,

and at the moment all interaction is done by passing state snapshots in JSON. Thus, making an
apples-to-apples comparison of Scilla/EVM performance is difficult, as EVM is an integral part of
the Ethereum protocol, and can access the entire blockchain state in a RAM-like manner. This leads
to more slow start-up time for EVM, but nearly constant-time access for contracts with large state,
whereas Scilla input-output overhead grows linearly. Fig. 12b shows a comparison of run-times
(from the cold start) of Scilla and EVM on the same four contracts with 10k and 50k state entries
(first/second four groups). In most of the cases, Scilla’s performance is better, but EVM shows
superior results, due to more efficient IO, when the state grows beyond 50k entries. The state of nft
is larger than the projected 10/50k, as it uses nested maps, while we only count “top-level” entries.

17The artefact containing the benchmarks is available on GitHub: https://github.com/ilyasergey/scilla-benchmarks.
18The largest Ethereum contract to date is ERC20 with 600k entries. Most of deployed contracts have less than 50k entries.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Performance

185:22 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Tab. 3. Breakdown of contract run-times (in ms): initialisation, execution, serialisation, and output.

init exec serialise write

Transition/State size 10k 100k 500k 10k 100k 500k 10k 100k 500k 10k 100k 500k
ft-transfer 67 709 4,208 0.05 0.05 0.07 25 501 2,506 14 244 1,976
nft-setApproveForAll 239 3,011 15,382 1.92 39 206 41 568 3,546 23 242 1,719
auc-bid 61 665 3,480 0.83 0.96 0.10 23 456 1,860 17 221 1,515
cfd-pledge 68 723 3,705 1.96 42 207 23 500 2,057 20 216 1,368

0

10

20

init exec serialize write

size: ft-tr nft-safa auc-bid cfd-plg

T
im

e
(s

)

10

20

init exec serialize write

(a) Relative time breakdown

T
im

e
(m

s)

500

1,000

1,500

ft-10 ft-50nft-10 nft-50auc-10 auc-50 cfd-50cfd-10

(b) Scilla/EVM execution times

Si
ze

 (
by

te
s)

ft nft auc cfd

5k

10k

(c) Code size comparison

Fig. 12. Runtime and size statistics on some representative smart contracts.

For our evaluation we have chosen the most common kinds of contracts used on Ethereum:
ERC20 (ft), ERC721 (nft), auction (auc) and crowdfunding (cfd). Performance experiments were
conducted on a commodity Intel Core i5 machine with 8GB RAM.17

To answer question (1), we have evaluated the interpreter performance on the most expensive
transitions of the chosen contracts (e.g., ERC20’s transfer), with the size of the largest affected
contract state component (e.g., a map field) ranging from 10k to 500k entries.18 The results are shown
in Tab. 3 and Fig. 12a. It is clear that the evaluator’s performance overhead is negligible (less than
1%) compared to the time taken by input/output of the contract state: reading from blockchain
(init), serialising and writing it back—those machineries operate with JSON representation of state
and their performance deteriorates linearly with the state size. This issue is orthogonal to our study
of the language design presented in this paper, and in Sec. 7, we discuss possible ways to address
it in the future. That said, even with the suboptimal IO implementation, in most of the cases the
observed transaction times are under 10s, which is acceptable for blockchain computations.
The implementation of Scilla is agnostic with regard to the underlying blockchain protocol,

and at the moment all interaction is done by passing state snapshots in JSON. Thus, making an
apples-to-apples comparison of Scilla/EVM performance is difficult, as EVM is an integral part of
the Ethereum protocol, and can access the entire blockchain state in a RAM-like manner. This leads
to more slow start-up time for EVM, but nearly constant-time access for contracts with large state,
whereas Scilla input-output overhead grows linearly. Fig. 12b shows a comparison of run-times
(from the cold start) of Scilla and EVM on the same four contracts with 10k and 50k state entries
(first/second four groups). In most of the cases, Scilla’s performance is better, but EVM shows
superior results, due to more efficient IO, when the state grows beyond 50k entries. The state of nft
is larger than the projected 10/50k, as it uses nested maps, while we only count “top-level” entries.

17The artefact containing the benchmarks is available on GitHub: https://github.com/ilyasergey/scilla-benchmarks.
18The largest Ethereum contract to date is ERC20 with 600k entries. Most of deployed contracts have less than 50k entries.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

I/O Overhead

The Challenges

Chapter 5

Maps that Grow

Who has donated

How much

Donor Amount

Amrit 100

Jacob 120

Vaivas 500000

The table can grow very large!

Initial Naïve Execution Model

Core
Protocol

DB

Scilla

Anton donates

Donor Amount

Amrit 100

Jacob 120

Vaivas 500000

Initial Naïve Execution Model

Core
Protocol

DB

Scilla

Anton donates

Donor Amount

Amrit 100

Jacob 120

Vaivas 500000

Donor Amount

Amrit 100

Jacob 120

Vaivas 500000

Anton 10000

Fine-Grained Interaction

Core

DB

Scilla

Amrit ?

100

Anton = 10000

The IPC Protocol

• Core blockchain distinguishes between map and non-map fields in
a Scilla contract, optimising map key accesses upon deployment

• Still, no changes in the core interpreter

• All change is encapsulated in the Evaluator monad

The Big Picture

Chapter 6

Adoption
• Scilla launched on Zilliqa mainnet since June 2019
• Dozens of community-contributed contracts:

• ERC223, ERC777
• contracts for crowdsales, escrows
• contracts for access control
• upcoming standard ERC1404 for security tokens

• Language-Server Protocol Support
• Emacs and VSCode plugins (w/ semantic highlighting)
• Workshops, tutorials, developer sessions

Scilla on a Sharded Blockchain

Scilla on a Sharded Blockchain

The Future

Chapter 7

Work in Progress
• Full Scilla to Coq translation (coming soon)

• Type-preserving compilation into an efficient back-end (LLVM)

• Certifications for Proof-Carrying Code (storable on a blockchain)

• More automated analyses

Epilogue

Lessons Learned
• Growing a new smart contract language is a rollercoaster of  

excitement and angst.

• Functional programming is a great way to keep the language
minimalistic yet expressive.

• The language will be forced to grow and change — just embrace it.

• Yet, lots of ideas from PL research can be reused with  
very low overhead on implementation and adoption.

• It pays off to build an enthusiastic developer community:  
more feedback — more informed design choices.

Research Challenges
• Exploiting static properties of smart contracts for faster consensus

• Robust and adequate gas cost assignment

• Optimising compilers — good or evil?

Thanks!

http://scilla-lang.org

OOPSLA’19

Research Grants →

CertiChain Project
• Postdoc/PhD positions on formal proofs for  

distributed systems and smart contracts at Yale-NUS College
and NUS School of Computing are available now.

