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Trust, n.  /trʌst/

Firm belief in the reliability, truth,  
or ability of someone or something;
confidence or faith in a person or thing, 
or in an attribute of a person or thing.



TURING AWARD LECTURE 

Reflections on Trusting Trust 
To what extent should one trust a statement that a program is free of Trojan 
horses? Perhaps it is more important to trust the people who wrote the 
software. 

KEN THOMPSON 

INTRODUCTION 
I thank the ACM for this award. I can' t  help but feel 
that I am receiving this honor for t iming and serendip- 
ity as much as technical  merit. UNIX 1 swept into popu- 
larity with an industry-wide change from central main- 
frames to autonomous minis. I suspect that Daniel Bob- 
row [1] would be here instead of me if he could not 
afford a PDP-10 and had had to "settle" for a PDP-11. 
Moreover, the current  state of UNIX is the result of the 
labors of a large number  of people. 

There is an old adage, "Dance with the one that 
brought you," which means that I should talk about 
UNIX. I have not worked on mainstream UNIX in many 
years, yet I continue to get undeserved credit  for the 
work of others. Therefore, I am not going to talk about 
UNIX, but I want  to thank everyone who has contrib- 
uted. 

That brings me to Dennis Ritchie. Our  collaboration 
has been a thing of beauty. In the ten years that we 
have worked together, I can recall only one case of 
miscoordination of work. On that occasion, I discovered 
that we both had wri t ten the same 20-line assembly 
language program. I compared the sources and was as- 
tounded to find that they matched character-for-char- 
acter. The result of our work together has been far 
greater than the work that we each contributed. 

I am a programmer.  On my 1040 form, that is what  I 
put down as my occupation. As a programmer,  I wri te  

1 UNIX is a trademark of AT&T Bell Laboratories. 
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programs. I would like to present to you the cutest 
program I ever wrote. I will do this in three stages and 
try to bring it together at the end. 

STAGE I 
In college, before video games, we would amuse our- 
selves by posing programming exercises. One of the 
favorites was to write the shortest self-reproducing pro- 
gram. Since this is an exercise divorced from reality, 
the usual vehicle was FORTRAN. Actually,  FORTRAN 
was the language of choice for the same reason that 
three-legged races are popular. 

More precisely stated, the problem is to write  a 
source program that, when compiled and executed, will  
produce as output an exact copy of its source. If you 
have never done this, I urge you to try it on your own. 
The discovery of how to do it is a revelat ion that far 
surpasses any benefit obtained by being told how to do 
it. The part about "shortest" was just an incentive to 
demonstrate skill and determine a winner.  

Figure 1 shows a self-reproducing program in the C 3 
programming language. (The purist  will  note that the 
program is not precisely a self-reproducing program, 
but will produce a self-reproducing program.) This en- 
try is much too large to win a prize, but it demonstrates 
the technique and has two important  properties that I 
need to complete my story: 1) This program can be 
easily wri t ten by another program. 2) This program can 
contain an arbi trary amount  of excess baggage that will 
be reproduced along with the main algorithm. In the 
example, even the comment  is reproduced.  
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fact.exe

101010101010000011000
101010101010101010100
010101010100000011111
000101010000111010101
001101010101001110101

Compiler

fact.c

int fact(int n) {
  if (n <= 0) return 1;
  int i = 1, f = 1; 
  while (i <= n) {
    f = f * i;
    i++;
  }
  return f;
}
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The moral is obvious. You 
can't trust code that you did 
not totally create yourself. [...] 
No amount of source-level 
verification or scrutiny will 
protect you from using 
untrusted code. 



• Vulnerabilities due to high-level protocol design: 
• EOS Transaction Congestion Attack (Jan 2019): 

Different priorities in transaction processing resulted in adversarial denial-of-service. 

• Low-level implementation bugs violating the protocol. 
• Bitcoin Value Overflow Incident (August 2010): 

due to data structure bug, the implementation accepts a malformed transaction. 

• Bitcoin Accidental Hard Fork (March 2013):  
Switching from BerkeleyDB to LevelDB unintentionally redefined the consensus. 

• Bitcoin Inflation Bug (September 2018): 
Faulty transaction processing allows for denial-of-service attack (unexploited).

Shall we Trust Blockchain Implementations?



bitcoin.cpp

#include <qt/bitcoin.h>
#include <qt/bitcoingui.h>
#include <chainparams.h>
#include <fs.h>
static QString   
GetLangTerritory()
...

4 <latexit sha1_base64="3U6mZIrWxnTO4gupnqSRjPZw7bg=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF0xaaUCbTSTt0MonzEELob7hxoYhbf8adf+O0zUJbDwwczjmXufdEGWdKu+63U1lb39jcqm7Xdnb39g/qh0cdlRpJqE9SnspehBXlTFBfM81pL5MUJxGn3WhyO/O7T1QqlooHnWc0TPBIsJgRrK0UBDZMiJE8p4+DesNtunOgVeKVpAEl2oP6VzBMiUmo0IRjpfqem+mwwFIzwum0FhhFM0wmeET7lgqcUBUW852n6MwqQxSn0j6h0Vz9PVHgRKk8iWwywXqslr2Z+J/XNzq+DgsmMqOpIIuPYsORTtGsADRk9mTNc0swkczuisgYS0y0ralmS/CWT14lnYum5za9+8tG66asowoncArn4MEVtOAO2uADgQye4RXeHOO8OO/OxyJaccqZY/gD5/MHhveR/Q==</latexit><latexit sha1_base64="3U6mZIrWxnTO4gupnqSRjPZw7bg=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF0xaaUCbTSTt0MonzEELob7hxoYhbf8adf+O0zUJbDwwczjmXufdEGWdKu+63U1lb39jcqm7Xdnb39g/qh0cdlRpJqE9SnspehBXlTFBfM81pL5MUJxGn3WhyO/O7T1QqlooHnWc0TPBIsJgRrK0UBDZMiJE8p4+DesNtunOgVeKVpAEl2oP6VzBMiUmo0IRjpfqem+mwwFIzwum0FhhFM0wmeET7lgqcUBUW852n6MwqQxSn0j6h0Vz9PVHgRKk8iWwywXqslr2Z+J/XNzq+DgsmMqOpIIuPYsORTtGsADRk9mTNc0swkczuisgYS0y0ralmS/CWT14lnYum5za9+8tG66asowoncArn4MEVtOAO2uADgQye4RXeHOO8OO/OxyJaccqZY/gD5/MHhveR/Q==</latexit><latexit sha1_base64="3U6mZIrWxnTO4gupnqSRjPZw7bg=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF0xaaUCbTSTt0MonzEELob7hxoYhbf8adf+O0zUJbDwwczjmXufdEGWdKu+63U1lb39jcqm7Xdnb39g/qh0cdlRpJqE9SnspehBXlTFBfM81pL5MUJxGn3WhyO/O7T1QqlooHnWc0TPBIsJgRrK0UBDZMiJE8p4+DesNtunOgVeKVpAEl2oP6VzBMiUmo0IRjpfqem+mwwFIzwum0FhhFM0wmeET7lgqcUBUW852n6MwqQxSn0j6h0Vz9PVHgRKk8iWwywXqslr2Z+J/XNzq+DgsmMqOpIIuPYsORTtGsADRk9mTNc0swkczuisgYS0y0ralmS/CWT14lnYum5za9+8tG66asowoncArn4MEVtOAO2uADgQye4RXeHOO8OO/OxyJaccqZY/gD5/MHhveR/Q==</latexit><latexit sha1_base64="3U6mZIrWxnTO4gupnqSRjPZw7bg=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF0xaaUCbTSTt0MonzEELob7hxoYhbf8adf+O0zUJbDwwczjmXufdEGWdKu+63U1lb39jcqm7Xdnb39g/qh0cdlRpJqE9SnspehBXlTFBfM81pL5MUJxGn3WhyO/O7T1QqlooHnWc0TPBIsJgRrK0UBDZMiJE8p4+DesNtunOgVeKVpAEl2oP6VzBMiUmo0IRjpfqem+mwwFIzwum0FhhFM0wmeET7lgqcUBUW852n6MwqQxSn0j6h0Vz9PVHgRKk8iWwywXqslr2Z+J/XNzq+DgsmMqOpIIuPYsORTtGsADRk9mTNc0swkczuisgYS0y0ralmS/CWT14lnYum5za9+8tG66asowoncArn4MEVtOAO2uADgQye4RXeHOO8OO/OxyJaccqZY/gD5/MHhveR/Q==</latexit>

Proof that the protocol 
implementation 

satisfies its specification

  '
<latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit><latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit><latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit><latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit>

Checker

Formal Verification  
can significantly reduce  

the trusted computing base  
for complex software system



Formal Verification

Proving Correctness of algorithms or software artefacts 

with respect to a given rigorous specification 

using mathematical reasoning.
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• Implementations of textbook algorithms 

• Operational Systems 

• Compilers 

• Distributed Systems and their Applications

Correctness -critical software
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Formal Verification

Proving Correctness of algorithms or software artefacts 

with respect to a given rigorous specification 

using mathematical reasoning.



Formal Verification  ≠ Testing

“Program testing can be used to show the presence of bugs,  
 but never to show their absence!” 

Edsger W. Dijkstra



But the bugs are in the eye of the beholder! 
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Running Example: 

Toychain

 18
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CPP’18

See also Towards Mechanising Probabilistic Properties of a Blockchain by Gopinathan and Sergey (2019).
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What blockchain protocol does
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ol• transforms a set of transactions 
into a globally-agreed sequence 

• “distributed timestamp 
server” (Nakamoto2008)

!21

transactions 
can be anything



!22



!23



GB = genesis block

!24



!25

How it works



• distributed 
• multiple nodes 

• all start with same GB

!26

what everyone 
eventually agrees on

view of all 
participants’ state



• distributed 
• multiple nodes 
• message-passing 

over a network 

• all start with same GB
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• distributed 
• multiple nodes 
• message-passing 

over a network 

• all start with same GB 
• have a transaction pool
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• distributed 
• multiple nodes 
• message-passing 

over a network 

• all start with same GB 
• have a transaction pool 
• can mint blocks

!29



• distributed => 
concurrent 
• multiple nodes 
• message-passing over 

a network 

• multiple transactions can 
be issued and 
propagated concurrently

!30



• distributed => 
concurrent 
• multiple nodes 
• message-passing over 

a network 

• blocks can be minted 
without full knowledge of 
all transactions

!31



• chain fork has 
happened, but nodes 
don’t know

!32



!33

• as block messages 
propagate, nodes become 
aware of the fork



Problem: need to choose
• blockchain “promise” =  

one globally-agreed chain 

• each node must choose one chain 
• nodes with the same information 

must choose the same chain

!34
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Problem: need to choose

!37

• blockchain “promise” =  
one globally-agreed chain 

• each node must choose one chain 
• nodes with the same information 

must choose the same chain



Solution: fork choice rule
•Fork choice rule (FCR, >): 
• given two blockchains, says which one is “heavier” 
• imposes a strict total order on all possible blockchains 
• same FCR shared by all nodes 

•Nodes adopt “heaviest” chain they know

!38



… > [GB, A, C] > … > [GB, A, B] > … > [GB, A] > … > [GB] > …

!39

FCR (>)

Bitcoin: FCR based on “most cumulative work”
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A (very basic)  
Blockchain Protocol Specification: 

Eventual Consistency



For any sequence sc of message exchanges in a closed network N, 
once all messages are delivered with the corresponding effects, 
any two non-byzantine nodes n1 and n2 share the same chain.

Specification:

Eventual Consistency Theorem:

or, equivalently

∀ sc ∀ n1, n2 ∈ N,  
       runBC(N, sc).n1.chain = runBC(N, sc).n2.chain
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Eventual Consistency Theorem:
∀ sc ∀ n1, n2 ∈ N,  
       runBC(N, sc).n1.chain = runBC(N, sc).n2.chain

Proof:  ??? 
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Eventual Consistency Theorem:
∀ sc ∀ n1, n2 ∈ N,  
     runBC(N, sc).n1.chain = runBC(N, sc).n2.chain

Proof:  ??? 

• Rigorous definition of per-node protocol state machine  
• Rigorous definition of the network semantics 

• Precise fault model (e.g., nodes are non-byzantine) 
• The implementation is correctly compiled  
• The network/OS software is reliable

Assumptions:

} must be trusted

(i.e., better be “sane”)

} once proven,

does not have 

to be trusted
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Proving correctness of algorithms or software artefacts 
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Formal Verification

Proving correctness of algorithms or software artefacts 

with respect to a given rigorous specification 

using mathematical reasoning.



What is a Proof?



A proof is sufficient evidence  
or an argument for the truth of a proposition.



Better Definition

A proof is a sequence of logical statements,

each of which is either validly derived from those preceding it 
or is an assumption,

and the final member of which,  
the conclusion, is the statement  

of which the truth is thereby established.



Deriving Valid Proofs

The proposition A is true, and, moreover,   
A being true implies that B is true; then 

we can derive that B is true. 

⊢ A     ⊢ A ⇒ B
————————

⊢ B



is a man ⇒ is mortalSocrates is a man

⊢ A     ⊢ A ⇒ B
————————

⊢ B

————————————————————————————————

Socrates is mortal

reasonable assumptions

Even large proofs, when rigorously written, can be checked automatically!



Proofs don’t have to be trusted!
 Assumptions (System definition, induction principle) 

 Theorem Statement (Specification) 

 Proof Derivation (Script)

Theorem Prover 
(in fact it’s a Proof Checker)



Formal Verification

Proving correctness of algorithms or software artefacts 

with respect to a given rigorous specification 

using mathematical reasoning.



Mechanised Formal Verification

Proving correctness of algorithms or software artefacts 

with respect to a given rigorous specification 

using mathematical reasoning, 

whose validity is machine-checked.

(assuming that you trust the checker)



Checkpoint

• For a fully specified system, correctness is a mathematical theorem 

• It can be proven using rules of mathematical logic 

• The proofs rest on reasonable assumptions, which must be trusted 

• Mechanised Proof Checking ensures validity of the proof, 
but requires to trust the checker implementation.



Mechanised Proof Checking

 55

for Distributed Systems
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Engineers use TLA+ to prevent serious but 
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU, 
MARC BROOKER, AND MICHAEL DEARDEUFF

SI N CE 2 0 11,  ENGIN EER S at Amazon Web Services 
(AWS) have used formal specification and model 
checking to help solve difficult design problems in 
critical systems. Here, we describe our motivation 
and experience, what has worked well in our problem 
domain, and what has not. When discussing personal 
experience we refer to the authors by their initials. 

At AWS we strive to build services that are simple for 
customers to use. External simplicity is built on a hidden 
substrate of complex distributed systems. Such complex 
internals are required to achieve high availability while 
running on cost-efficient infrastructure and cope 
with relentless business growth. As an example of this 
growth, in 2006, AWS launched S3, its Simple Storage 
Service. In the following six years, S3 grew to store one 
trillion objects.3 Less than a year later it had grown 
to two trillion objects and was regularly handling 1.1 
million requests per second.4 

S3 is just one of many AWS ser-
vices that store and process data our 
customers have entrusted to us. To 
safeguard that data, the core of each 
service relies on fault-tolerant dis-
tributed algorithms for replication, 
consistency, concurrency control, au-
to-scaling, load balancing, and other 
coordination tasks. There are many 
such algorithms in the literature, but 
combining them into a cohesive sys-
tem is a challenge, as the algorithms 
must usually be modified to interact 
properly in a real-world system. In 
addition, we have found it necessary 
to invent algorithms of our own. We 
work hard to avoid unnecessary com-
plexity, but the essential complexity of 
the task remains high. 

Complexity increases the probabil-
ity of human error in design, code, 
and operations. Errors in the core of 
the system could cause loss or corrup-
tion of data, or violate other interface 
contracts on which our customers de-
pend. So, before launching a service, 
we need to reach extremely high con-
fidence that the core of the system is 
correct. We have found the standard 
verification techniques in industry are 
necessary but not sufficient. We rou-
tinely use deep design reviews, code 
reviews, static code analysis, stress 
testing, and fault-injection testing but 
still find that subtle bugs can hide in 
complex concurrent fault-tolerant 
systems. One reason they do is that 
human intuition is poor at estimating 
the true probability of supposedly “ex-
tremely rare” combinations of events 
in systems operating at a scale of mil-
lions of requests per second. 

How Amazon 
Web Services 
Uses Formal 
Methods

 key insights
 ! Formal methods find bugs in system 

designs that cannot be found through  
any other technique we know of.

 ! Formal methods are surprisingly feasible 
for mainstream software development 
and give  good return on investment.

 ! At Amazon, formal methods are routinely 
applied to the design of complex  
real-world software, including public 
cloud services.

https://github.com/tlaplus/Examples
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Eventual Consistency Theorem:
∀ sc ∀ n1, n2 ∈ N,  
         runBC(N, sc).n1.chain = runBC(N, sc).n2.chain

Assumptions:
• Rigorous definition of per-node protocol state machine  
• Rigorous definition of the network semantics 

• Precise fault model (e.g., nodes are non-byzantine)
• The implementation is correctly compiled  
• The network/OS software is reliable
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✓
if bs = {b } then BlockMsg b else
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◆

ps = { hthis, from,m i }

hthis, as, bf , tpi
hfrom, this, GetDataMsg hi

�����������������������!� (hthis, as, bf , tpi, ps)

Figure 6. Local semantics, Part I: receive-transitions.

without any concerns for safety. Note that R��B���� does
not check whether the block it receives is valid before adding
it to the local block forest. This seems unusual, but in reality
is the only possible option, because a block’s validity depends
on the blocks that precede it, which the node may not yet
have. Finally, the last two transitions serve to inform a node
of new transactions and blocks in the system (via R��I��),
so it could request them by sending a GetDataMsg message,
and the response to it will be sent (via R��G��D���) in the
form of TxMsg or BlockMsg.
It is perhaps slightly non-obvious, but the rules allow to

model the possibility of a node “joining late” and eventu-
ally “catching up” with the rest of the system, thanks to

Internal step transitions: �
hi,� i�����!� (� 0, ps)

I��T�
ps = {hthis,a, TxMsg txi | a 2 as}

hthis, as, bf , tpi hDoTx tx,� i�����������!� (hthis, as, bf , tpi, ps)

I��M���
mkProof this dbf e = Some pf VAF pf � dbf e = true

b =

8>><
>>:

prev := #(last dbf e);
txs := [ tx | tx 2 tp ^ txValid t dbf e ];
pf := pf

9>>=
>>;

bf 0 = bf / b ps = {hthis,a,BlockMsg bi | a 2 as}
tp0 =

�
tx | tx 2 tp ^ txValid tx dbf 0e

 
\ (txs b)

hthis, as, bf , tpi hDoMint,� i�����������!� (hthis, as, bf 0, tp0i, ps)

Figure 7. Local semantics, Part II: internal transitions.

R��C������ and other transitions that send known infor-
mation about blocks transactions to the package origin from,
so it could request them via R��I��.
Figure 7 shows the two internal transitions that are trig-

gered by the corresponding instructions. The I��T� simply
adds a new transaction to the local pool, so it could be in-
cluded into a block later, and announces it to the node’s peers.
The I��M��� transition relies on the block forest machin-
ery and related primitives described in the previous section.
Speci�cally, we (rather optimistically) assume that a node
locally checks the new minted block b with respect to its
pre�x chain, before adding it to its local forest and sending
it to its peers.

With the rules in Figures 6 and 7, we intentionally de�ne
a non-optimal version of the protocol, such that nodes exe-
cuting the transitions populate the packet soup with a lot of
redundant messages. Yet, as we will show in Section 5, this
does not pose problems for establishing consensus on the
state of the global ledger.

4.3 Network Semantics
The network semantics rules, parameterised by a selector s ,
are shown in Figure 8. They are standard for modeling inter-
leaved concurrency with non-deterministic internal choices
and message delivery. The three rules account for a possi-
bility of delivering a randomly picked package p from the
soup P to a destination a (N��D������), a node a taking an
internal step with an instruction i (N��I�������) or doing
nothing (N��I���).
While the rules do not change the global set of node ad-

dresses, we nevertheless can model a scenario of a node
“joining” the network, assuming that it already has a pre-
de�ned address and a correctly initialised initial state, so it

8
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is the only possible option, because a block’s validity depends
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of new transactions and blocks in the system (via R��I��),
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R��C������ and other transitions that send known infor-
mation about blocks transactions to the package origin from,
so it could request them via R��I��.
Figure 7 shows the two internal transitions that are trig-

gered by the corresponding instructions. The I��T� simply
adds a new transaction to the local pool, so it could be in-
cluded into a block later, and announces it to the node’s peers.
The I��M��� transition relies on the block forest machin-
ery and related primitives described in the previous section.
Speci�cally, we (rather optimistically) assume that a node
locally checks the new minted block b with respect to its
pre�x chain, before adding it to its local forest and sending
it to its peers.

With the rules in Figures 6 and 7, we intentionally de�ne
a non-optimal version of the protocol, such that nodes exe-
cuting the transitions populate the packet soup with a lot of
redundant messages. Yet, as we will show in Section 5, this
does not pose problems for establishing consensus on the
state of the global ledger.

4.3 Network Semantics
The network semantics rules, parameterised by a selector s ,
are shown in Figure 8. They are standard for modeling inter-
leaved concurrency with non-deterministic internal choices
and message delivery. The three rules account for a possi-
bility of delivering a randomly picked package p from the
soup P to a destination a (N��D������), a node a taking an
internal step with an instruction i (N��I�������) or doing
nothing (N��I���).
While the rules do not change the global set of node ad-

dresses, we nevertheless can model a scenario of a node
“joining” the network, assuming that it already has a pre-
de�ned address and a correctly initialised initial state, so it
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Figure 8. Network semantics.

only needs to announce itself to its peers and requests the
information about transactions and blocks.4

We conclude this section by de�ning the notion of reach-
ability ( ) between two con�gurations as follows:

�  � 0 , � = � 0 _
9sc = [s1, . . . , sn], [�1, . . . ,�n�1], s.t.

�
s1
==) �1 ^ . . . ^ �n�1

sn
==) � 0.

(7)

5 System Safety and Consensus
With the de�nitions of the protocol and a library of theorems
about block forests at hand, we are now ready to establish
several important safety properties, including the eventual
consistency (i.e., the consensus) of our system. It is customary
to formulate safety properties as inductive system invariants,
de�ned as follows:

De�nition 5.1. The property I : Conf ! Prop is an induc-
tive invariant of a system if for the system’s initial con�gu-
ration �0, I (�0) holds, and for any � ,� 0 and s , such that I (� )
holds, �

s
=) � 0 implies I (� 0).

Therefore, by induction, an inductive property I will hold
for any system con�guration � , such that �0  � . Indeed,
what can be proven inductive depends on the choice of the
initial system state, which we have not speci�ed so far. For
the rest of this section, we will consider only the initial
con�gurations of the form �0 = hGlobState0, ;i, where for
any node a 2 dom(GlobState0), GlobState0(a) is equal to
ha, asa , {#GB 7! GB} , { }i, i.e., leaving only the node-speci�c
sets of peers asa unconstrained.

4We could have added another internal transition rule for emitting a
ConnectMsg, but this is orthogonal to our study of system safety.

5.1 System State Coherence
Before moving to the interesting (and, hence, complex) sys-
tem safety properties, we start by establishing the inductivity
of global state coherence, i.e., proving that interaction be-
tween nodes does not violate the validity of the components
of each node’s local state. We thus de�ne the global system
state coherence as follows:

Coh(h�,�i) , 8a 2 dom(�),9as bf tp,
�(a) = ha, as, bf , tpi ^ valid(bf ) (8)

The validity of each local forest bf is via the de�nition (1).
Any of the �0 we consider satis�es it, and the property Coh
is inductive, because all manipulations with node-local block
forests are done using the / operation (2).

5.2 Eventual Ledger Consistency
Let us now formulate the eventual consistency of the system.
Informally, it says that when there are no in-�ight messages
between any of the nodes, they all should agree on the local
ledger, which can be, thus, thought of as a globally shared
log of accepted transactions [33].

In practice, however, communication between nodes never
stops. Our protocol features many “modes of communica-
tion” (announcing a block, requesting hashes, etc), and, as
it turns out, not all of them should be ceased for reaching
consensus on ledgers. What is essential is to have no in-�ight
instances of BlockMsg. 5 Having no in-�ight block-messages,
however, is not the only requirement for the universality of
the consensus (i.e., ensuring that each two nodes have the
same ledger): it might be the case that some nodes joined
late, and due to the delays in updating the topology, have
not yet requested all missing data from their peers. Charac-
terising consistency conditions in this case would require
us to take the “late joiners” into account. While not impossi-
ble, this would make the whole consistency statement quite
complicated. To avoid this, in this paper we decided to for-
mulate the consistency in a simpler setting: a clique network
topology, restricting the initial con�gurations to those where
every node’s known peers include all addresses in the global
system state.6

We embed the clique topology assumption into the whole-
system property Cliq, whose formal de�nition we postpone
until Section 5.3. For now, let us present the eventual con-
sistency result it implies. For this, we introduce two auxil-
iary de�nitions. The �rst one extracts a ledger for a node
a 2 dom(�) from a global state �.

ledger(�,a) , dbf e, s.t. ha,�, bf ,�i = �(a) (9)

The second returns all in-�ight blocks for a in a soup P :

blocksFor(P ,a) , {b | h�,a,BlockMsg bi 2 P} (10)

5The version we present is a form of quiescent consistency [2, 5].
6This situation is quite common for corporate blockchain-based protocols,
where all peers know each other from the very beginning.
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• Rigorous definition of per-node protocol state machine  
• Rigorous definition of the network semantics 

• Precise fault model (e.g., nodes are non-byzantine)

Eventual Consistency Theorem:

∀ sc ∀ n1, n2 ∈ N, runBC(N, sc).n1.chain = runBC(N, sc).n2.chain

Assumptions:

• The implementation is correctly compiled  
• The network/OS software is reliable

Proof: By induction on the length of sc (a number of system steps).



Temporal Logic of Actions
• Very effective for proving invariants via finite-state model checking 

• Extensively used for verifying protocol design

 66

• TLA+ is a specification language, not a programming language 

• It is a first-order, not a higher-order logic 
    for instance, one cannot quantify over protocol specifications in TLA+
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Coq



Frameworks for Verified Distributed Systems 
Implemented in Proof Assistants

• IronFleet (Paxos), Hawblitzel et al. 
IronFleet: Proving Practical Distributed Systems Correct, SOSP’15  

• Verdi (Raft), Wilcox et al. 
Verdi: A Framework for Implementing and Formally Verifying Distributed Systems, PLDI’15 

• Disel (2PC, Paxos), Sergey et al. 
Programming and Proving with Distributed Protocols, POPL’18 

• Everest (HTTPS, TLS), Swamy et al.  
Recalling a Witness: Foundations and Applications of Monotonic State, POPL’19 

• Velisarios (PBFT), Rahli et al. 
Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq, ESOP’18
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Executing Verified Blockchain
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Figure 6. Local semantics, Part I: receive-transitions.

without any concerns for safety. Note that R��B���� does
not check whether the block it receives is valid before adding
it to the local block forest. This seems unusual, but in reality
is the only possible option, because a block’s validity depends
on the blocks that precede it, which the node may not yet
have. Finally, the last two transitions serve to inform a node
of new transactions and blocks in the system (via R��I��),
so it could request them by sending a GetDataMsg message,
and the response to it will be sent (via R��G��D���) in the
form of TxMsg or BlockMsg.
It is perhaps slightly non-obvious, but the rules allow to
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R��C������ and other transitions that send known infor-
mation about blocks transactions to the package origin from,
so it could request them via R��I��.
Figure 7 shows the two internal transitions that are trig-

gered by the corresponding instructions. The I��T� simply
adds a new transaction to the local pool, so it could be in-
cluded into a block later, and announces it to the node’s peers.
The I��M��� transition relies on the block forest machin-
ery and related primitives described in the previous section.
Speci�cally, we (rather optimistically) assume that a node
locally checks the new minted block b with respect to its
pre�x chain, before adding it to its local forest and sending
it to its peers.

With the rules in Figures 6 and 7, we intentionally de�ne
a non-optimal version of the protocol, such that nodes exe-
cuting the transitions populate the packet soup with a lot of
redundant messages. Yet, as we will show in Section 5, this
does not pose problems for establishing consensus on the
state of the global ledger.

4.3 Network Semantics
The network semantics rules, parameterised by a selector s ,
are shown in Figure 8. They are standard for modeling inter-
leaved concurrency with non-deterministic internal choices
and message delivery. The three rules account for a possi-
bility of delivering a randomly picked package p from the
soup P to a destination a (N��D������), a node a taking an
internal step with an instruction i (N��I�������) or doing
nothing (N��I���).
While the rules do not change the global set of node ad-

dresses, we nevertheless can model a scenario of a node
“joining” the network, assuming that it already has a pre-
de�ned address and a correctly initialised initial state, so it
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������������������!� (�, ;)

R��C������
as0 = as [ {from} hs = dom(bf ) [ {#tx | tx 2 tp}

ps = { hthis, from, InvMsg hs i }

hthis, as, bf , tpi
hfrom, this, ConnectMsgi

���������������������!� (hthis, as0, bf , tpi, ps)

R��A���
as1 =

�
a | a 2 as0 ^ a < as

 
as2 = as [ as1

ps1 = { hthis, a, ConnectMsgi | a 2 as1 }
ps2 = { hthis, a, AddrMsg as2 i | a 2 as} ps = ps1 [ ps2

hthis, as, bf , tpi
hfrom, this, AddrMsg as0i
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R��T�
tp0 = txExtend tp tx hs = dom(bf ) [

�
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hs = dom(bf 0) [
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#tx | tx 2 tp0

 
ps = { hthis, a, InvMsg hs i | a 2 as}

hthis, as, bf , tpi
hfrom, this, BlockMsg bi

���������������������!� (hthis, as, bf 0, tp0 i, ps)

R��I��
hs1 = dom(bf ) [ {#tx | tx 2 tp}

hs0 = hs \ hs1 ps =
�
hthis, from, GetDataMsg h i | h 2 hs0

 
hthis, as, bf , tpi

hfrom, this, InvMsg hsi
��������������������!� (hthis, as, bf , tpi, ps)

R��G��D���
bs = {b | b = bf (h)} txs = {tx | tx 2 tp ^ #t = h }

m =
✓
if bs = {b } then BlockMsg b else

if txs = {tx } then TxMsg tx else NullMsg

◆

ps = { hthis, from,m i }

hthis, as, bf , tpi
hfrom, this, GetDataMsg hi

�����������������������!� (hthis, as, bf , tpi, ps)

Figure 6. Local semantics, Part I: receive-transitions.

without any concerns for safety. Note that R��B���� does
not check whether the block it receives is valid before adding
it to the local block forest. This seems unusual, but in reality
is the only possible option, because a block’s validity depends
on the blocks that precede it, which the node may not yet
have. Finally, the last two transitions serve to inform a node
of new transactions and blocks in the system (via R��I��),
so it could request them by sending a GetDataMsg message,
and the response to it will be sent (via R��G��D���) in the
form of TxMsg or BlockMsg.
It is perhaps slightly non-obvious, but the rules allow to

model the possibility of a node “joining late” and eventu-
ally “catching up” with the rest of the system, thanks to

Internal step transitions: �
hi,� i�����!� (� 0, ps)

I��T�
ps = {hthis,a, TxMsg txi | a 2 as}

hthis, as, bf , tpi hDoTx tx,� i�����������!� (hthis, as, bf , tpi, ps)

I��M���
mkProof this dbf e = Some pf VAF pf � dbf e = true

b =

8>><
>>:

prev := #(last dbf e);
txs := [ tx | tx 2 tp ^ txValid t dbf e ];
pf := pf

9>>=
>>;

bf 0 = bf / b ps = {hthis,a,BlockMsg bi | a 2 as}
tp0 =

�
tx | tx 2 tp ^ txValid tx dbf 0e

 
\ (txs b)

hthis, as, bf , tpi hDoMint,� i�����������!� (hthis, as, bf 0, tp0i, ps)

Figure 7. Local semantics, Part II: internal transitions.

R��C������ and other transitions that send known infor-
mation about blocks transactions to the package origin from,
so it could request them via R��I��.
Figure 7 shows the two internal transitions that are trig-

gered by the corresponding instructions. The I��T� simply
adds a new transaction to the local pool, so it could be in-
cluded into a block later, and announces it to the node’s peers.
The I��M��� transition relies on the block forest machin-
ery and related primitives described in the previous section.
Speci�cally, we (rather optimistically) assume that a node
locally checks the new minted block b with respect to its
pre�x chain, before adding it to its local forest and sending
it to its peers.

With the rules in Figures 6 and 7, we intentionally de�ne
a non-optimal version of the protocol, such that nodes exe-
cuting the transitions populate the packet soup with a lot of
redundant messages. Yet, as we will show in Section 5, this
does not pose problems for establishing consensus on the
state of the global ledger.

4.3 Network Semantics
The network semantics rules, parameterised by a selector s ,
are shown in Figure 8. They are standard for modeling inter-
leaved concurrency with non-deterministic internal choices
and message delivery. The three rules account for a possi-
bility of delivering a randomly picked package p from the
soup P to a destination a (N��D������), a node a taking an
internal step with an instruction i (N��I�������) or doing
nothing (N��I���).
While the rules do not change the global set of node ad-

dresses, we nevertheless can model a scenario of a node
“joining” the network, assuming that it already has a pre-
de�ned address and a correctly initialised initial state, so it
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• Meaningful definition of per-node protocol state machine  
• Meaningful definition of the network semantics 

• Precise fault model (e.g., nodes are non-byzantine)

Eventual Consistency Theorem:

∀ sc ∀ n1, n2 ∈ N, runBC(N, sc).n1.chain = runBC(N, sc).n2.chain

Assumptions:

• The implementation is correctly compiled  
• The network/OS software is reliable

Proof: By induction on the length of sc (a number of system steps).
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• Specification: source and target programs are equivalent 

• Assumptions: underlying hardware semantics, unverified parser 

• Proof effort: 146 kLOC of specifications and proofs

CompCert (2006-now) 
a mechanically verified C compiler

Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant

Xavier Leroy
INRIA Rocquencourt
Xavier.Leroy@inria.fr

Abstract

This paper reports on the development and formal certification
(proof of semantic preservation) of a compiler from Cminor (a C-
like imperative language) to PowerPC assembly code, using the
Coq proof assistant both for programming the compiler and for
proving its correctness. Such a certified compiler is useful in the
context of formal methods applied to the certification of critical
software: the certification of the compiler guarantees that the safety
properties proved on the source code hold for the executable com-
piled code as well.

Categories and Subject Descriptors F.3.1 [Logics and meanings

of programs]: Specifying and verifying and reasoning about
programs—Mechanical verification.; D.2.4 [Software engi-

neering]: Software/program verification—Correctness proofs,
formal methods, reliability; D.3.4 [Programming languages]:
Processors—Compilers, optimization

General Terms Languages, Reliability, Security, Verification.

Keywords Certified compilation, semantic preservation, program
proof, compiler transformations and optimizations, the Coq theo-
rem prover.

1. Introduction

Can you trust your compiler? Compilers are assumed to be seman-
tically transparent: the compiled code should behave as prescribed
by the semantics of the source program. Yet, compilers – and espe-
cially optimizing compilers – are complex programs that perform
complicated symbolic transformations. We all know horror stories
of bugs in compilers silently turning a correct program into an in-
correct executable.

For low-assurance software, validated only by testing, the im-
pact of compiler bugs is negligible: what is tested is the executable
code produced by the compiler; rigorous testing will expose errors
in the compiler along with errors in the source program. The picture
changes dramatically for critical, high-assurance software whose
certification at the highest levels requires the use of formal meth-
ods (model checking, program proof, etc). What is formally verified
using formal methods is almost universally the source code; bugs
in the compiler used to turn this verified source into an executable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’06 January 11–13, 2006, Charleston, South Carolina, USA.
Copyright c� 2006 ACM 1-59593-027-2/06/0001. . . $5.00.

can potentially invalidate all the guarantees so painfully obtained
using formal methods. In other terms, from a formal methods per-
spective, the compiler is a weak link between a source program
that has been formally verified and a hardware processor that, more
and more often, has also been formally verified. The safety-critical
software industry is aware of this issue and uses a variety of tech-
niques to alleviate it, such as conducting manual code reviews of
the generated assembly code after having turned all compiler opti-
mizations off. These techniques do not fully address the issue, and
are costly in terms of development time and program performance.

An obviously better approach is to apply formal methods to
the compiler itself in order to gain assurance that it preserves the
semantics of the source programs. Many different approaches
have been proposed and investigated, including on-paper and
on-machine proofs of semantic preservation, proof-carrying code,
credible compilation, translation validation, and type-preserving
compilers. (These approaches are compared in section 2.) For
the last two years, we have been working on the development of
a realistic, certified compiler. By certified, we mean a compiler
that is accompanied by a machine-checked proof of semantic
preservation. By realistic, we mean a compiler that compiles a
language commonly used for critical embedded software (a subset
of C) down to assembly code for a processor commonly used in
embedded systems (the PowerPC), and that generates reasonably
efficient code.

This paper reports on the completion of one half of this
program: the certification, using the Coq proof assistant [2], of
a lightly-optimizing back-end that generates PowerPC assembly
code from a simple imperative intermediate language called
Cminor. A front-end translating a subset of C to Cminor is being
developed and certified, and will be described in a forthcoming
paper.

While there exists a considerable body of earlier work on
machine-checked correctness proofs of parts of compilers (see
section 7 for a review), our work is novel in two ways. First, recent
work tends to focus on a few parts of a compiler, mostly opti-
mizations and the underlying static analyses [18, 6]. In contrast,
our work is modest on the optimization side, but emphasizes the
certification of a complete compilation chain from a structured im-
perative language down to assembly code through 4 intermediate
languages. We found that many of the non-optimizing translations
performed, while often considered obvious in compiler literature,
are surprisingly tricky to formally prove correct. The other novelty
of our work is that most of the compiler is written directly in
the Coq specification language, in a purely functional style. The
executable compiler is obtained by automatic extraction of Caml
code from this specification. This approach has never been applied
before to a program of the size and complexity of an optimizing
compiler.



• Specification: asynchronous disk writes are not affected by crashes 
• Assumptions about semantics of  extraction and linking with other drivers 
• Proof effort: 81 kLOC of specifications and proofs

FSCQ (2015) 
a crash-tolerant file system

Using Crash Hoare Logic for Certifying the FSCQ File System
Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich

MIT CSAIL

Abstract
FSCQ is the first file system with a machine-checkable proof
(using the Coq proof assistant) that its implementation meets
its specification and whose specification includes crashes.
FSCQ provably avoids bugs that have plagued previous file
systems, such as performing disk writes without su�cient
barriers or forgetting to zero out directory blocks. If a crash
happens at an inopportune time, these bugs can lead to data
loss. FSCQ’s theorems prove that, under any sequence of
crashes followed by reboots, FSCQ will recover the file sys-
tem correctly without losing data.

To state FSCQ’s theorems, this paper introduces the Crash
Hoare logic (CHL), which extends traditional Hoare logic with
a crash condition, a recovery procedure, and logical address
spaces for specifying disk states at di↵erent abstraction levels.
CHL also reduces the proof e↵ort for developers through
proof automation. Using CHL, we developed, specified, and
proved the correctness of the FSCQ file system. Although
FSCQ’s design is relatively simple, experiments with FSCQ
running as a user-level file system show that it is su�cient
to run Unix applications with usable performance. FSCQ’s
specifications and proofs required significantly more work
than the implementation, but the work was manageable even
for a small team of a few researchers.

1 Introduction
This paper describes Crash Hoare logic (CHL), which allows
developers to write specifications for crash-safe storage sys-
tems and also prove them correct. “Correct” means that, if
a computer crashes due to a power failure or other fail-stop
fault and subsequently reboots, the storage system will recover
to a state consistent with its specification (e.g., POSIX [34]).
For example, after recovery, either all disk writes from a file
system call will be on disk, or none will be. Using CHL we
build the FSCQ certified file system, which comes with a
machine-checkable proof that its implementation is correct.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
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Proving that a file system is crash-safe is important, because
it is otherwise hard for the file-system developer to ensure
that the code correctly handles all possible points where a
crash could occur, both while a file-system call is running
and during the execution of recovery code. Often, a system
may work correctly in many cases, but if a crash happens at
a particular point between two specific disk writes, then a
problem arises [55, 70].

Current approaches to building crash-safe file systems fall
roughly into three categories (see §2 for more details): testing,
program analysis, and model checking. Although they are ef-
fective at finding bugs in practice, none of them can guarantee
the absence of crash-safety bugs in actual implementations.
This paper focuses precisely on this issue: helping developers
build file systems with machine-checkable proofs that they
correctly recover from crashes at any point.

Researchers have used theorem provers for certifying real-
world systems such as compilers [45], small kernels [43], ker-
nel extensions [61], and simple remote servers [30], but none
of these systems are capable of reasoning about file-system
crashes. Reasoning about crash-free executions typically in-
volves considering the states before and after some operation.
Reasoning about crashes is more complicated because crashes
can expose intermediate states.

Challenges and contributions. Building an infrastructure
for reasoning about file-system crashes poses several chal-
lenges. Foremost among those challenges is the need for a
specification framework that allows the file-system developer
to state the system behavior under crashes. Second, it is im-
portant that the specification framework allows for proofs to
be automated, so that one can make changes to a specifica-
tion and its implementation without having to redo all of the
proofs manually. Third, the specification framework must be
able to capture important performance optimizations, such
as asynchronous disk writes, so that the implementation of a
file system has acceptable performance. Finally, the specifica-
tion framework must allow modular development: developers
should be able to specify and verify each component in iso-
lation and then compose verified components. For instance,
once a logging layer has been implemented, file-system devel-
opers should be able to prove end-to-end crash safety in the
inode layer by simply relying on the fact that logging ensures
atomicity; they should not need to consider every possible
crash point in the inode code.

To meet these challenges, this paper makes the following
contributions:

1



• Specification: Raft provides transparent replication (linearisability) 
• Assumptions: unlimited memory, TCP works atomically, … 
• Proof effort: 50 kLOC of specifications and proofs

Verdi (2015) 
a formally verified Raft consensus implementation

Verdi: A Framework for Implementing and

Formally Verifying Distributed Systems

James R. Wilcox Doug Woos Pavel Panchekha
Zachary Tatlock Xi Wang Michael D. Ernst Thomas Anderson

University of Washington, USA
{jrw12, dwoos, pavpan, ztatlock, xi, mernst, tom}@cs.washington.edu

Abstract

Distributed systems are difficult to implement correctly because they
must handle both concurrency and failures: machines may crash at
arbitrary points and networks may reorder, drop, or duplicate pack-
ets. Further, their behavior is often too complex to permit exhaustive
testing. Bugs in these systems have led to the loss of critical data
and unacceptable service outages.

We present Verdi, a framework for implementing and formally
verifying distributed systems in Coq. Verdi formalizes various net-
work semantics with different faults, and the developer chooses the
most appropriate fault model when verifying their implementation.
Furthermore, Verdi eases the verification burden by enabling the
developer to first verify their system under an idealized fault model,
then transfer the resulting correctness guarantees to a more realistic
fault model without any additional proof burden.

To demonstrate Verdi’s utility, we present the first mechanically
checked proof of linearizability of the Raft state machine replication
algorithm, as well as verified implementations of a primary-backup
replication system and a key-value store. These verified systems
provide similar performance to unverified equivalents.

Categories and Subject Descriptors F.3.1 [Specifying and Veri-
fying and Reasoning about Programs]: Mechanical verification

Keywords Formal verification, distributed systems, proof assis-
tants, Coq, Verdi

1. Introduction

Distributed systems serve millions of users in important applications,
ranging from banking and communications to social networking.
These systems are difficult to implement correctly because they
must handle both concurrency and failures: machines may crash at
arbitrary points and networks may reorder, drop, or duplicate pack-
ets. Further, the behavior is often too complex to permit exhaustive
testing. Thus, despite decades of research, real-world implemen-
tations often go live with critical fault-handling bugs, leading to
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data loss and service outages [10, 42]. For example, in April 2011 a
malfunction of failure recovery in Amazon Elastic Compute Cloud
(EC2) caused a major outage and brought down several web sites,
including Foursquare, Reddit, Quora, and PBS [1, 14, 28].

Our overarching goal is to ease the burden for programmers
to implement correct, high-performance, fault-tolerant distributed
systems. This paper focuses on a key aspect of this agenda: we de-
scribe Verdi, a framework for implementing practical fault-tolerant
distributed systems and then formally verifying that the implemen-
tations meet their specifications. Previous work has shown that
formal verification can help produce extremely reliable systems,
including compilers [41] and operating systems [18, 39]. Verdi en-
ables the construction of reliable, fault-tolerant distributed systems
whose behavior has been formally verified. This paper focuses on
safety properties for distributed systems; we leave proofs of liveness
properties for future work.

Applying formal verification techniques to distributed system im-
plementations is challenging. First, while tools like TLA [19] and Al-
loy [15] provide techniques for reasoning about abstract distributed
algorithms, few practical distributed system implementations have
been formally verified. For performance reasons, real-world imple-
mentations often diverge in important ways from their high-level
descriptions [3]. Thus, our goal with Verdi is to verify working code.
Second, distributed systems run in a diverse range of environments.
For example, some networks may reorder packets, while other net-
works may also duplicate them. Verdi must support verifying ap-
plications against these different fault models. Third, it is difficult
to prove that application-level guarantees hold in the presence of
faults. Verdi aims to help the programmer separately prove correct-
ness of application-level behavior and correctness of fault-tolerance
mechanisms, and to allow these proofs to be easily composed.

Verdi addresses the above challenges with three key ideas. First,
Verdi provides a Coq toolchain for writing executable distributed
systems and verifying them; this avoids a formality gap between
the model and the implementation. Second, Verdi provides a flex-
ible mechanism to specify fault models as network semantics.
This allows programmers to verify their system in the fault model
corresponding to their environment. Third, Verdi provides a com-
positional technique for implementing and verifying distributed
systems by separating the concerns of application correctness and
fault tolerance. This simplifies the task of providing end-to-end
guarantees about distributed systems.

To achieve compositionality, we introduce verified system trans-
formers. A system transformer is a function whose input is an
implementation of a system and whose output is a new system
implementation that makes different assumptions about its environ-
ment. A verified system transformer includes a proof that the new
system satisfies properties analogous to those of the original system.
For example, a Verdi programmer can first build and verify a system
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Does it really work?



(in PLDI 2011)

Compilers should be correct. 
  
To improve the quality of C compilers, we 
created Csmith, a randomized test-case 
generation tool, and spent three years 
using it to find compiler bugs.  

During this period we reported more than 
325 previously unknown bugs to 
compiler developers. 

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr
University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-

ing]: Testing and Debugging—testing tools; D.3.2 [Programming

Languages]: Language Classifications—C; D.3.4 [Programming

Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction

The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c� ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 32nd ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), San Jose, CA,
Jun. 2011, http://doi.acm.org/10.1145/1993498.1993532

1 int foo (void) {
2 signed char x = 1;
3 unsigned char y = 255;
4 return x > y;
5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the

compilers they use” (emphasis ours). As another example, the front

1

The striking thing about our CompCert results is 
that the middle-end bugs we found in all other 
compilers are absent.  
 
As of early 2011, the under-development version 
of CompCert is the only compiler we have tested 
for which Csmith cannot find wrong-code errors. 
This is not for lack of trying: we have devoted 
about six CPU-years to the task.  
 
The apparent unbreakability of CompCert 
supports a strong argument that developing 
compiler optimizations within a proof framework, 
where safety checks are explicit and machine-
checked, has tangible benefits for compiler users. 
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Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-

ing]: Testing and Debugging—testing tools; D.3.2 [Programming

Languages]: Language Classifications—C; D.3.4 [Programming

Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction

The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c� ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 32nd ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), San Jose, CA,
Jun. 2011, http://doi.acm.org/10.1145/1993498.1993532

1 int foo (void) {
2 signed char x = 1;
3 unsigned char y = 255;
4 return x > y;
5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the

compilers they use” (emphasis ours). As another example, the front
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GCC LLVM

Crash 2 10
Wrong code 2 9
Total 4 19

Table 2. Crash and wrong-code bugs found by Csmith that manifest
when compiler optimizations are disabled (i.e., when the –O0
command-line option is used)

3.1 Opportunistic Bug Finding

We reported bugs to 11 different C compiler development teams.
Five of these compilers (GCC, LLVM, CIL, TCC, and Open64)
were open source and five were commercial products. The eleventh,
CompCert, is publicly available but not open source.

What kinds of bugs are there? It is useful to distinguish between
errors whose symptoms manifest at compile time and those that
only manifest when the compiler’s output is executed. Compile-
time bugs that we see include assertion violations or other internal
compiler errors; involuntary compiler termination due to memory-
safety problems; and cases in which the compiler exhausts the RAM
or CPU time allocated to it. We say that a compile-time crash error

has occurred whenever the compiler process exits with a status other
than zero or fails to produce executable output. Errors that manifest
at run time include the computation of a wrong result; a crash or
other abnormal termination of the generated code; termination of a
program that should have executed forever; and non-termination of
a program that should have terminated. We refer to these run-time
problems as wrong-code errors. A silent wrong-code error is one
that occurs in a program that was produced without any sort of
warning from the compiler; i.e., the compiler silently miscompiled
the test program.

Experience with commercial compilers There exist many more
commercial C compilers than we could easily test. The ones we
chose to study are fairly popular and were produced by what we
believe are some of the strongest C compiler development teams.
Csmith found wrong-code errors and crash errors in each of these
tools within a few hours of testing.

Because we are not paying customers, and because our findings
represent potential bad publicity, we did not receive a warm response
from any commercial compiler vendor. Thus, for the most part, we
simply tested these compilers until we found a few crash errors and
a few wrong-code errors, reported them, and moved on.

Experience with open-source compilers For several reasons, the
bulk of our testing effort went towards GCC and LLVM. First and
most important, compiler testing is inherently interactive: we require
feedback from the development team in the form of bug fixes.
Bugs that occur with high probability can mask tricky, one-in-a-
million bugs; thus, testing proceeds most smoothly when we can
help developers rapidly destroy the easy bugs. Both the GCC and
LLVM teams were responsive to our bug reports. The LLVM team
in particular fixed bugs quickly, often within a few hours and usually
within a week. The second reason we prefer dealing with open-
source compilers is that their development process is transparent:
we can watch the mailing lists, participate in discussions, and see
fixes as they are committed. Third, we want to help harden the
open-source development tools that we and many others use daily.

So far we have reported 79 GCC bugs and 202 LLVM bugs—the
latter figure represents about 2% of all LLVM bug reports. Most of
our reported bugs have been fixed, and twenty-five of the GCC bugs
were marked by developers as P1: the maximum, release-blocking
priority for a bug. To date, we have reported 325 in total across all
tested compilers (GCC, LLVM, and others).

An error that occurs at the lowest level of optimization is
pernicious because it defeats the conventional wisdom that compiler
bugs can be avoided by turning off the optimizer. Table 2 counts
these kinds of bugs, causing both crash and wrong-code errors, that
we found using Csmith.

Testing CompCert CompCert [14] is a verified, optimizing com-
piler for a large subset of C; it targets PowerPC, ARM, and x86. We
put significant effort into testing this compiler.

The first silent wrong-code error that we found in CompCert was
due to a miscompilation of this function:

1 int bar (unsigned x) {
2 return -1 <= (1 && x);
3 }

CompCert 1.6 for PowerPC generates code returning 0, but the
proper result is 1 because the comparison is signed. This bug and five
others like it were in CompCert’s unverified front-end code. Partly
in response to these bug reports, the main CompCert developer
expanded the verified portion of CompCert to include C’s integer
promotions and other tricky implicit casts.

The second CompCert problem we found was illustrated by two
bugs that resulted in generation of code like this:

stwu r1, -44432(r1)

Here, a large PowerPC stack frame is being allocated. The problem
is that the 16-bit displacement field is overflowed. CompCert’s
PPC semantics failed to specify a constraint on the width of this
immediate value, on the assumption that the assembler would catch
out-of-range values. In fact, this is what happened. We also found a
handful of crash errors in CompCert.

The striking thing about our CompCert results is that the middle-
end bugs we found in all other compilers are absent. As of early 2011,
the under-development version of CompCert is the only compiler we
have tested for which Csmith cannot find wrong-code errors. This is
not for lack of trying: we have devoted about six CPU-years to the
task. The apparent unbreakability of CompCert supports a strong
argument that developing compiler optimizations within a proof
framework, where safety checks are explicit and machine-checked,
has tangible benefits for compiler users.

3.2 Quantitative Comparison of GCC and LLVM Versions

Figure 3 shows the results of an experiment in which we com-
piled and ran 1,000,000 randomly generated programs using
LLVM 1.9–2.8, GCC 3.[0–4].0, and GCC 4.[0–5].0. Every pro-
gram was compiled at –O0, –O1, –O2, –Os, and –O3. A test case
was considered valid if every compiler terminated (successfully
or otherwise) within five minutes and if every compiled random
program terminated (correctly or otherwise) within five seconds. All
compilers targeted x86. Running these tests took about 1.5 weeks
on 20 machines in the Utah Emulab testbed [28]. Each machine had
one quad-core Intel Xeon E5530 processor running at 2.4 GHz.

Compile-time failures The top row of graphs in Figure 3 shows
the observed rate of crash errors. (Note that the y-axes of these
graphs are logarithmic.) These graphs also indicate the number of
crash bugs that were fixed in response to our bug reports. Both
compilers became at least three orders of magnitude less “crashy”
over the range of versions covered in this experiment. The GCC
results appear to tell a nice story: the 3.x release series increases
in quality, the 4.0.0 release regresses because it represents a major
change to GCC’s internals, and then quality again starts to improve.

The middle row of graphs in Figure 3 shows the number of
distinct assertion failures in LLVM and the number of distinct

internal compiler errors in GCC induced by our tests. These are the
numbers of code locations in LLVM and GCC at which an internal
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Abstract

Recent advances in formal verification techniques enabled
the implementation of distributed systems with machine-
checked proofs. While results are encouraging, the impor-
tance of distributed systems warrants a large scale evaluation
of the results and verification practices.

This paper thoroughly analyzes three state-of-the-art, for-
mally verified implementations of distributed systems: Iron-
Fleet, Verdi, and Chapar. Through code review and testing,
we found a total of 16 bugs, many of which produce serious
consequences, including crashing servers, returning incor-
rect results to clients, and invalidating verification guaran-
tees. These bugs were caused by violations of a wide-range
of assumptions on which the verified components relied. Our
results revealed that these assumptions referred to a small
fraction of the trusted computing base, mostly at the inter-
face of verified and unverified components. Based on our
observations, we have built a testing toolkit called PK, which
focuses on testing these parts and is able to automate the de-
tection of 13 (out of 16) bugs.

1. Introduction

Distributed systems, complex and difficult to implement cor-
rectly, are notably prone to bugs. This is partially because
developers find it challenging to reason about the combina-
tion of concurrency and failure scenarios. As a result, dis-
tributed systems bugs pose a serious problem for both ser-
vice providers and end users, and have critically caused ser-
vice interruptions and data losses [58]. The struggle to im-
prove their reliability spawned several important lines of re-
search, such as programming abstractions [5, 38, 46], bug-
finding tools [27, 39, 55, 56], and formal verification tech-
niques [23, 30, 36, 54].
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Figure 1: An overview of the workflow to verify a distributed
system implementation.

Formal verification, in particular, offers an appealing ap-
proach because it provides a strong correctness guarantee
of the absence of bugs under certain assumptions. Over the
last few decades, the dramatic advances in formal verifica-
tion techniques have allowed these techniques to scale to
complex systems. They were successfully applied to build
large single-node implementations, such as the seL4 OS ker-
nel [28] and the CompCert compiler [35]. More recently,
they enabled the verification of complex implementations of
distributed protocols, including IronFleet [23], Verdi [54],
and Chapar [36], which are known to be non-trivial to im-
plement correctly.

At a high level, verifying these distributed system imple-
mentations follows the workflow shown in Figure 1. First,
developers describe the desired behavior of the system in a
high-level specification, which is often manually reviewed
and trusted to be correct. Developers also need to model
the primitives, such as system calls provided by the OS, on
which the implementation relies upon; we refer to this as the
shim layer. Finally, developers invoke auxiliary tools (e.g.,
scripts) to communicate with a verifier and print results. The
specification, the shim layer, and auxiliary tools, as well as
the components they glue together, are part of the trusted
computing base (TCB). If the verification check passes, it
guarantees the correctness of the implementation, assuming
the TCB is correct.

Overall, 7 bugs are found
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Bug V5: System call error causes wrong results and data

loss.

This bug affected servers that were recovering and was
ultimately caused by the server not correctly distinguishing
between situations where there was both a log and snapshot
and those where there was only a log. The latter occurred if
the server crashed before it executed 1000 events (i.e., when
the first snapshot is created).

During recovery, the server tried to read the snapshot file
and if it failed to open it, the server wrongly presumed that
the snapshot file did not exist. In practice, this meant that
a transient error returned by the open system call, such as
insufficient kernel memory or too many open files, caused
the server to silently ignore the snapshot.

Our testing framework generated a test case that caused
the servers to silently return results as if no operations had
been executed before the server crashed, even though they
had. This bug could also lead to other forms of safety viola-
tions given that servers discard a prefix of events (the snap-
shot) but read the suffix (the log), potentially passing valida-
tion checks. Further, the old snapshot could be overwritten
after a sufficient number of operations were executed.

4.3 Resource Limits

This section describes three bugs that involve exceeding
resource limits.

Bug V6: Large packets cause server crashes.

The server code that handled incoming packets had a bug
that could cause the server to crash under certain conditions.
The bug, due to an insufficiently small buffer in the OCaml
code, caused incoming packets to truncate large packets and
subsequently prevented the server from correctly unmarshal-
ing the message.

More specifically, this bug could be triggered when a
follower replica substantially lagged behind the leader. This
could occur if the follower crashed and stayed offline while
the rest of the servers processed approximately 200 client
requests. Then, during recovery, the follower would request
the list of missing operations, which would all be combined
into a single large UDP packet that exceeded the buffer size
and crashed the server.

The fix to this problem was to simply increase the size
of the buffer to the maximum size of the contents of a
UDP packet. However, bugs Bug V7 and Bug V8, which we
describe next, were also related to large updates caused by
lagging replicas but these are harder to fix.

Bug V7: Failing to send a packet causes server to stop re-

sponding to clients.

Another bug we found prevented servers from responding
to clients when the leader tried to send large packets to
a lagging follower. The problem was caused by wrongly
assuming that there was no limit on the packet size and
by incorrectly handling the error produced by the sendto

let rec findGtIndex orig_base_params raft_params0

entries i =

match entries with

| [] -> []

| e :: es ->

if (<) i e.eIndex

then e :: (findGtIndex orig_base_params

raft_params0 es i)

else []

Figure 8: OCaml code, generated from verified Coq code, that
crashed with a stack overflow error (Bug V8). In practice, the stack
overflow was triggered by a lagging replica.

system call. This bug was triggered when a replica that
lagged behind the leader by approximately 2500 requests
tried to recover.

In contrast to Bug V6, this bug was due to incorrect code
on the sender side. In practice, the consequence was that
a recovering replica could prevent a correct replica from
working properly. The current fix applied by the developers
mitigates this bug by improving error handling, but it still
does not allow servers to send large state.

Bug V6 and Bug V7 were the only two that we did not have
to report to developers because the developers independently
addressed the bugs during our study.

Bug V8: Lagging follower causes stack overflow on leader.

After applying a fix for Bug V6 and Bug V7, we found that
Verdi suffered from another bug that affected the sender side
when a follower tried to recover. This bug caused the server
to crash with a stack overflow error and was triggered when
a recovering follower lagged by more than 500,000 requests.

After investigating, we determined that the problem was
caused by the recursive OCaml function findGtIndex()

that is generated from verified code. This function, which
constructed a list of missing log entries from the follower,
was executed before the server tried to send network data.
This was an instance of a bug caused by exhaustion of
resources (stack memory).

Figure 8 shows the generated code responsible for crash-
ing the server with the stack overflow. This bug appeared
difficult to fix as it would require reasoning about resource
consumption at the verified transformation level (§2.3). It
also could have serious consequences in a deployed setting
because the recovering replica could iteratively cause all
servers to crash, bringing down the entire replicated system.

4.4 Summary of Findings

Finding 1: The majority (9/11) of shim layer bugs caused

servers to crash or hang.

Bugs that cause servers to crash or stop responding are
particularly serious, especially for replicated distributed sys-
tems that have the precise goal of increasing service avail-
ability by providing fault-tolerance. Therefore, proving live-
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Composition:  
A Way  to Make Proofs Harder      

In 1997, the unfortunate reality is that engineers rarely specify and reason formally 
about the systems they build.  

It seems unlikely that reasoning about the composition of open-system 
specifications will be a practical concern within the next 15 years.

Lamport, 1997
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Abstract
Proof automation can substantially increase productivity
in formal verification of complex systems. However, unpre-
dictablility of automated provers in handling quantified for-
mulas presents a major hurdle to usability of these tools. We
propose to solve this problem not by improving the provers,
but by using a modular proof methodology that allows us
to produce decidable verification conditions. Decidability
greatly improves predictability of proof automation, result-
ing in a more practical verification approach. We apply this
methodology to develop verified implementations of dis-
tributed protocols, demonstrating its effectiveness.

CCS Concepts • Software and its engineering → For-
mal software verification;

Keywords Formal verification, Modularity, Decidable logic,
Ivy, Distributed systems, Paxos, Raft
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1 Introduction
Verifying complex software systems is a longstanding re-
search goal. Recently there have been some success stories
in verifying compilers [29], operating systems [22], and dis-
tributed systems [18, 45]. These broadly use two techniques:
interactive theorem proving (e.g., Coq [4], Isabelle/HOL [37])
and deductive verification based on automated theorem
provers (e.g., Dafny [28] which uses Z3 [11]). However, both
techniques are difficult to apply and require a large proof
engineering effort. On the one hand, interactive theorem
provers allow a user to write proofs in highly expressive for-
malisms (e.g., higher-order logic or dependent type theory).
While this allows great flexibility, it generally requires the
user to manually write long and detailed proofs.

On the other hand, deductive verification techniques use
automated theorem provers to reduce the size of the manu-
ally written proofs. In this approach, user-provided annota-
tions (e.g., invariants, pre- and post-conditions) are used to
reduce the proof to lemmas called verification conditions that
can be discharged by the automated prover. In case these
lemmas fail, the prover can sometimes produce counterex-
amples that explain the failure and allow the programmer to
correct the annotations.
Unfortunately, the behavior of provers can be quite un-

predictable, especially when applied to formulas with quan-
tifiers, which are common in practice, e.g., in distributed
systems. Since the problem presented to the prover is in gen-
eral undecidable, it is no surprise that the prover sometimes
diverges or produces inconclusive results on small instances,
or suffers from the “butterfly effect”, when a seemingly ir-
relevant change in the input causes the prover to fail. As
observed in the IronFleet project, SMT solvers can diverge
even on tiny examples [18]. When this happens, the user
has little information with which to decide how to proceed.
This was identified in IronFleet as the main hurdle in the
verification task.
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Distributed systems play a crucial role in modern infrastructure, but are notoriously difficult to implement
correctly. This difficulty arises from two main challenges: (a) correctly implementing core system components
(e.g., two-phase commit), so all their internal invariants hold, and (b) correctly composing standalone system
components into functioning trustworthy applications (e.g., persistent storage built on top of a two-phase
commit instance). Recent work has developed several approaches for addressing (a) by means of mechanically
verifying implementations of core distributed components, but no methodology exists to address (b) by
composing such verified components into larger verified applications. As a result, expensive verification
efforts for key system components are not easily reusable, which hinders further verification efforts.

In this paper, we present Disel, the first framework for implementation and compositional verification
of distributed systems and their clients, all within the mechanized, foundational context of the Coq proof
assistant. In Disel, users implement distributed systems using a domain specific language shallowly embedded
in Coq and providing both high-level programming constructs as well as low-level communication primitives.
Components of composite systems are specified in Disel as protocols, which capture system-specific logic
and disentangle system definitions from implementation details. By virtue of Disel’s dependent type system,
well-typed implementations always satisfy their protocols’ invariants and never go wrong, allowing users
to verify system implementations interactively using Disel’s Hoare-style program logic, which extends
state-of-the-art techniques for concurrency verification to the distributed setting. By virtue of the substitution
principle and frame rule provided by Disel’s logic, system components can be composed leading to modular,
reusable verified distributed systems.

We describe Disel, illustrate its use with a series of examples, outline its logic and metatheory, and report
on our experience using it as a framework for implementing, specifying, and verifying distributed systems.

CCS Concepts: • Theory of computation→ Logic and verification; • Software and its engineering→
Distributed programming languages;
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1 INTRODUCTION

Real-world software systems, including distributed systems, are rarely built as standalone, mono-
lithic pieces of code. Rather, they are composed of multiple independent modules, which are
connected either by the linker or through communication channels. Such a compositional approach
enables clean separation of concerns and a modular development process: in order to use one
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A real-world distributed system is rarely implemented as a standalone monolithic system. Instead, it is
composed of multiple independent interacting components that together ensure the desired system-level
speci�cation. One can scale systematic testing to large, industrial-scale implementations by decomposing the
system-level testing problem into a collection of simpler component-level testing problems.

This paper proposes techniques for compositional programming and testing of distributed systems with two
central contributions: (1) We propose a module system based on the theory of compositional trace re�nement
for dynamic systems consisting of asynchronously-communicating state machines, where state machines can
be dynamically created, and communication topology of the existing state machines can change at runtime;
(2) We presentModP, a programming system that implements our module system to enable compositional
reasoning (assume-guarantee) of distributed systems.

We demonstrate the e�cacy of our framework by building two practical fault-tolerant distributed systems,
a transaction-commit service and a replicated hash-table.ModP helps implement these systemsmodularly and
validate them via compositional testing. We empirically demonstrate that the abstraction-based compositional
reasoning approach helps amplify the coverage during testing and scale it to real-world distributed systems.
The distributed services built usingModP achieve performance comparable to open-source equivalents.

CCS Concepts: • Software and its engineering → Domain speci�c languages; Software testing and
debugging; Abstraction, modeling and modularity; • Networks→ Protocol testing and veri�cation;

Additional Key Words and Phrases: domain-speci�c language; distributed systems; event-driven programming;
actors; module system; compositional veri�cation; systematic testing
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1 INTRODUCTION
Distributed systems are notoriously hard to get right. Programming these systems is challenging
because of the need to reason about numerous control paths resulting from the myriad interleaving
of messages and failures. Unsurprisingly, it is easy to introduce subtle errors while improvising to
�ll in gaps between high-level protocol descriptions and their concrete implementations. These
problems have been highlighted by creators of large-scale distributed systems [Chandra et al. 2007].
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Composition of Verified Systems

 103

• Horizontal: independently verified 
implementations interact in the same system 

• Vertical: A system can be run  
on top of a different back-ends



Towards Reusable Verification

 104

Blockchain Eventual Consistency:
∀ sc ∀ n1, n2 ∈ N, runBC(N, sc).n1.chain = runBC(N, sc).n2.chain



HO Logics for Horizontal Composition
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∀ sc ∀ n1, n2 ∈ N, runBC(N, sc).n1.chain = runBC(N, sc).n2.chain

network layer

n1

Implementation 
BC1

Implementation 
BC2

n2



HO Logics for Horizontal Composition
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∀ BC1, BC2, BC1 refines BC and BC2 refines BC ⇒  
∀ sc ∀ n1, n2 ∈ N, runBC1(N, sc).n1.chain = runBC2(N, sc).n2.chain

network layer

n1

Implementation 
BC1

Implementation 
BC2

n2



HO Logics for Horizontal Composition
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∀ BC1, BC2, BC1 refines BC and BC2 refines BC ⇒  
∀ sc ∀ n1, n2 ∈ N, runBC1(N, sc).n1.chain = runBC2(N, sc).n2.chain

network layer

n1

Implementation 
BC1

Implementation 
BC2

n2

POPL’18



HO Logics for Vertical Composition
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∀ sc ∀ n1, n2 ∈ N, runBC(N, sc).n1.chain = runBC(N, sc).n2.chain

network layer 1

n1

Implementation 
BC

Implementation 
BC

n2



HO Logics for Vertical Composition
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∀ sc ∀ n1, n2 ∈ N, runBC(N, sc).n1.chain = runBC(N, sc).n2.chain

network layer 2

n1

Implementation 
BC

Implementation 
BC

n2



HO Logics for Vertical Composition
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∀ run such that BC tolerates run’s faults ⇒  
∀ sc ∀ n1, n2 ∈ N, runBC(N, sc).n1.chain = runBC(N, sc).n2.chain

network layer 2

n1

Implementation 
BC

Implementation 
BC

n2



HO Logics for Vertical Composition
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∀ run such that BC tolerates run’s faults ⇒  
∀ sc ∀ n1, n2 ∈ N, runBC(N, sc).n1.chain = runBC(N, sc).n2.chain

network layer 2

n1

Implementation 
BC

Implementation 
BC

n2

PLDI’15



Conclusion
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 113

• We still don’t have fully verified distributed systems (and probably never will). 

• But now we know how to engineer them so we can remove many assumptions 
about crucial implementation components, thanks to machine-checked proofs. 

• Proof assistants that are also programming languages (e.g., Coq) allow one  
to verify runnable implementations. 

• Higher-order specifications are crucial for compositionality and proof reuse.

To Take Away

Thanks!



bitcoin.cpp

#include <qt/bitcoin.h>
#include <qt/bitcoingui.h>
#include <chainparams.h>
#include <fs.h>
static QString   
GetLangTerritory()
...

4 <latexit sha1_base64="3U6mZIrWxnTO4gupnqSRjPZw7bg=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF0xaaUCbTSTt0MonzEELob7hxoYhbf8adf+O0zUJbDwwczjmXufdEGWdKu+63U1lb39jcqm7Xdnb39g/qh0cdlRpJqE9SnspehBXlTFBfM81pL5MUJxGn3WhyO/O7T1QqlooHnWc0TPBIsJgRrK0UBDZMiJE8p4+DesNtunOgVeKVpAEl2oP6VzBMiUmo0IRjpfqem+mwwFIzwum0FhhFM0wmeET7lgqcUBUW852n6MwqQxSn0j6h0Vz9PVHgRKk8iWwywXqslr2Z+J/XNzq+DgsmMqOpIIuPYsORTtGsADRk9mTNc0swkczuisgYS0y0ralmS/CWT14lnYum5za9+8tG66asowoncArn4MEVtOAO2uADgQye4RXeHOO8OO/OxyJaccqZY/gD5/MHhveR/Q==</latexit><latexit sha1_base64="3U6mZIrWxnTO4gupnqSRjPZw7bg=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF0xaaUCbTSTt0MonzEELob7hxoYhbf8adf+O0zUJbDwwczjmXufdEGWdKu+63U1lb39jcqm7Xdnb39g/qh0cdlRpJqE9SnspehBXlTFBfM81pL5MUJxGn3WhyO/O7T1QqlooHnWc0TPBIsJgRrK0UBDZMiJE8p4+DesNtunOgVeKVpAEl2oP6VzBMiUmo0IRjpfqem+mwwFIzwum0FhhFM0wmeET7lgqcUBUW852n6MwqQxSn0j6h0Vz9PVHgRKk8iWwywXqslr2Z+J/XNzq+DgsmMqOpIIuPYsORTtGsADRk9mTNc0swkczuisgYS0y0ralmS/CWT14lnYum5za9+8tG66asowoncArn4MEVtOAO2uADgQye4RXeHOO8OO/OxyJaccqZY/gD5/MHhveR/Q==</latexit><latexit sha1_base64="3U6mZIrWxnTO4gupnqSRjPZw7bg=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF0xaaUCbTSTt0MonzEELob7hxoYhbf8adf+O0zUJbDwwczjmXufdEGWdKu+63U1lb39jcqm7Xdnb39g/qh0cdlRpJqE9SnspehBXlTFBfM81pL5MUJxGn3WhyO/O7T1QqlooHnWc0TPBIsJgRrK0UBDZMiJE8p4+DesNtunOgVeKVpAEl2oP6VzBMiUmo0IRjpfqem+mwwFIzwum0FhhFM0wmeET7lgqcUBUW852n6MwqQxSn0j6h0Vz9PVHgRKk8iWwywXqslr2Z+J/XNzq+DgsmMqOpIIuPYsORTtGsADRk9mTNc0swkczuisgYS0y0ralmS/CWT14lnYum5za9+8tG66asowoncArn4MEVtOAO2uADgQye4RXeHOO8OO/OxyJaccqZY/gD5/MHhveR/Q==</latexit><latexit sha1_base64="3U6mZIrWxnTO4gupnqSRjPZw7bg=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6LLoxmUF0xaaUCbTSTt0MonzEELob7hxoYhbf8adf+O0zUJbDwwczjmXufdEGWdKu+63U1lb39jcqm7Xdnb39g/qh0cdlRpJqE9SnspehBXlTFBfM81pL5MUJxGn3WhyO/O7T1QqlooHnWc0TPBIsJgRrK0UBDZMiJE8p4+DesNtunOgVeKVpAEl2oP6VzBMiUmo0IRjpfqem+mwwFIzwum0FhhFM0wmeET7lgqcUBUW852n6MwqQxSn0j6h0Vz9PVHgRKk8iWwywXqslr2Z+J/XNzq+DgsmMqOpIIuPYsORTtGsADRk9mTNc0swkczuisgYS0y0ralmS/CWT14lnYum5za9+8tG66asowoncArn4MEVtOAO2uADgQye4RXeHOO8OO/OxyJaccqZY/gD5/MHhveR/Q==</latexit>

Proof that the protocol 
implementation 

satisfies its specification

  '
<latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit><latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit><latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit><latexit sha1_base64="xkZtUmeYs7KRA/8Wkp9rFt5RG20=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMegF48RzAOSJcxOepMhs7PDzGwghHyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXpAQ31ve/vcLG5tb2TnG3tLd/cHhUPj5pmjTTDBssFaluR9Sg4BIblluBbaWRJpHAVjS6n/utMWrDU/lkJwrDhA4kjzmj1kmt7phqNeS9csWv+guQdRLkpAI56r3yV7efsixBaZmgxnQCX9lwSrXlTOCs1M0MKspGdIAdRyVN0ITTxbkzcuGUPolT7UpaslB/T0xpYswkiVxnQu3QrHpz8T+vk9n4NpxyqTKLki0XxZkgNiXz30mfa2RWTByhTHN3K2FDqimzLqGSCyFYfXmdNK+qgV8NHq8rtbs8jiKcwTlcQgA3UIMHqEMDGIzgGV7hzVPei/fufSxbC14+cwp/4H3+AHtKj6Y=</latexit>

Checker

Formal Verification  
can significantly reduce  

the trusted computing base  
for complex software system


