
Safer Smart Contract Programming
with Scilla

 Ilya Sergey Vaivaswatha Nagaraj Jacob Johannsen

Amrit Kumar Anton Trunov Ken Chan

scilla-lang.org

185

Safer Smart Contract Programming with Scilla

ILYA SERGEY, Yale-NUS College, Singapore and National University of Singapore, Singapore

VAIVASWATHA NAGARAJ, Zilliqa Research, India
JACOB JOHANNSEN, Zilliqa Research, Denmark

AMRIT KUMAR, Zilliqa Research, United Kingdom

ANTON TRUNOV, Zilliqa Research, Russia
KEN CHAN GUAN HAO, Zilliqa Research, Malaysia

The rise of programmable open distributed consensus platforms based on the blockchain technology has
aroused a lot of interest in replicated stateful computations, aka smart contracts. As blockchains are used
predominantly in financial applications, smart contracts frequently manage millions of dollars worth of virtual
coins. Since smart contracts cannot be updated once deployed, the ability to reason about their correctness
becomes a critical task. Yet, the de facto implementation standard, pioneered by the Ethereum platform,
dictates smart contracts to be deployed in a low-level language, which renders independent audit and formal
verification of deployed code infeasible in practice.

We report an ongoing experiment held with an industrial blockchain vendor on designing, evaluating,
and deploying Scilla, a new programming language for safe smart contracts. Scilla is positioned as an
intermediate-level language, suitable to serve as a compilation target and also as an independent programming
framework. Taking System F as a foundational calculus, Scilla offers strong safety guarantees by means of type
soundness. It provides a clean separation between pure computational, state-manipulating, and communication
aspects of smart contracts, avoiding many known pitfalls due to execution in a byzantine environment. We
describe the motivation, design principles, and semantics of Scilla, and we report on Scilla use cases provided
by the developer community. Finally, we present a framework for lightweight verification of Scilla programs,
and showcase it with two domain-specific analyses on a suite of real-world use cases.

CCS Concepts: • Software and its engineering → Functional languages; Distributed programming
languages; • Theory of computation→ Program analysis.

Additional Key Words and Phrases: Blockchain, Smart Contracts, Domain-Specific Languages, Static Analysis

ACM Reference Format:
Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao.
2019. Safer Smart Contract Programming with Scilla. Proc. ACM Program. Lang. 3, OOPSLA, Article 185
(October 2019), 30 pages. https://doi.org/10.1145/3360611

1 INTRODUCTION

Smart contracts are self-enforcing, self-executing protocols governing an interaction between
several (mutually distrusting) parties. Initially proposed by Szabo (1994), this idea could only be
implemented in a practical setting more than fifteen years later, with the rise of open byzantine
consensus protocols powered by the blockchain technology (Bano et al. 2017; Pîrlea and Sergey

Authors’ addresses: Ilya Sergey, Yale-NUS College, Singapore, National University of Singapore, Singapore, ilya.sergey@yale-
nus.edu.sg; Vaivaswatha Nagaraj, Zilliqa Research, India, vaivaswatha@zilliqa.com; Jacob Johannsen, Zilliqa Research,
Denmark, jacob@zilliqa.com; Amrit Kumar, Zilliqa Research, United Kingdom, amrit@zilliqa.com; Anton Trunov, Zilliqa
Research, Russia, anton@zilliqa.com; Ken Chan Guan Hao, Zilliqa Research, Malaysia, ken.changuanhao@gmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/10-ART185
https://doi.org/10.1145/3360611

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://scilla-lang.org/

Blockchains 101

blockchain
consensus
protocol

• transforms a set of transactions into  
a globally-agreed sequence

• “distributed timestamp server” 
(Nakamoto 2008)

transactions can
be anything

Blockchains 101

Blockchains 101

• Executed locally, alter the replicated state.

• Simplest case: transferring funds from A to B,  
 consensus: no double spending.

• More interesting:  
deploying and executing replicated computations

Smart Contracts

Transactions

| {z }

Smart Contracts
• Stateful mutable objects replicated via a consensus protocol

• State typically involves a stored amount of funds/currency

• Main usages:
• crowdfunding and ICO
• multi-party accounting
• voting and arbitration
• puzzle-solving games with distribution of rewards

• Supporting platforms: Ethereum, Tezos, Concordium, FB Libra,…

contract Accounting {
 /* Define contract fields */
 address owner;
 mapping (address => uint) assets;

 /* This runs when the contract is executed */
 function Accounting(address _owner) {
 owner = _owner;
 }

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }
}

Mutable fields

Constructor

Entry point

A Smart Contract in Solidity™

The Givens of Smart Contracts

Deployed in a low-level language

Must be Turing-complete

Code is law

Uniform compilation target

Run arbitrary computations

What else if not the code?

Difficult for audit and verification

Complex semantics, exploits

One should understand the code  
to understand the contract

The Givens of Smart Contracts

Deployed in a low-level language

Must be Turing-complete

Code is law

Sending a Message or Calling?
contract Accounting {
 /* Other functions */

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }

 function withdrawBalance() {
 uint amount = assets[msg.sender];
 if (msg.sender.call.value(amount)() == false) {
 throw;
 }
 assets[msg.sender] = 0;
 }
}

Sending a Message or Calling?
contract Accounting {
 /* Other functions */

 /* Sending funds to a contract */
 function invest() returns (string) {
 if (assets[msg.sender].initialized()) { throw; }
 assets[msg.sender] = msg.value;
 return "You have given us your money";
 }

 function withdrawBalance() {
 uint amount = assets[msg.sender];
 if (msg.sender.call.value(amount)() == false) {
 throw;
 }
 assets[msg.sender] = 0;
 }
}

Caller can  
reenter and 

withdraw again

Tomorrow

Preventing smart contract vulnerabilities 
with principled Programming Language design

The Challenge

• Explicit interaction: no reentrancy attacks

• Minimalistic

• Explicit control of effects

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

Wishlist

The Givens of Smart Contracts

Deployed in a low-level language

Must be Turing-complete

Code is law (so it should be easy to interpret)

Simple computation model

Not Turing-complete

Explicit Effects

Communication

System F with small extensions

Only primitive recursion/iteration

State-transformer semantics

Contracts are Autonomous Actors

arXiv, Jan 2018

Smart Contracts as  
Autonomous Actors

Account X

Scilla Contract Execution Model

m6Contract C

Contract D Contract E

Account YAccount Z

Account X
m1

m2

m3

m4

m5

Scilla Contract Execution Model

ConfC Conf0C

Conf0DConfD

ConfE Conf0E

Conf00C
m1

m2

m4

m6

Scilla Contract Execution Model

m2

m4

Scilla Contract Execution Model

ConfC Conf0C

Conf0DConfD

ConfE Conf0E

Conf00C
m1 m6

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic

• Explicit control of effects

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

• Explicit interaction: no reentrancy attacks

• Minimalistic

• Explicit control of effects

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔

Wishlist

• Explicit interaction: no reentrancy attacks

• Minimalistic

• Explicit control of effects

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔

Wishlist

Types
Safer Smart Contract Programming with Scilla 185:5

(signed integers) int ::= i32 | i64 | i128 | i256

(unsigned integers) uint ::= u32 | u64 | u128 | u256

(byte strings) bst ::= bystrx n | bystr

(primitive types) pt ::= int | uint | bst |

string | bnum | msg

(algebraic types) D ::= unit | bool | nat | option |

pair | list | U

(general Types) t ::= pt | map t t | t → t |

D t | α | forall α . t

(a) Types

(unit) unit ::= Unit

(booleans) bool ::= True | False

(Peano numbers) nat ::= Zero | Succ nat

(options) option α ::= None | Some α

(pairs) pair α1 α2 ::= Pair α1 α2
(lists) list α ::= Nil | Cons α

(variants) U α ::= C1 α | . . . | Cn α

(b) Algebraic data type definitions

(strings) bltstring ::= concat | substr | strlen | to_string

(blocks) bltbnum ::= blt | badd | bsub

(hashes) blthash ::= sha256 | keccak256 | ripemd160 | to_bystr | schnorr_verify | ecdsa_verify

(maps) bltmap ::= contains | put | get | remove | to_list | size

(numeric) bltnum ::= add | sub | mul | div | rem | pow

(integers) bltint ::= to_int32 | to_int64 | to_int128 | to_int256

(u. integers) bltuint ::= to_uint32 | to_uint64 | to_uint128 | to_uint256 | to_nat

(built-ins) blt ::= eq | bltstring | bltbnum | blthash | bltmap | bltnum | bltint | bltuint

(c) Built-in operations

(identifiers) i, c ::= alpha-numeric string

(Values) v ::= str :: string | κ :: int | υ :: uint | b :: bnum | bsx n s :: bystrx n | bs s :: bystr |

ms (str "→ v) :: msg | mp tk tv (vk "→ vv) :: map tk tv | d :: D t |

clo :: Value → EvalRes Value | tclo :: Type → EvalRes Value

(patterns) pat ::= _ | i | constr c pat

(Expressions) e ::= val v | var i | message (str "→ i) | constr c t i | builtin blt i |

let i = e1 in e2 | fun (i : t)⇒ e | app i ij | tfun α ⇒ e | inst i t |

match i pat ⇒ e | fix (i : t, e)

(d) Values and expressions

(statements) s ::= i1 ← i2 | i1 := i2 | i = e |

i1 [ik] := i2 | i1 ← i2 [ik] | i1 ← exists i2 [ik] |

delete i1 [ik] | i1 ← &i2 | accept | send i | event i |

match i pat ⇒ s

(library functions) L ::= let i = e

(fields) F ::= if : tf = ef

(transitions) T ::= ⟨iT , ij : tj , s⟩

(contracts) C ::= ⟨iC , L, ip : tp, F, T ⟩

(e) Statements, transitions, and contracts

Fig. 1. Abstract syntax of Scilla. Grayed parts are not available at the program level.

and/or acceptance of funds, the emission of a series of new messages to be sent, and zero or more
events, used to inform the external blockchain clients about certain outcomes of the interaction.

Intermezzo 1 (On DAO and Reentrancy Vulnerability). The DAO2 vulnerability, which is one of
the most famous exploits in the history of Ethereum smart contracts, was caused by the fact that
a contract can transfer control to another, potentially malicious contract in the midst of its own
execution by simply calling the other contract as a function. That would allow a malicious contract
to call the vulnerable contract back, thus potentially exploiting the consequences of the vulnerable

2Decentralised Autonomous Organization (Ethereum Foundation 2018a).

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Expressions (pure)
Term Meaning Description

Expression e ::= f simple expression
let x h: T i = f in e let-form

Simple expression f ::= l primitive literal
x variable
{ hentryik } Message
fun (x : T) => e function
builtin b hxk i built-in application
x hxk i application
tfun � => e type function
@x T type instantiation
C h {hTk i} i hxk i constructor instantiation
match x with h | selk i end pattern matching

Selector sel ::= pat => e
Pattern pat ::= x variable binding

C hpatk i constructor pattern
(pat) paranthesized pattern
_ wildcard pattern

Message entrry entry ::= b : x
Name b identi�er

Figure 2. Syntax of ��� expressions.

Operation Symbol Parameters Result type Result Remarks

Structural equality eq (x : T) (� : T) bool x = � T is any ground type
Integer addition add (x : Int) (� : Int) Int x b+ � cf. details in §2.2.2
Integer subtraction sub (x : Int) (� : Int) Int x b� � cf. details in §2.2.2
Integer multiplication mult (x : Int) (� : Int) Int x b⇥ � cf. details in §2.2.2
Integer division div (x : Int) (� : Int) Int x b/ � cf. details in §2.2.2
Integer remainder mod (x : Int) (� : Int) Int x dmod � cf. details in §2.2.2
Integer comparison lt (x : Int) (� : Int) bool x < � cf. details in §2.2.2
Hashing hash (x : T) Hash SHA3 256 hash
Time comparison tlt (x : btime) (� : btime) bool x < �
Block # comparison blt (x : BNum) (� : BNum) bool x < �

Type conversions

nat to Int conversion toint (x : nat) Option Int
Some x as Int if x  MAXINT
None otherwise

Int to nat conversion tonat (x : Int) Option nat
Some x as nat if x � 0
None otherwise

Figure 3. Built-in operations and conversions on primitive data types.

2.3 Static Semantics
(Ilya: Standard typing rules for System F)

2.4 Operational Semantics for ��� Expressions
(Ilya: TODO: CEK machine comes here)

2.5 Examples
Let us now see several examples of actual programs written in ���.

(Ilya: TODO: provide example programs.)

3 Computations and Commands
The following categories are present, all commands are in the CPS
style, ending via either send or return.

• Modifying contract �elds;
• Interacting with the blockchain (what are the primitives)?
• try/catch
• Exceptions;
• Events;
• Accepting funds (inverse of payable);
• Sending funds;

3

Structural Recursion in Scilla
Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> list �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Nat in
13 let rec_nat_nat = @ rec_nat Nat in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Nat Nat) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Nat Nat) =>
5 match res with
6 | And x y => let z = add x y in
7 And {Nat Nat} z x
8 end
9 in
10 let zero = Zero in
11 let one = Succ zero in
12 let init_val = And {Nat Nat} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Natural numbers (not Ints!)

Result type

Value for 0

| {z }

constructing the next value

number of
iterations

final result

Example: Fibonacci Numbers

Data type Constructors and their types Recursor and its type

unit U : unit unit_rec : forall �.� -> unit -> �

bool
True : bool

bool_rec : forall �.� -> � -> bool -> �
False : bool

nat
Zero : nat

nat_rec : forall �.� -> (nat -> � -> �) -> nat -> �
Succ : nat -> nat

pair T S And : forall � � . � -> � -> pair � � pair_rec : forall � � � . (� -> � -> �) -> pair � � -> �

either T S Left : forall �. � -> either �
either_rec : forall � � � . (� -> �) -> (� -> �) -> either � � -> �

Right : forall �. � -> either �

option T Some : forall �. � -> option �
option_rec : forall �. forall �.(� -> �) -> � -> option � -> �

None : forall �. option �

list T Nil : forall �. list �
list_rec : forall � � . � -> (� -> list � -> � -> �) -> �

Cons : forall �. � -> list � -> list �

Figure 4. Built-in Algebraic Data Types (ADTs), their constructors and recursion principles.

Figure 5. Runtime semantics of ���.

1 let list_product =
2 fun (ls : List Int) => fun (acc : Int) =>
3 let iter =
4 fun (h : Int) => fun (t : List Int) => fun (res : Int) =>
5 let zero = 0 in
6 let b = builtin eq h zero in
7 match b with
8 | True => 0
9 | False => builtin mult h res
10 end
11 in
12 let rec_nat = @ list_rec Int in
13 let rec_nat_nat = @ rec_nat Int in
14 rec_nat_nat acc iter ls

Figure 6. Product of integer numbers in a List ls.

1 let fib = fun (n : Nat) =>
2 let iter_nat = @ nat_rec (Pair Int Int) in
3 let iter_fun =
4 fun (n: Nat) => fun (res : Pair Int Int) =>
5 match res with
6 | And x y => let z = builtin add x y in
7 And {Int Int} z x
8 end
9 in
10 let zero = 0 in
11 let one = 1 in
12 let init_val = And {Int Int} one zero in
13 let res = iter_nat init_val iter_fun n in
14 fst res

Figure 7. Fibonacci numbers.

All this will be manifested in a type-and-e�ect system, keeping
track of the funny things.

(Ilya: Do we need anything else?)

4 Communication and Transitions
4.1 Messages
(Ilya: Emphasize the sending of several messages)

1 let insert_sort =
2 fun (ls : List Int) =>
3 let true = True in
4 let false = False in
5 let rec_int = @ list_rec Int in
6 let rec_int_int = @ rec_int Int in
7 let rec_int_Pair = @ rec_int (Pair Bool (List Int)) in
8 let nil_int = Nil {Int} in
9 let sink_down =
10 fun (e : Int) => fun (ls : List Int) =>
11 let init = And {Bool (List Int)} false nil_int in
12 let iter1 =
13 fun (h : Pair Bool (List int)) =>
14 fun (t : List int) =>
15 fun (res : Pair Bool (List int)) =>
16 let b = fst res in
17 let rest = snd res in
18 match b with
19 | True =>
20 let z = Cons {Int} h rest in
21 And {Bool (List Int)} true z
22 | False =>
23 let bl = builtin lt h e in
24 match bl with
25 | True =>
26 let z = Cons {Int} e rest in
27 let z2 = Cons {Int} h z in
28 And {Bool (List Int)} true z2
29 | False =>
30 let z = Cons {Int} h rest in
31 And {Bool (List Int)} false z
32 end
33 end
34 in
35 let res1 = rec_int_Pair init iter1 ls in
36 let b0 = fst res1 in
37 let ls1 = snd res1 in
38 match b0 with
39 | True => ls1
40 | False => Cons {int} e ls1
41 end
42 in
43 let iter2 = fun (h : Int) => fun (t : List Int) =>
44 fun (res : Int) => sink_down h res
45 in
46 rec_int_int iter2 nil_int ls

Figure 8. Insertion sort of a list in ���.

(Ilya: Messages come with typed components, so there might be
no in-contract failure due to the ill-typed message! This is how we
keep expressions pure.)

4

Statements (effectful)

x <- f

f := x

x = e

match x with〈pat => s〉end

x <- &B

accept

event m

send ms

throw

in-place map operations

s ::= read from mutable field
store to a field
assign a pure expression
pattern matching and branching
read from blockchain state
accept incoming payment
create a single event
send list of messages
abort the execution
efficient manipulation with maps

Statements (effectful)

x <- f

f := x

x = e

match x with〈pat => s〉end

x <- &B

accept

event m

send ms

throw

in-place map operations

s ::= read from mutable field
store to a field
assign a pure expression
pattern matching and branching
read from blockchain state
accept incoming payment
create a single event
send list of messages
abort the execution
efficient manipulation with maps

Statements (effectful)

x <- f

f := x

x = e

match x with〈pat => s〉end

x <- &B

accept

event m

send ms

throw

in-place map operations

s ::= read from mutable field
store to a field
assign a pure expression
pattern matching and branching
read from blockchain state
accept incoming payment
create a single event
send list of messages
abort the execution
efficient manipulation with maps

Statements (effectful)

x <- f

f := x

x = e

match x with〈pat => s〉end

x <- &B

accept

event m

send ms

throw

in-place map operations

s ::= read from mutable field
store to a field
assign a pure expression
pattern matching and branching
read from blockchain state
accept incoming payment
create a single event
send list of messages
abort the execution
efficient manipulation with maps

Statements (effectful)

x <- f

f := x

x = e

match x with〈pat => s〉end

x <- &B

accept

event m

send ms

throw

in-place map operations

s ::= read from mutable field
store to a field
assign a pure expression
pattern matching and branching
read from blockchain state
accept incoming payment
create a single event
send list of messages
abort the execution
efficient manipulation with maps

Statements (effectful)

x <- f

f := x

x = e

match x with〈pat => s〉end

x <- &B

accept

event m

send ms

throw

in-place map operations

s ::= read from mutable field
store to a field
assign a pure expression
pattern matching and branching
read from blockchain state
accept incoming payment
create a single event
send list of messages
abort the execution
efficient manipulation with maps

• Explicit interaction: no reentrancy attacks

• Minimalistic

• Explicit control of effects

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔

Wishlist

• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔

Wishlist

• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔

Wishlist

• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔

Wishlist

Contract Structure185:6 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

1 library Crowdfunding

2 (* Map ByStr20 Uint128→ ByStr20→ Uint128→ *)

3 (* Option (Map ByStr20 Uint128) *)

4 let check_update = (* ... *)

5 (* BNum→ BNum→ Bool *)

6 let blk_leq = (* ... *)

7

8 contract Crowdfunding

9 (* Immutable parameters *)

10 (owner : ByStr20, max_block : BNum, goal : Uint128)

11 (* Mutable fields *)

12 field backers : Map ByStr20 Uint128 = Emp ByStr20 Uint128

13 field funded : Bool = False

14 (* Transitions *)

15 transition Donate (sender : ByStr20, amount : Uint128)

16 transition GetFunds (sender : ByStr20, amount : Uint128)

17 transition ClaimBack (sender : ByStr20, amount : Uint128)

Fig. 2. A signature of the Crowdfunding contract.

contract being in an intermediate state of the computation. This behaviour, dubbed reentrancy (Gün
Sirer 2016), in the case of DAO led to the draining of USD 50 million worth of cryptocurrency, and
resulted in a fork in the blockchain going against the consensus protocol, as well as sparking a lot
of research on ensuring future contract implementations being reentrancy-safe (Grossman et al.
2018; Rodler et al. 2019; Tsankov et al. 2018). In contrast, Scilla sidesteps the reentrancy issue by
design; by making the message-passing communication the only way for the contracts to interact,
we enforce atomicity of changes in a contract state.3

For an intuition of a contract layout, consider a Crowdfunding smart contract. The goal of the
contract is, as the name implies, to collect donations aiming for a certain goal by a specified deadline,
given as a “maximal” block number in the underlying blockchain.4 It should then allow potential
backers to donate certain amounts of funds, making records of those donations. If the goal is
reached by the deadline, the owner of the contract, specified upfront via its account address, should
be able to extract the funds, at which point the fulfillment of their obligations to the backers is no
longer a concern that could be addressed via the blockchain. If the goal is not reached before the
deadline, each backer should be able to claim their donation back.

Fig. 2 shows a high-level signature of Crowdfunding with executable code omitted. The prelude of
the contract defines the library of the pure (i.e., side effect-free) functions that the contract can use
to perform computations on the data stored in its state, in a referentially-transparent way (Mitchell
2003). We elide the implementations of the library functions check_update (used to conditionally
update the map of backers and their donations) and blk_leq (used to compare two block numbers)
and only show their types, whose meaning should be clear. Each contract’s pure library can be
referred by other contracts, independently deployed later, enabling reuse of the code, shared by
means of the replicated blockchain state (as will be described Sec. 3.5). The Crowdfunding contract,
though, does not rely on any external functions.

Intermezzo 2 (External Libraries and Parity Wallet hack). Another famous hack in Ethereum,
resulting USD 146 million worth of coins becoming inaccessible (Alois 2017), was caused by

3Indeed, other concurrency-related issues, e.g., caused by non-determinism of transaction scheduling, remain to be present
even in the “transition-as-an-atomic-change” model adopted by Scilla. However, detecting those issues requires more
domain-specific input from the user (Kolluri et al. 2018), and, we believe, should be addressed at a higher-level by means of
a suitable domain-specific language for particular smart contract scenarios (e.g., interacting with an off-chain oracle)
4This is sound, as block numbers grow monotonically, without gaps.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Contract Structure185:6 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

1 library Crowdfunding

2 (* Map ByStr20 Uint128→ ByStr20→ Uint128→ *)

3 (* Option (Map ByStr20 Uint128) *)

4 let check_update = (* ... *)

5 (* BNum→ BNum→ Bool *)

6 let blk_leq = (* ... *)

7

8 contract Crowdfunding

9 (* Immutable parameters *)

10 (owner : ByStr20, max_block : BNum, goal : Uint128)

11 (* Mutable fields *)

12 field backers : Map ByStr20 Uint128 = Emp ByStr20 Uint128

13 field funded : Bool = False

14 (* Transitions *)

15 transition Donate (sender : ByStr20, amount : Uint128)

16 transition GetFunds (sender : ByStr20, amount : Uint128)

17 transition ClaimBack (sender : ByStr20, amount : Uint128)

Fig. 2. A signature of the Crowdfunding contract.

contract being in an intermediate state of the computation. This behaviour, dubbed reentrancy (Gün
Sirer 2016), in the case of DAO led to the draining of USD 50 million worth of cryptocurrency, and
resulted in a fork in the blockchain going against the consensus protocol, as well as sparking a lot
of research on ensuring future contract implementations being reentrancy-safe (Grossman et al.
2018; Rodler et al. 2019; Tsankov et al. 2018). In contrast, Scilla sidesteps the reentrancy issue by
design; by making the message-passing communication the only way for the contracts to interact,
we enforce atomicity of changes in a contract state.3

For an intuition of a contract layout, consider a Crowdfunding smart contract. The goal of the
contract is, as the name implies, to collect donations aiming for a certain goal by a specified deadline,
given as a “maximal” block number in the underlying blockchain.4 It should then allow potential
backers to donate certain amounts of funds, making records of those donations. If the goal is
reached by the deadline, the owner of the contract, specified upfront via its account address, should
be able to extract the funds, at which point the fulfillment of their obligations to the backers is no
longer a concern that could be addressed via the blockchain. If the goal is not reached before the
deadline, each backer should be able to claim their donation back.

Fig. 2 shows a high-level signature of Crowdfunding with executable code omitted. The prelude of
the contract defines the library of the pure (i.e., side effect-free) functions that the contract can use
to perform computations on the data stored in its state, in a referentially-transparent way (Mitchell
2003). We elide the implementations of the library functions check_update (used to conditionally
update the map of backers and their donations) and blk_leq (used to compare two block numbers)
and only show their types, whose meaning should be clear. Each contract’s pure library can be
referred by other contracts, independently deployed later, enabling reuse of the code, shared by
means of the replicated blockchain state (as will be described Sec. 3.5). The Crowdfunding contract,
though, does not rely on any external functions.

Intermezzo 2 (External Libraries and Parity Wallet hack). Another famous hack in Ethereum,
resulting USD 146 million worth of coins becoming inaccessible (Alois 2017), was caused by

3Indeed, other concurrency-related issues, e.g., caused by non-determinism of transaction scheduling, remain to be present
even in the “transition-as-an-atomic-change” model adopted by Scilla. However, detecting those issues requires more
domain-specific input from the user (Kolluri et al. 2018), and, we believe, should be addressed at a higher-level by means of
a suitable domain-specific language for particular smart contract scenarios (e.g., interacting with an off-chain oracle)
4This is sound, as block numbers grow monotonically, without gaps.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Contract Structure185:6 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

1 library Crowdfunding

2 (* Map ByStr20 Uint128→ ByStr20→ Uint128→ *)

3 (* Option (Map ByStr20 Uint128) *)

4 let check_update = (* ... *)

5 (* BNum→ BNum→ Bool *)

6 let blk_leq = (* ... *)

7

8 contract Crowdfunding

9 (* Immutable parameters *)

10 (owner : ByStr20, max_block : BNum, goal : Uint128)

11 (* Mutable fields *)

12 field backers : Map ByStr20 Uint128 = Emp ByStr20 Uint128

13 field funded : Bool = False

14 (* Transitions *)

15 transition Donate (sender : ByStr20, amount : Uint128)

16 transition GetFunds (sender : ByStr20, amount : Uint128)

17 transition ClaimBack (sender : ByStr20, amount : Uint128)

Fig. 2. A signature of the Crowdfunding contract.

contract being in an intermediate state of the computation. This behaviour, dubbed reentrancy (Gün
Sirer 2016), in the case of DAO led to the draining of USD 50 million worth of cryptocurrency, and
resulted in a fork in the blockchain going against the consensus protocol, as well as sparking a lot
of research on ensuring future contract implementations being reentrancy-safe (Grossman et al.
2018; Rodler et al. 2019; Tsankov et al. 2018). In contrast, Scilla sidesteps the reentrancy issue by
design; by making the message-passing communication the only way for the contracts to interact,
we enforce atomicity of changes in a contract state.3

For an intuition of a contract layout, consider a Crowdfunding smart contract. The goal of the
contract is, as the name implies, to collect donations aiming for a certain goal by a specified deadline,
given as a “maximal” block number in the underlying blockchain.4 It should then allow potential
backers to donate certain amounts of funds, making records of those donations. If the goal is
reached by the deadline, the owner of the contract, specified upfront via its account address, should
be able to extract the funds, at which point the fulfillment of their obligations to the backers is no
longer a concern that could be addressed via the blockchain. If the goal is not reached before the
deadline, each backer should be able to claim their donation back.

Fig. 2 shows a high-level signature of Crowdfunding with executable code omitted. The prelude of
the contract defines the library of the pure (i.e., side effect-free) functions that the contract can use
to perform computations on the data stored in its state, in a referentially-transparent way (Mitchell
2003). We elide the implementations of the library functions check_update (used to conditionally
update the map of backers and their donations) and blk_leq (used to compare two block numbers)
and only show their types, whose meaning should be clear. Each contract’s pure library can be
referred by other contracts, independently deployed later, enabling reuse of the code, shared by
means of the replicated blockchain state (as will be described Sec. 3.5). The Crowdfunding contract,
though, does not rely on any external functions.

Intermezzo 2 (External Libraries and Parity Wallet hack). Another famous hack in Ethereum,
resulting USD 146 million worth of coins becoming inaccessible (Alois 2017), was caused by

3Indeed, other concurrency-related issues, e.g., caused by non-determinism of transaction scheduling, remain to be present
even in the “transition-as-an-atomic-change” model adopted by Scilla. However, detecting those issues requires more
domain-specific input from the user (Kolluri et al. 2018), and, we believe, should be addressed at a higher-level by means of
a suitable domain-specific language for particular smart contract scenarios (e.g., interacting with an off-chain oracle)
4This is sound, as block numbers grow monotonically, without gaps.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Contract Structure185:6 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

1 library Crowdfunding

2 (* Map ByStr20 Uint128→ ByStr20→ Uint128→ *)

3 (* Option (Map ByStr20 Uint128) *)

4 let check_update = (* ... *)

5 (* BNum→ BNum→ Bool *)

6 let blk_leq = (* ... *)

7

8 contract Crowdfunding

9 (* Immutable parameters *)

10 (owner : ByStr20, max_block : BNum, goal : Uint128)

11 (* Mutable fields *)

12 field backers : Map ByStr20 Uint128 = Emp ByStr20 Uint128

13 field funded : Bool = False

14 (* Transitions *)

15 transition Donate (sender : ByStr20, amount : Uint128)

16 transition GetFunds (sender : ByStr20, amount : Uint128)

17 transition ClaimBack (sender : ByStr20, amount : Uint128)

Fig. 2. A signature of the Crowdfunding contract.

contract being in an intermediate state of the computation. This behaviour, dubbed reentrancy (Gün
Sirer 2016), in the case of DAO led to the draining of USD 50 million worth of cryptocurrency, and
resulted in a fork in the blockchain going against the consensus protocol, as well as sparking a lot
of research on ensuring future contract implementations being reentrancy-safe (Grossman et al.
2018; Rodler et al. 2019; Tsankov et al. 2018). In contrast, Scilla sidesteps the reentrancy issue by
design; by making the message-passing communication the only way for the contracts to interact,
we enforce atomicity of changes in a contract state.3

For an intuition of a contract layout, consider a Crowdfunding smart contract. The goal of the
contract is, as the name implies, to collect donations aiming for a certain goal by a specified deadline,
given as a “maximal” block number in the underlying blockchain.4 It should then allow potential
backers to donate certain amounts of funds, making records of those donations. If the goal is
reached by the deadline, the owner of the contract, specified upfront via its account address, should
be able to extract the funds, at which point the fulfillment of their obligations to the backers is no
longer a concern that could be addressed via the blockchain. If the goal is not reached before the
deadline, each backer should be able to claim their donation back.

Fig. 2 shows a high-level signature of Crowdfunding with executable code omitted. The prelude of
the contract defines the library of the pure (i.e., side effect-free) functions that the contract can use
to perform computations on the data stored in its state, in a referentially-transparent way (Mitchell
2003). We elide the implementations of the library functions check_update (used to conditionally
update the map of backers and their donations) and blk_leq (used to compare two block numbers)
and only show their types, whose meaning should be clear. Each contract’s pure library can be
referred by other contracts, independently deployed later, enabling reuse of the code, shared by
means of the replicated blockchain state (as will be described Sec. 3.5). The Crowdfunding contract,
though, does not rely on any external functions.

Intermezzo 2 (External Libraries and Parity Wallet hack). Another famous hack in Ethereum,
resulting USD 146 million worth of coins becoming inaccessible (Alois 2017), was caused by

3Indeed, other concurrency-related issues, e.g., caused by non-determinism of transaction scheduling, remain to be present
even in the “transition-as-an-atomic-change” model adopted by Scilla. However, detecting those issues requires more
domain-specific input from the user (Kolluri et al. 2018), and, we believe, should be addressed at a higher-level by means of
a suitable domain-specific language for particular smart contract scenarios (e.g., interacting with an off-chain oracle)
4This is sound, as block numbers grow monotonically, without gaps.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Contract Structure185:6 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

1 library Crowdfunding

2 (* Map ByStr20 Uint128→ ByStr20→ Uint128→ *)

3 (* Option (Map ByStr20 Uint128) *)

4 let check_update = (* ... *)

5 (* BNum→ BNum→ Bool *)

6 let blk_leq = (* ... *)

7

8 contract Crowdfunding

9 (* Immutable parameters *)

10 (owner : ByStr20, max_block : BNum, goal : Uint128)

11 (* Mutable fields *)

12 field backers : Map ByStr20 Uint128 = Emp ByStr20 Uint128

13 field funded : Bool = False

14 (* Transitions *)

15 transition Donate (sender : ByStr20, amount : Uint128)

16 transition GetFunds (sender : ByStr20, amount : Uint128)

17 transition ClaimBack (sender : ByStr20, amount : Uint128)

Fig. 2. A signature of the Crowdfunding contract.

contract being in an intermediate state of the computation. This behaviour, dubbed reentrancy (Gün
Sirer 2016), in the case of DAO led to the draining of USD 50 million worth of cryptocurrency, and
resulted in a fork in the blockchain going against the consensus protocol, as well as sparking a lot
of research on ensuring future contract implementations being reentrancy-safe (Grossman et al.
2018; Rodler et al. 2019; Tsankov et al. 2018). In contrast, Scilla sidesteps the reentrancy issue by
design; by making the message-passing communication the only way for the contracts to interact,
we enforce atomicity of changes in a contract state.3

For an intuition of a contract layout, consider a Crowdfunding smart contract. The goal of the
contract is, as the name implies, to collect donations aiming for a certain goal by a specified deadline,
given as a “maximal” block number in the underlying blockchain.4 It should then allow potential
backers to donate certain amounts of funds, making records of those donations. If the goal is
reached by the deadline, the owner of the contract, specified upfront via its account address, should
be able to extract the funds, at which point the fulfillment of their obligations to the backers is no
longer a concern that could be addressed via the blockchain. If the goal is not reached before the
deadline, each backer should be able to claim their donation back.

Fig. 2 shows a high-level signature of Crowdfunding with executable code omitted. The prelude of
the contract defines the library of the pure (i.e., side effect-free) functions that the contract can use
to perform computations on the data stored in its state, in a referentially-transparent way (Mitchell
2003). We elide the implementations of the library functions check_update (used to conditionally
update the map of backers and their donations) and blk_leq (used to compare two block numbers)
and only show their types, whose meaning should be clear. Each contract’s pure library can be
referred by other contracts, independently deployed later, enabling reuse of the code, shared by
means of the replicated blockchain state (as will be described Sec. 3.5). The Crowdfunding contract,
though, does not rely on any external functions.

Intermezzo 2 (External Libraries and Parity Wallet hack). Another famous hack in Ethereum,
resulting USD 146 million worth of coins becoming inaccessible (Alois 2017), was caused by

3Indeed, other concurrency-related issues, e.g., caused by non-determinism of transaction scheduling, remain to be present
even in the “transition-as-an-atomic-change” model adopted by Scilla. However, detecting those issues requires more
domain-specific input from the user (Kolluri et al. 2018), and, we believe, should be addressed at a higher-level by means of
a suitable domain-specific language for particular smart contract scenarios (e.g., interacting with an off-chain oracle)
4This is sound, as block numbers grow monotonically, without gaps.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Contract Structure185:6 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

1 library Crowdfunding

2 (* Map ByStr20 Uint128→ ByStr20→ Uint128→ *)

3 (* Option (Map ByStr20 Uint128) *)

4 let check_update = (* ... *)

5 (* BNum→ BNum→ Bool *)

6 let blk_leq = (* ... *)

7

8 contract Crowdfunding

9 (* Immutable parameters *)

10 (owner : ByStr20, max_block : BNum, goal : Uint128)

11 (* Mutable fields *)

12 field backers : Map ByStr20 Uint128 = Emp ByStr20 Uint128

13 field funded : Bool = False

14 (* Transitions *)

15 transition Donate (sender : ByStr20, amount : Uint128)

16 transition GetFunds (sender : ByStr20, amount : Uint128)

17 transition ClaimBack (sender : ByStr20, amount : Uint128)

Fig. 2. A signature of the Crowdfunding contract.

contract being in an intermediate state of the computation. This behaviour, dubbed reentrancy (Gün
Sirer 2016), in the case of DAO led to the draining of USD 50 million worth of cryptocurrency, and
resulted in a fork in the blockchain going against the consensus protocol, as well as sparking a lot
of research on ensuring future contract implementations being reentrancy-safe (Grossman et al.
2018; Rodler et al. 2019; Tsankov et al. 2018). In contrast, Scilla sidesteps the reentrancy issue by
design; by making the message-passing communication the only way for the contracts to interact,
we enforce atomicity of changes in a contract state.3

For an intuition of a contract layout, consider a Crowdfunding smart contract. The goal of the
contract is, as the name implies, to collect donations aiming for a certain goal by a specified deadline,
given as a “maximal” block number in the underlying blockchain.4 It should then allow potential
backers to donate certain amounts of funds, making records of those donations. If the goal is
reached by the deadline, the owner of the contract, specified upfront via its account address, should
be able to extract the funds, at which point the fulfillment of their obligations to the backers is no
longer a concern that could be addressed via the blockchain. If the goal is not reached before the
deadline, each backer should be able to claim their donation back.

Fig. 2 shows a high-level signature of Crowdfunding with executable code omitted. The prelude of
the contract defines the library of the pure (i.e., side effect-free) functions that the contract can use
to perform computations on the data stored in its state, in a referentially-transparent way (Mitchell
2003). We elide the implementations of the library functions check_update (used to conditionally
update the map of backers and their donations) and blk_leq (used to compare two block numbers)
and only show their types, whose meaning should be clear. Each contract’s pure library can be
referred by other contracts, independently deployed later, enabling reuse of the code, shared by
means of the replicated blockchain state (as will be described Sec. 3.5). The Crowdfunding contract,
though, does not rely on any external functions.

Intermezzo 2 (External Libraries and Parity Wallet hack). Another famous hack in Ethereum,
resulting USD 146 million worth of coins becoming inaccessible (Alois 2017), was caused by

3Indeed, other concurrency-related issues, e.g., caused by non-determinism of transaction scheduling, remain to be present
even in the “transition-as-an-atomic-change” model adopted by Scilla. However, detecting those issues requires more
domain-specific input from the user (Kolluri et al. 2018), and, we believe, should be addressed at a higher-level by means of
a suitable domain-specific language for particular smart contract scenarios (e.g., interacting with an off-chain oracle)
4This is sound, as block numbers grow monotonically, without gaps.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

transition Donate (sender: ByStr20, amount: Uint128)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

transition Donate (sender: ByStr20, amount: Uint128)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Structure of the incoming message

transition Donate (sender: ByStr20, amount: Uint128)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Using pure library functions 
(defined above in the contract)

transition Donate (sender: ByStr20, amount: Uint128)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Reading from blockchain state

transition Donate (sender: ByStr20, amount: Uint128)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Manipulating with fields

transition Donate (sender: ByStr20, amount: Uint128)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Explicitly accepting  
incoming funds

transition Donate (sender: ByStr20, amount: Uint128)
 blk <- & BLOCKNUMBER;
 in_time = blk_leq blk max_block;
 match in_time with
 | True =>
 bs <- backers;
 res = check_update bs sender amount;
 match res with
 | None =>
 msg = {tag : Main; to : sender; amount : 0; code : already_backed};
 msgs = one_msg msg;
 send msgs
 | Some bs1 =>
 backers := bs1;
 accept;
 msg = {tag : Main; to : sender; amount : 0; code : accepted_code};
 msgs = one_msg msg;
 send msgs
 end
 | False =>
 msg = {tag : Main; to : sender; amount : 0; code : missed_dealine};
 msgs = one_msg msg;
 send msgs
 end
end

Creating and sending messages

• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔

Wishlist

• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔

Wishlist

• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔

Wishlist

✔

• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔

Wishlist

✔

Expressivity

Expressivity
Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

• Standard Library: ~1 kLOC

• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔

Wishlist

✔

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔
✔

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔
✔
✔

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔
✔
✔

Verification-Friendliness

• A framework for staged static analyses (optional)

• Two instances:

• Gas-Usage Analysis

• Cash-Flow Analysis

Verification-Friendliness

• A framework for staged static analyses (optional)

• Two instances:

• Gas-Usage Analysis (resources)

• Cash-Flow Analysis (data flow)

Verification-Friendliness

• A framework for staged static analyses (optional)

• Two instances:

• Gas-Usage Analysis (resources)

• Cash-Flow Analysis (data flow)

Cash-Flow Analysis

185:6 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

1 library Crowdfunding

2 (* Map ByStr20 Uint128→ ByStr20→ Uint128→ *)

3 (* Option (Map ByStr20 Uint128) *)

4 let check_update = (* ... *)

5 (* BNum→ BNum→ Bool *)

6 let blk_leq = (* ... *)

7

8 contract Crowdfunding

9 (* Immutable parameters *)

10 (owner : ByStr20, max_block : BNum, goal : Uint128)

11 (* Mutable fields *)

12 field backers : Map ByStr20 Uint128 = Emp ByStr20 Uint128

13 field funded : Bool = False

14 (* Transitions *)

15 transition Donate (sender : ByStr20, amount : Uint128)

16 transition GetFunds (sender : ByStr20, amount : Uint128)

17 transition ClaimBack (sender : ByStr20, amount : Uint128)

Fig. 2. A signature of the Crowdfunding contract.

contract being in an intermediate state of the computation. This behaviour, dubbed reentrancy (Gün
Sirer 2016), in the case of DAO led to the draining of USD 50 million worth of cryptocurrency, and
resulted in a fork in the blockchain going against the consensus protocol, as well as sparking a lot
of research on ensuring future contract implementations being reentrancy-safe (Grossman et al.
2018; Rodler et al. 2019; Tsankov et al. 2018). In contrast, Scilla sidesteps the reentrancy issue by
design; by making the message-passing communication the only way for the contracts to interact,
we enforce atomicity of changes in a contract state.3

For an intuition of a contract layout, consider a Crowdfunding smart contract. The goal of the
contract is, as the name implies, to collect donations aiming for a certain goal by a specified deadline,
given as a “maximal” block number in the underlying blockchain.4 It should then allow potential
backers to donate certain amounts of funds, making records of those donations. If the goal is
reached by the deadline, the owner of the contract, specified upfront via its account address, should
be able to extract the funds, at which point the fulfillment of their obligations to the backers is no
longer a concern that could be addressed via the blockchain. If the goal is not reached before the
deadline, each backer should be able to claim their donation back.

Fig. 2 shows a high-level signature of Crowdfunding with executable code omitted. The prelude of
the contract defines the library of the pure (i.e., side effect-free) functions that the contract can use
to perform computations on the data stored in its state, in a referentially-transparent way (Mitchell
2003). We elide the implementations of the library functions check_update (used to conditionally
update the map of backers and their donations) and blk_leq (used to compare two block numbers)
and only show their types, whose meaning should be clear. Each contract’s pure library can be
referred by other contracts, independently deployed later, enabling reuse of the code, shared by
means of the replicated blockchain state (as will be described Sec. 3.5). The Crowdfunding contract,
though, does not rely on any external functions.

Intermezzo 2 (External Libraries and Parity Wallet hack). Another famous hack in Ethereum,
resulting USD 146 million worth of coins becoming inaccessible (Alois 2017), was caused by

3Indeed, other concurrency-related issues, e.g., caused by non-determinism of transaction scheduling, remain to be present
even in the “transition-as-an-atomic-change” model adopted by Scilla. However, detecting those issues requires more
domain-specific input from the user (Kolluri et al. 2018), and, we believe, should be addressed at a higher-level by means of
a suitable domain-specific language for particular smart contract scenarios (e.g., interacting with an off-chain oracle)
4This is sound, as block numbers grow monotonically, without gaps.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Which of those correspond to currency?

Cash-Flow Analysis
• Soundly infers what fields represent money
• Based on simple abstract interpretation
• Takes user annotations for custom tokens

185:18 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Contrary to the common perception that the main virtue of a sound and complete gas analyser
for smart contracts is to predict dynamic gas consumption (Marescotti et al. 2018; Wang 2019), we
believe the main benefit of such an analysis is the possibility to detect gas inefficiency patterns
prior to contract deployment (Chen et al. 2017). With this regard, the ⊤ result of our analysis is
still informative, as it indicates worse-than-linear gas consumption, which is usually a design flaw.

5.2 Cash-Flow Analysis

The second major application of the checker framework is the cash-flow analysis. Each deployed
contract constitutes an independent account on the network, and the contract’s transitions can
access the current balance of its account through the implicitly declared balance field. However, a
contract such as the Crowdfunding needs to keep track not only of its total balance, but also how
much money each of the backers has contributed to the crowdfunding campaign.

τ ::= Money | NotMoney | Map τ | t τ | ⊤ | ⊥
t ::= Option | Pair | List | . . .

(maps) Map τ ⊑ Map τ ′ iff τ ⊑ τ ′

(algebraic types) t τ ⊑ t′ τ ′ iff t = t′ and τi ⊑ τ ′i for all i
(bottom) ⊥ ⊑ τ for all τ
(top) τ ⊑ ⊤ for all τ

Fig. 10. Tags and partial ordering on them.

The cash-flow analysis attempts to deter-
mine which parts of the contract’s state (i.e.,
its fields) represent an amount of money, in or-
der to ensure that money is being accounted for
in a consistent way. To do so we apply standard
techniques of abstract interpretation (Cousot
and Cousot 1977), so each field, parameter, local
variable, and subexpression in the contract is
given a tag indicating if and how it is used wrt. representing money.

Lattice of tags. The tags (ranged over by τ) mimic the type system and are summarised in
Fig. 10. Money indicates that an expression represents money; NotMoney indicates that an
expression certainly is not money;Map τ is for maps whose co-domain has tag τ ;11 t τ indicates
that an expression is of the algebraic type t, where the type parameters of t are tagged with τ .12

The meanings of ⊥ is nothing is known about the component, and ⊤ represents an apparent
inconsistency.
The collection of all contract parameters, fields, transition parameters and local parameters,

along with their respective tags, form the elements of a lattice with the ordering described in Fig. 10
applied pointwise to each typed AST node. The lattice is finite, since the depth of a combination of
Map and t is finite for well-typed contracts. The complexity of cash-flow analyser’s procedure is
determined by the height of the abstract domain lattice and, hence, is quadratic in the size of the
program at worst.

Transfer function. The main transfer function (Muchnick 1997)! is defined on the lattice of pairs
Ψ, s, where an environment Ψ maps fields and variables to their current tags and s is a sequence
of statements that are being annotated with tags (Fig. 11). It analyses the usage of variables, and
generating new tags representing the least upper bound (lub, %) of their current tags and their
usage. This constitutes a monotone function within the lattice, and repeated applications of the
function (starting from the element where all variables are tagged with ⊥) are thus guaranteed to
reach a fixpoint.

An environment Ψ is threaded through a list of statements, which is analysed backwards in order
to analyse usage before declarations (Fig. 11, top left). Once a variable declaration i1 is reached
(Fig. 11, top middle), it is tagged with the current tag ⟨i1,τ ⟩, and the variable is removed from the

11We are unaware of a use case where a map domain represents money.
12We make exceptions for the types nat and bool (as well as user-defined types isomorphic to bool), which in Scilla are
algebraic types, but which are treated as base types in the cashflow analysis. Values of those types are tagged with Money
or NotMoney depending on the usage.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Lattice of Cash Tags

Cash-Flow Analysis
185:6 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

1 library Crowdfunding

2 (* Map ByStr20 Uint128→ ByStr20→ Uint128→ *)

3 (* Option (Map ByStr20 Uint128) *)

4 let check_update = (* ... *)

5 (* BNum→ BNum→ Bool *)

6 let blk_leq = (* ... *)

7

8 contract Crowdfunding

9 (* Immutable parameters *)

10 (owner : ByStr20, max_block : BNum, goal : Uint128)

11 (* Mutable fields *)

12 field backers : Map ByStr20 Uint128 = Emp ByStr20 Uint128

13 field funded : Bool = False

14 (* Transitions *)

15 transition Donate (sender : ByStr20, amount : Uint128)

16 transition GetFunds (sender : ByStr20, amount : Uint128)

17 transition ClaimBack (sender : ByStr20, amount : Uint128)

Fig. 2. A signature of the Crowdfunding contract.

contract being in an intermediate state of the computation. This behaviour, dubbed reentrancy (Gün
Sirer 2016), in the case of DAO led to the draining of USD 50 million worth of cryptocurrency, and
resulted in a fork in the blockchain going against the consensus protocol, as well as sparking a lot
of research on ensuring future contract implementations being reentrancy-safe (Grossman et al.
2018; Rodler et al. 2019; Tsankov et al. 2018). In contrast, Scilla sidesteps the reentrancy issue by
design; by making the message-passing communication the only way for the contracts to interact,
we enforce atomicity of changes in a contract state.3

For an intuition of a contract layout, consider a Crowdfunding smart contract. The goal of the
contract is, as the name implies, to collect donations aiming for a certain goal by a specified deadline,
given as a “maximal” block number in the underlying blockchain.4 It should then allow potential
backers to donate certain amounts of funds, making records of those donations. If the goal is
reached by the deadline, the owner of the contract, specified upfront via its account address, should
be able to extract the funds, at which point the fulfillment of their obligations to the backers is no
longer a concern that could be addressed via the blockchain. If the goal is not reached before the
deadline, each backer should be able to claim their donation back.

Fig. 2 shows a high-level signature of Crowdfunding with executable code omitted. The prelude of
the contract defines the library of the pure (i.e., side effect-free) functions that the contract can use
to perform computations on the data stored in its state, in a referentially-transparent way (Mitchell
2003). We elide the implementations of the library functions check_update (used to conditionally
update the map of backers and their donations) and blk_leq (used to compare two block numbers)
and only show their types, whose meaning should be clear. Each contract’s pure library can be
referred by other contracts, independently deployed later, enabling reuse of the code, shared by
means of the replicated blockchain state (as will be described Sec. 3.5). The Crowdfunding contract,
though, does not rely on any external functions.

Intermezzo 2 (External Libraries and Parity Wallet hack). Another famous hack in Ethereum,
resulting USD 146 million worth of coins becoming inaccessible (Alois 2017), was caused by

3Indeed, other concurrency-related issues, e.g., caused by non-determinism of transaction scheduling, remain to be present
even in the “transition-as-an-atomic-change” model adopted by Scilla. However, detecting those issues requires more
domain-specific input from the user (Kolluri et al. 2018), and, we believe, should be addressed at a higher-level by means of
a suitable domain-specific language for particular smart contract scenarios (e.g., interacting with an off-chain oracle)
4This is sound, as block numbers grow monotonically, without gaps.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

• Soundly infers what fields represent money
• Based on simple abstract interpretation
• Takes user annotations for custom tokens

Cash-Flow Analysis
Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥
Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Cash-Flow Analysis

non-native tokens

Cash-Flow Analysis
Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥
Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

non-fungible tokens

Cash-Flow Analysis
Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥

Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Safer Smart Contract Programming with Scilla 185:21

Tab. 2. Statistics for implemented basic contracts

Contract LOC #Lib #Trans Asympt. GU $-Flow

HelloWorld 31 3 2 O(|string|) !

Crowdfunding 127 13 3 O(|map|) !

Auction 140 11 3 O(|map|) !

ERC20 158 2 6 O(1) !
∗

ERC721 270 15 6 O(|map|) !⊥
Wallet 363 28 9 O(|map| × |list|) !

Bookstore 123 6 3 O(|string| + |map|) !

HashGame 209 16 3 O(1) !

Schnorr 71 2 3 O(|bystr|) !

standards, as well as a version of an auction (Auction), multi-party wallet (Wallet), multi-player
game (HashGame), and a service contract for digital signing (Schnorr).15 The table reports on
the contract sizes (in LOC), numbers of library functions each of them defines (#Lib), number of
transitions (#Trans), and worst-case asymptotic transition complexity by the gas usage analyser
(Sec. 5.1), stated in terms of types ascribed to fields whose size makes the principal contribution to
gas usage. The last column tells whether the results of the cash-flow analyser (Sec. 5.2) matched the
developer’s intuition wrt. assigning money tags. For all contracts, except for ERC20 and ERC721,
the analysis correctly derived the dichotomy (!) for money/not money-storing fields.

In the two mentioned contracts, fields that store amounts of non-native tokens were marked with
⊥, as they have no data flow involving balance/amount components of the contract and messages.
That is, the analysis had no “seed” to start assigning the money tags. In the case of the ERC20
contract, once the cashflow analyser was provided with suitable hints regarding which fields should
be assigned money tags, the analysis proceeded to mark other fields appropriately as well, thus
giving the expected outcome. In the case of the ERC721 contract, however, no extra information
was gained even with hints. The reason for this is that ERC721 defines a non-fungible type of token,
i.e., a type of token where individual tokens are not interchangeable, and which may therefore
carry different values. In contrast, the cashflow analyser assumes that all money is fungible.16

6.2 Performance Evaluation and Comparison to EVM

We evaluated Scilla implementation with the goal of answering the following research questions:

(1) What is Scilla’s performance on common contracts and what are the main bottlenecks?
(2) How does the performance of Scilla evaluator compare to EVM on similar contracts?
(3) What are the sizes of similar contracts implemented in Scilla, Solidity, and EVM bytecode?

Sincewe prioritised tractability of the language definition and the contracts implemented in it over
performance, it was not our goal to beat EVM, but merely to show that the performance/contract
sizes are comparable with those of the highly optimised state-of-the-art blockchain platform.
Furthermore, since the main performance bottlenecks in blockchain protocols are the speed of
mining transaction and communication costs (taking up to a few seconds), one could afford contract
running times that are no worse than the time for creating a new block.

15According to https://etherscan.io/tokens, roughly 16% of active smart contracts on Ethereum are ERC20. According to
https://dappradar.com/charts, games, gambling, and collectibles (ERC721) are the most used contracts on Ethereum.
16A fungible token type is similar to traditional currencies where coins are indistinguishable and thus are freely interchange-
able (if they have the same denomination). Conversely, a non-fungible token type is more similar to collector’s items, e.g.,
paintings, where the tokens are distinguishable, and may therefore not be interchangeable.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔
✔
✔

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔
✔
✔
✔

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔
✔
✔
✔

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔
✔
✔
✔
✔

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔
✔
✔
✔
✔

Relative Code Size

185:22 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Tab. 3. Breakdown of contract run-times (in ms): initialisation, execution, serialisation, and output.

init exec serialise write

Transition/State size 10k 100k 500k 10k 100k 500k 10k 100k 500k 10k 100k 500k
ft-transfer 67 709 4,208 0.05 0.05 0.07 25 501 2,506 14 244 1,976
nft-setApproveForAll 239 3,011 15,382 1.92 39 206 41 568 3,546 23 242 1,719
auc-bid 61 665 3,480 0.83 0.96 0.10 23 456 1,860 17 221 1,515
cfd-pledge 68 723 3,705 1.96 42 207 23 500 2,057 20 216 1,368

0

10

20

init exec serialize write

size: ft-tr nft-safa auc-bid cfd-plg

T
im

e
(s

)

10

20

init exec serialize write

(a) Relative time breakdown

T
im

e
(m

s)

500

1,000

1,500

ft-10 ft-50nft-10 nft-50auc-10 auc-50 cfd-50cfd-10

(b) Scilla/EVM execution times

Si
ze

 (
by

te
s)

ft nft auc cfd

5k

10k

(c) Code size comparison

Fig. 12. Runtime and size statistics on some representative smart contracts.

For our evaluation we have chosen the most common kinds of contracts used on Ethereum:
ERC20 (ft), ERC721 (nft), auction (auc) and crowdfunding (cfd). Performance experiments were
conducted on a commodity Intel Core i5 machine with 8GB RAM.17

To answer question (1), we have evaluated the interpreter performance on the most expensive
transitions of the chosen contracts (e.g., ERC20’s transfer), with the size of the largest affected
contract state component (e.g., a map field) ranging from 10k to 500k entries.18 The results are shown
in Tab. 3 and Fig. 12a. It is clear that the evaluator’s performance overhead is negligible (less than
1%) compared to the time taken by input/output of the contract state: reading from blockchain
(init), serialising and writing it back—those machineries operate with JSON representation of state
and their performance deteriorates linearly with the state size. This issue is orthogonal to our study
of the language design presented in this paper, and in Sec. 7, we discuss possible ways to address
it in the future. That said, even with the suboptimal IO implementation, in most of the cases the
observed transaction times are under 10s, which is acceptable for blockchain computations.
The implementation of Scilla is agnostic with regard to the underlying blockchain protocol,

and at the moment all interaction is done by passing state snapshots in JSON. Thus, making an
apples-to-apples comparison of Scilla/EVM performance is difficult, as EVM is an integral part of
the Ethereum protocol, and can access the entire blockchain state in a RAM-like manner. This leads
to more slow start-up time for EVM, but nearly constant-time access for contracts with large state,
whereas Scilla input-output overhead grows linearly. Fig. 12b shows a comparison of run-times
(from the cold start) of Scilla and EVM on the same four contracts with 10k and 50k state entries
(first/second four groups). In most of the cases, Scilla’s performance is better, but EVM shows
superior results, due to more efficient IO, when the state grows beyond 50k entries. The state of nft
is larger than the projected 10/50k, as it uses nested maps, while we only count “top-level” entries.

17The artefact containing the benchmarks is available on GitHub: https://github.com/ilyasergey/scilla-benchmarks.
18The largest Ethereum contract to date is ERC20 with 600k entries. Most of deployed contracts have less than 50k entries.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

Performance

185:22 Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken Chan Guan Hao

Tab. 3. Breakdown of contract run-times (in ms): initialisation, execution, serialisation, and output.

init exec serialise write

Transition/State size 10k 100k 500k 10k 100k 500k 10k 100k 500k 10k 100k 500k
ft-transfer 67 709 4,208 0.05 0.05 0.07 25 501 2,506 14 244 1,976
nft-setApproveForAll 239 3,011 15,382 1.92 39 206 41 568 3,546 23 242 1,719
auc-bid 61 665 3,480 0.83 0.96 0.10 23 456 1,860 17 221 1,515
cfd-pledge 68 723 3,705 1.96 42 207 23 500 2,057 20 216 1,368

0

10

20

init exec serialize write

size: ft-tr nft-safa auc-bid cfd-plg

T
im

e
(s

)

10

20

init exec serialize write

(a) Relative time breakdown

T
im

e
(m

s)

500

1,000

1,500

ft-10 ft-50nft-10 nft-50auc-10 auc-50 cfd-50cfd-10

(b) Scilla/EVM execution times

Si
ze

 (
by

te
s)

ft nft auc cfd

5k

10k

(c) Code size comparison

Fig. 12. Runtime and size statistics on some representative smart contracts.

For our evaluation we have chosen the most common kinds of contracts used on Ethereum:
ERC20 (ft), ERC721 (nft), auction (auc) and crowdfunding (cfd). Performance experiments were
conducted on a commodity Intel Core i5 machine with 8GB RAM.17

To answer question (1), we have evaluated the interpreter performance on the most expensive
transitions of the chosen contracts (e.g., ERC20’s transfer), with the size of the largest affected
contract state component (e.g., a map field) ranging from 10k to 500k entries.18 The results are shown
in Tab. 3 and Fig. 12a. It is clear that the evaluator’s performance overhead is negligible (less than
1%) compared to the time taken by input/output of the contract state: reading from blockchain
(init), serialising and writing it back—those machineries operate with JSON representation of state
and their performance deteriorates linearly with the state size. This issue is orthogonal to our study
of the language design presented in this paper, and in Sec. 7, we discuss possible ways to address
it in the future. That said, even with the suboptimal IO implementation, in most of the cases the
observed transaction times are under 10s, which is acceptable for blockchain computations.
The implementation of Scilla is agnostic with regard to the underlying blockchain protocol,

and at the moment all interaction is done by passing state snapshots in JSON. Thus, making an
apples-to-apples comparison of Scilla/EVM performance is difficult, as EVM is an integral part of
the Ethereum protocol, and can access the entire blockchain state in a RAM-like manner. This leads
to more slow start-up time for EVM, but nearly constant-time access for contracts with large state,
whereas Scilla input-output overhead grows linearly. Fig. 12b shows a comparison of run-times
(from the cold start) of Scilla and EVM on the same four contracts with 10k and 50k state entries
(first/second four groups). In most of the cases, Scilla’s performance is better, but EVM shows
superior results, due to more efficient IO, when the state grows beyond 50k entries. The state of nft
is larger than the projected 10/50k, as it uses nested maps, while we only count “top-level” entries.

17The artefact containing the benchmarks is available on GitHub: https://github.com/ilyasergey/scilla-benchmarks.
18The largest Ethereum contract to date is ERC20 with 600k entries. Most of deployed contracts have less than 50k entries.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 185. Publication date: October 2019.

I/O overhead
(now fixed)

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance

✔
✔
✔
✔
✔
✔

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance (in a ballpark of EVM)

✔
✔
✔
✔
✔
✔

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance (in a ballpark of EVM)

✔
✔
✔
✔
✔
✔
✔

Wishlist
• Explicit interaction: no reentrancy attacks

• Minimalistic (core interpreter ~200 LOC of OCaml)

• Explicit control of effects (eg, acceptance of funds)

• Expressive (suitable for all scenarios of interest)

• Analysis/Verification friendly

• Predictable resource (gas) consumption

• Reasonable performance (in a ballpark of EVM)

✔
✔
✔
✔
✔
✔
✔

Adoption

• Scilla launched on Zilliqa test-net in June 2018, 
on main-net since June 2019

• Dozens of community-contributed contracts:
• ERC223, ERC777
• contracts for crowdsales, escrows
• contracts for access control
• upcoming standard ERC1404 for security tokens

• Language-Server Protocol Support
• Emacs and VSCode plugins (w/ semantic highlighting)
• Workshops, tutorials, developer sessions

To Take Away
• Adopting a foundational calculus is a great way to keep  

a new language minimalistic and expressive.

• Lots of ideas from PL research can be reused with  
very low overhead on implementation and adoption.

• Yet the language will be forced to grow and change.

• It pays off to build an enthusiastic developer community:
more feedback — more informed design choices.

Thanks!scilla-lang.org

https://scilla-lang.org/

