Compositional Static Race Detection
at Scale, without False Positives

lya Sergey

Yale & NUS

College

Joint work with

Sam Blackshear, Peter O'Hearn, Nikos Gorogiannis
facebook

Key Messages

Static analyses for concurrency can be made scalable and precise.

Unsound (and incomplete) static analyses can be principled,
satisfying meaningful theorems.

One can have an unsound but effective static analysis,
which has significant industrial impact,
and which Is supported by a meaningful theorem.

2

Practice

RACERD: Compositional Static Race Detection

SAM BLACKSHEAR, Facebook, USA

NIKOS GOROGIANNIS, Facebook, UK and Middlesex University London, UK
PETER W. O’'HEARN, Facebook, UK and University College London, UK

ILYA SERGEY", Yale-NUS College, Singapore and University College London, UK

Automatic static detection of data races is one of the most basic problems in reasoning about concurrency.
We present RACERD—a static program analysis for detecting data races in Java programs which is fast, can
scale to large code, and has proven effective in an industrial software engineering scenario. To our knowledge,
RACERD is the first inter-procedural, compositional data race detector which has been empirically shown to
have non-trivial precision and impact. Due to its compositionality, it can analyze code changes quickly, and
this allows it to perform continuous reasoning about a large, rapidly changing codebase as part of deployment
within a continuous integration ecosystem. In contrast to previous static race detectors, its design favors
reporting high-confidence bugs over ensuring their absence. RACERD has been in deployment for over a year at
Facebook, where it has flagged over 2500 issues that have been fixed by developers before reaching production.
It has been important in enabling the development of new code as well as fixing old code: it helped support the
conversion of part of the main Facebook Android app from a single-threaded to a multi-threaded architecture.
In this paper we describe RACERD’s design, implementation, deployment and impact.

CCS Concepts: « Theory of computation — Program analysis; « Software and its engineering —
Concurrent programming structures;

Additional Key Words and Phrases: Concurrency, Static Analysis, Race Freedom

ACM Reference Format:

Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018. RACERD: Compositional Static
Race Detection. Proc. ACM Program. Lang. 2, OOPSLA, Article 144 (November 2018), 28 pages. https://doi.org/
10.1145/3276514

A True Positives Theorem for a Static Race Detector

NIKOS GOROGIANNIS, Facebook, UK and Middlesex University London, UK
PETER W. O’'HEARN, Facebook, UK and University College London, UK
ILYA SERGEY", Yale-NUS College, Singapore and National University of Singapore, Singapore

RACERD is a static race detector that has been proven to be effective in engineering practice: it has seen
thousands of data races fixed by developers before reaching production, and has supported the migration of
Facebook’s Android app rendering infrastructure from a single-threaded to a multi-threaded architecture. We
prove a True Positives Theorem stating that, under certain assumptions, an idealized theoretical version of
the analysis never reports a false positive. We also provide an empirical evaluation of an implementation of this
analysis, versus the original RACERD.

The theorem was motivated in the first case by the desire to understand the observation from production
that RACERD was providing remarkably accurate signal to developers, and then the theorem guided further
analyzer design decisions. Technically, our result can be seen as saying that the analysis computes an under-
approximation of an over-approximation, which is the reverse of the more usual (over of under) situation in
static analysis. Until now, static analyzers that are effective in practice but unsound have often been regarded
as ad hoc; in contrast, we suggest that, in the future, theorems of this variety might be generally useful in
understanding, justifying and designing effective static analyses for bug catching,.

CCS Concepts: « Theory of computation — Program analysis; « Software and its engineering —
Concurrent programming structures;

Additional Key Words and Phrases: Concurrency, Static Analysis, Race Freedom, Abstract Interpretation

ACM Reference Format:
Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2019. A True Positives Theorem for a Static Race
Detector. Proc. ACM Program. Lang. 3, POPL, Article 57 (January 2019), 29 pages. https://doi.org/10.1145/3290370

Part |

RacerD:
Compositional Static Race Detection

Litho Component

Talk to network

Determine size and position

Render and attach

.-----1

Moving layout to background for better perf

thread(s)

BUT: to migrate, Measure/Layout step needs
to be thread-safe. Otherwise...

Adding concurrency can introduce data races

Data race:
two concurrent accesses o
the same memory location
where at least one Is a write.

Concurr

1

6 Q Search

[a races
L/

U I People You May Know

thread - —

Background
thread 1

—

Background
thread 2

Adding concurrency to sequential code Is scary

Problem 1: 1000s of existing components. Where
should we add synchronization to avoid races?

Problem 2: Nondeterminism makes it hard to test
for races. How do we prevent regressions?

Devs need static analysis for migration

Talking with [l one of our managers - we
realized that the timeline of background

layout In feed might be closely tied to the
timeline of static analysis - I'm wondering If
you have your roadmap already fleshed out.

Stringent requirements for helpful analysis

I -- I o @ headsate

Will the eventual thread safe annotation be recursive? Will it check that
dependencies, at least how they're used, are thread safe?

Like - Reply - Share - Q) 2 - October 14, 2016 at 11:04pm

| Story

&_

Title Content | Feedback |

Text Network Image

RacerD: compositional static race detection

(1) Motivation: assist Litho migration + detect
regressions

(2) RacerD deep dive: design, domains, reporting

(3) Evaluation: RacerD vs static/dynamic race
detectors, RacerD @ FB

RacerD Design Principles

Be compositional;, don't do whole-program analysis

Report races between syntactically identical access paths;
don't attempt a general alias analysis

Reason sequentially about memory accesses, locks, and
threads; don't explore interleaving

Occam's razor; don't use complex techniques (unless forced)

Background: compositional analysis

’ When analyzing P3:

- Will have summary for callee P4

.

- But don't know anything about
callers P1, P2, or transitive callee P5

l - Need to compute summary for P3
. usable in any calling context

Background: compositional analysis

- Compute call graph, do
topological sort

- Analyze each procedure
once using reverse
postorder scheduling

- Break call cycles by iterating
to fixed point

Computing procedure summaries

class Counter {

Summary = { (access path, kind, locks) } orivate int mCount:
int get() {

get { (this.mCount, READ, @) } } return this.mCount;

. private void set(int i) {

set { (this.mCount, WRITE, Q) } this.mCount = is
I3

reset { (this.mCount, WRITE, 1) } synchronized void reset() {

set(0);

I3

get and reset access same memory location
resel performs a write under synchronization y

get uses no synchronization %

RacerD abstract domains

(1) Can access touch the same memory?

access snapshots ACA = {(m,k, 0, t,0) | k € {rd, wr}}
(1) access paths T c Path = Var x Field”

lock count (e L =N'

concurrent threads teT = NoThread C AnyThreadButMain C Any T hread
() ownership value o€c O = Ownedlf(p(N)) = Unowned

ownership environment F C & = Path — O

domain d e D =L XT xExXA

Concurrent context inference

Accesses are NoThread unless we see:

void m() {

Android thread assertions ThreadUtils.assertMainThread() ;

this.f = ...

Introduce AnyThreadButMain

Java.util.concurrent annots

Lock usage

Introduce AnyThread
concurrent threads teT = NoThread C AnyThreadButMain C Any T hread

Ownership identifies clearly safe accesses

concurrent threads = NoThread C AnyThreadButMain C Any T hread

Ownership can be conditional

private void writeF(0bj a) {

Safe if formal is owned by caller

Builder setX(X x) {
this.x = Xx:
return this:

} Returns ownership if

new Builder()setY(y); // safe fOrmaI IS Owned by Ca”er
/

global.set(X).T = // not safe

Ownership preconditions in summaries

private void writeF(0bj a) {

}

a.t = ...

Obj o = new Obj();

writeF(o):

Ownership post can depend on ownership pre

Builder setX(X x) {
this.x = Xx:
return this:

}

summ: { (this.x if -owned(this) } A
owned(ret) i1f owned(this)

ownhed (a)
Builder b = a.setX(x):
owned(a) A owned(b) 1f owned(a)

A { (a.x 1f -owned(a) }
owned(a) A owned(b) © {}
b.setY(y); // safe by similar reasoning

RacerD abstract domains

(1) Can access touch the same memory?

access snapshots ACA = {(m,k, 0, t,0) | k € {rd, wr}}
(1) access paths T c Path = Var x Field”

lock count (e L =N'

concurrent threads teT = NoThread C AnyThreadButMain C Any T hread
() ownership value o€c O = Ownedlf(p(N)) = Unowned

ownership environment F C & = Path — O

domain d e D =L XT xExXA

Reporting:
Can (mi,01,01,t1, k1) and (m2,02,02,t2,k2) race?
WO accesses to

the same memory location
where

fl || tQ — AnyThread
kl = Wr V kz — WI

Applying summaries: see paper

A T
aPPIY(()callera Ccallee) = Cealler + Leallee

A
app'Y(tcallera tcallee) = 9

E(e) =

apply(Ecallera E, Ocallee) = 4

rAnyThreadButMain if #.411ee = AnyThreadButMain

 Lcaller otherwise
0 ife =mand (m, 0) € E
Unowned ife=mand 7 ¢ dom (E)

| OwnedIf(0) otherwise

(.
Unowned if 0,45, = Unowned

OwnedIf(0) if 04170 = OwnedIf(0)
Ll Ecatter(€i) it 0caliee = OwnedIf(N)

\IEN

apply(Ecallera e, Tyets Ecallee) — Ecaller[”ret = apPIY(Ecallera Ecallee(ret)a é’)]

subst(r, €) £ «

((.
T =X.81-""" -Em>

x is the ith formal, and

A

y.fl."° .fn.gl."‘ .gm lf

ei =y.fi.--- .fy

— A
apply(Acalters €callers teallers Ecallers € Acallee) = Acaller U : <7T,, k, U, t, O’> t = apply(Zcater» t),

Fig. 5. Applying a callee su

T otherwise

n’ = subst(m, €), ‘

¢’ = apply(€ alter» €),

v

o' = app'Y(Ecallers 0, E),
(m, k, C, t,0) € Acallee)

mmary at a call site 7, := call m(e).

(A)

(B)

(©)

(D)

(E)

(F)

RacerD: compositional static race detection

(1) Motivation: assist Litho migration +
detect regressions

(2) RacerD deep dive: design, domains, reporting

(3) Evaluation: RacerD vs static/dynamic race
detectors, RacerD @ FB

RacerD vs Static and Dynamic Analysis tools

True races

Sound dynamic
HEWRIR

Want: more true races than dynamic,
fewer false positives than static

RacerD vs Chord (static)

» Ran RacerD on DaCapo benchmarks used by
Chord (orig. PLDI’06) in PLDI’18 paper

» RacerD reports >3X fewer alarms in all cases,
>10x fewer on half of the benchmarks

» RacerD found all true bugs reported by Chord (+ more!)
 Time: 0.6s — 25s (RacerD) vs Tm — 1h 47m (Chord)

RacerD vs Chord (static)

. CHORD RACERD Alarm
Program | # Files | # LOC , ,
Alarms | Runtime | # Alarms | Runtime | Overlap

hedc 133 11,767 152 4m 47s 49 1.5s 11%
ftp 140 12,050 522 >m 14s 39 1.5s 20%
weblech 12 1,309 30 | 11m 02s 9 0.65 63%
jspider 214 7,413 257 | 1m 54s 13 1.4s 10%
avrora 470 68,364 966 sm 49s 31 7S 18%
luindex 331 36,151 940 3m 26s 183 5S 64 %
sunflow 170 21,960 958 | 42m 44s 43 2.8s 49%
xalan 975 | 175,784 1870 1h 47m 421 21.5s 38%

RacerD vs DroidRacer (dynamic)

» Ran RacerD on DaCapo benchmarks used by
DroidRacer in PLDI'14 paper

» RacerD found more true bugs than DroidRacer
on each benchmark

» |n two cases, also reported fewer false positives

» Time: 12s — 3m (RacerD) vs “’few seconds to few
hours (DroidTacer)

RacerD reports
fewer talse positives than sound static tools anad
finds more bugs than dynamic tools.

Finding data race regressions

ooooo = 10:41 AM

~000 ~7/K ~4K

PROGRAMMERS REPORTS FIXES . | love that infer Is catching

REACHED these -
i https://

Its pretty cool

mutates a static map without
any locks

RacerD made migration faster/easier/safer

- 100s of Litho components safely migrated to
background layout in <6 mo by 2 engineers

- 1000+ potential races fixed during migration

- Only 3 false negatives reported by
engineers (all analyzer bugs that we fixed)

ENngineer Comments

better. The thread safety violations are doubly
useful - since these help catch nasty and hard
to debug bugs that can commonly happen In
our multi-thread Ul stack on Android

Infer was really instrumental in ensuring thread
safety in Litho code. This allowed us to ship
Newsfeed layout on a background thread and get
huge wins in terms of scroll performance in FB4a

Without Infer, multithreading in News
Feed would not have been tenable

RacerD Limitations

1. Races on aliased, syntactically distinct access paths not caugh
-- Tried alias analysis, too many FPs. Couldn't deploy.

2. Misses races on local objects that escape, "deep” ownership analysis
-- Tried escape analysis, too many FPs. Couldn't deploy.

3. Not fully underapproximate
-- Tried join-as-meet, but eliminates too many valuable reports. Couldn't deploy

4. Works for simple mutex locks, but not subtler constructs like R/W locks
5. No reasoning about weak memory, volatile, or other fine-grained concurrency

6. No soundness/completeness theorem

1ry RacerD

or Google “Facebook RacerD”

Checkpoint

(1) RacerD: scalable + low annotation static race detection designed
around completeness rather than soundness

(2) Detected 1000s of bugs in prod at FB + enabled Litho migration

(3) Can we have a "True Positives Theorem”™?

Part 2

A True Positives [Theorem
for a Static Race Detector

Context

1. We had a demonstrably-effective industrial analysis:
RacerD (OOPSLA'18); >3k fixes in Facebook Java

2. No soundness theorem
3. Architecture: compositional abstract interpreter
4, No heuristic alarm filtering

Just ad hoc? | A

Our reaction:
Semantics/theory should understand/explain, not lecture.

39

RACERD: Compositional Static Race Detection/

SAM BLACKSHEAR, Facebook, USA
NIKOS GOROGIANNIS, Facebook, UK and Middlesex University London, UK
PETER W. O’HEARN, Facebook, UK and University College London, UK

ILYA SERGEY", Yale-NUS College, Singapore and University College London, UK

Automatic static detection of data races is one of the most basic problems in reasoning about concurrency.
We present RACERD—a static program analysis for detecting data races in Java programs which is fast, can
scale to large code, and has proven effective in an industrial software engineering scenario. To our knowledge,
RACERD is the first inter-procedural, compositional data race detector which has been empirically shown to
have non-trivial precision and impact. Due to its compositionality, it can analyze code changes quickly, and
this allows it to perform continuous reasoning about a large, rapidly changing codebase as part of deployment
within a continuous integration ecosystem. In contrast to previous static race detectors, its design favors
reporting high-confidence bugs over ensuring their absence. RACERD has been in deployment for over a year at
It has been important in enabling the development of new code as well as fixing old code: it helped support the

conversion of part of the main Facebook Android app from a single-threaded to a multi-threaded architecture.

In this paper we describe RACERD’s design, implementation, deployment and impact.

CCS Concepts: « Theory of computation — Program analysis; « Software and its engineering —
Concurrent programming structures;

Additional Key Words and Phrases: Concurrency, Static Analysis, Race Freedom

ACM Reference Format:
Sam Blackshear, Nikos Gorogiannis, Peter W. O’'Hearn, and Ilya Sergey. 2018. RACERD: Compositional Static
Race Detection. Proc. ACM Program. Lang. 2, OOPSLA, Article 144 (November 2018), 28 pages. https://doi.org/

10.1145/3276514

been fixed by developers before reaching production.

40

In theory ...

Unsound tor verification
(misses bugs)

Unsound for testing
(reports non-bugs)

yet, over 6 months of use
and 2500 bugs reported

Only 3 known races missed
Less than 20% false positives

Can we provably make it 0%

Conjecture

True Positives Theorem:

Under certain assumptions, the static bug detector reports no false positives.

41

Static Analyses
for Program Validation

The Essence of Static Analysis

“abstraction’

X
(——e

Drogram Droperty
execution of Interest

Static Analysis

e
concreteSem(c) = @ @

Static Analysis

-7
} “has bugs”
o

concreteSem(c) = @ @ @
® e
‘correct”

46

Verifier
or a
Bug Detector?

Program Veritier

pi | true positive

pz | false positive

@ @ @ ps | true negative

— P4 | true negative

48

Sound Program Verifier

pi | true positive

pz | false positive

@ @ @ ps | true negative

— P4 | true negative

49

Sound Program Verifier

pz | false positive

abstract over-approximation

<

Sound Program Verifier

pi| true positive

pz | false positive

@ @ @ ps | true negative

— P4 | true negative

abstract over-approximation

<

51

Sound Program Verifier

éa)

Developer:
Go away, that never happens!

.

if (n == VERY UNLIKELY VALUE) ({

bug.explode();
} else {
// do nothing

}

52

true positive
false positive
true negative

true positive

Unsound Program “Veritier’

pir| true positive

p2 | false positive

ps | true negative

/_\ .
—— ps | false negative

if (n == VERY UNLIKELY VALUE) ({
bug.explode();

} else {
// do nothing

}

53

‘Sound” Program Veritier

pi | true positive

pz | false positive

@ @ @ ps | true negative

/\ '
— p« | false negative

54

‘Sound” Program Veritier

pi| true positive

pz | false positive

@ @ ps | true negative
4

concrete under-approximation abstract over-approximation

<

55

Sound Static Verifiers

- False negatives (bugs missed) are
» False positives (non-bugs reported) are okay

- Constructed as over-approximation (of under-approximation)

* Soundness Theorem:

Under certain assumptions about the programs, the analyser has no false negatives.

56

57

"has bugs”

“correct’’

Static Bug Finder

pi | true positive

pz | false positive

@ @ @ ps | true negative

/_\ '
— ps | Talse negative

58

Unsound Static Bug Finder

pz2 | false positive

Sound (but imprecise) Static Bug Finder

pir| true positive

pz | false negative

@ @ @ ps | true negative
4

/\ '
—— ps | Tfalse negative

abstract under-approximation

<

60

| oss of Precision in Static Bug Finders

a)

if (n != VERY UNLIKELY VALUE) ({

} else {

}

_ J

ldea: over-approximate In concrete semantics!

61

Sound (but Imprecise) Static Bug Finder

Let's merge these executions into
one that subsumes both!

62

true positive
false negative
true negative

false negative

r

.

if (*) {

// bug happens here
} else {

// normal execution

}

overApproxConcreteSem(c) =

63

true positive
talse pogiives
true negative

false negative

Sound Static Bug Finder

r

.

1f (*) {
// bug happens here
} else {

// normal execution

}

overApproxConcreteSem(c) =

concrete over-approximation

p1 || true positive

P2 || true positive

ps | true negative

oz

/\ '
ps | Talse negative

abstract under-approximation

<

Towards sound Static Bug Finders

(this work)

- False negatives (bugs missed) are okay
- False positives (non-bugs reported) are
- Constructed as under-approximation of over-approximation

- Soundness (True Positives) Theorem:
Under certain assumptions about the programs, the analyser has no false positives.

65

A Recipe for True Positives Theorem

. Over-approximate semantic elements to make up for “difficult” dynamic execution aspects

Example: replace conditions and loops with their non-deterministic versions

2. Pick abstraction & for over-approximated executions that provably identifies “buggy’ behaviours:

V e execution, hasBug(X(e)) = execution e has a bug

3. Design an abstract semantics asem, so 1t is complete wrt. & and over-approximated concrete semantics:

V c:program, asem(c) = X(overApproxConcreteSem(c))

4. logether, asem and hasBug provide a [P-sound static bug finder.

60

Case Study: RacerDX

A provably TP-Sound version of Facebook’'s RacerD concurrency analyser
Buggy executions: data races in lock-based concurrent programs

Syntactic assumptions:
Java programs with well-scoped locking (synchronised), NO recursion,
reflection, dynamic class loading; global variables are ignored.

Concrete over-approximation:
Loops and conditionals are non-deterministic.

6/

A lrue Race

class Bloop { class Burble {
public int f = 1;
) public void meps(Bloop b) {
synchronized (this) {
System.out.println(b.f);

b o o

)
¥

public void reps(Bloop b) {
b.f = 42;

¥

public void beps(Bloop b) {
b = new Bloop();
b.f = 239;
}
}

63

A False Race

class Bloop {
public int f = 1;
J

7

Path prefix b is “unstable” (“wobbly”),

as It's reassigned, hence race is evaded.

class Burble {

public void meps(Bloop b) {
synchronized (this) {
System.out.println(b.f);

} b o o

¥

public void reps(Bloop b) {
b.f = 42;
]

-g\\\1=§gublic void beps(Bloop b) {
b_

69

= new Bloop();
b.f = 239;

Complete Abstraction for Race Detection

(W, L, A)

public void meps(Bloop b) {
synchronized (this) {
System.out.println(b.f);
(c) }
Wobbly” paths, Accesses/locks }

touched during execution with formals/fields sublic void reps(Bloop b)

: b.f = 42;
Locking level)

public void beps(Bloop b) {
b = new Bloop();

((b.f}, 0, {R(b.f, 1)) br o
((b.f), 0, (W(b.f, O)}) }
((b, b.fl, 0, (W(b, 0), W(b.f, O)})

e asem(meps (b))

e asem(reps (b))

 asem(beps (b))

70

Analysing Summaries for Races

class Burble {

* asem(meps (b)) — ({bf}! O! {R(bf’ 1)}) publichvoi(.i mzpiéﬁ}oc))p{b) {
° asem(reps (b)) — ({bf}, O, {W(bf, O)}) } System.out.println(b.f);

¢ aSGm(bepS (b)) — ({b, bf}, O, {W(b, O), W(bf, O)}) public void reps(Bloop b) {
} = 42;

public void beps(Bloop b) {
b = new Bloop();
b.f = 239;

meps(b) || reps(b) = Can race, }
¥

report a bug!

71

Analysing Summaries for Races

class Burble {

® asem(meps (b)) — ({bf}, O, {R(bf, 1)}) publichvoi(.j mzp;{j}o;p{b) {
o asem(reps(b)) _ ({bf}, O, {W(bf, O)}) }System.out.println(b.f);
J
¢ aSGm(bepS (b)) — ({b, bf}, O, {W(b, O), W(bf, O)}) public void reps(Bloop b) {
} b.f = 42;
public void beps(Bloop b) {
b = ?eng}oop(>;
meps (b) || beps(b) y
J

/2

Formal Result

RacerDX enjoys the [rue Positives [heorem
wrt. Data Race Detection

(Details in the paper)

Evaluation

What Is the price to pay for
having the TP Theorem?

(Reporting no bugs whatsoever is TP-Sound)

RacerD vs RacerbDX

Target LOC | DCPU DXCPU CPUx% D Reps DXReps Reps %

avrora 76k 103 102 0.4% 143 92 36%
Chronicle-Map 45k 196 196 0.1% 2 2 0%
jvm-tools 33k 106 109 -3.6% 30 26 13%
RxJava 273k 76 69 9.2% 166 134 19%
sunflow 25k 44 44 -1.4% 97 42 57%
xalan-j 175k 144 137 5.0% 326 295 10%

/9

RacerD vs RacerbDX

Target LOC |DCPU DXCPU CPUx% | DReps DX Reps Reps %
avrora 76k 102 0.4% 143 92 36%
Chronicle-Map 45k 196 0.1% 2 2 0%
jvm-tools 33k 109 -3.6% 30 26 13%
RxJava 273k 69 9.2% 166 134 19%
sunflow 25k 44 -1.4% 97 42 57%
xalan-j 175k 5.0% 326 295 10%

/0

RacerD vs RacerbDX

Target LOC DCPU DXCPU CPUx% |DReps DXReps Reps %
avrora 76k 103 102 0.4% 143 92 36%
Chronicle-Map 45k 196 196 0.1% 2 2 0%
jvm-tools 33k 106 109 -3.6% 30 26 13%
RxJava 273k 76 69 9.2% 166 134 19%
sunflow 25k 44 44 -1.4% 97 42 57%
xalan-j 175k 144 137 5.0% 326 295 10%

77

What else is in the POPL'19 paper

e Formal definitions of races, concrete and abstract semantics

* Proof of the TP Theorem for RacerDX
e Proofs of analysis completeness (wrt. (W, L, A)-abstraction)

* Proof of the bug detection completeness

e Discussion and comparison with existing static race analyses,
e.g., Chord (Naik et al., PLDI'06)

/8

o lake Away: [heory

* A True Positive-Sound static bug finder never reports false positives. It can
be designed as an under-approximation of an over-approximation

* An abstraction o for TP-Sound static bug detection can be very simple,
but it has to be complete (i.e., sufficient) to report bugs.

79

1o lake Away: Practice

 RacerDX is IP-Sound race detector, whose precision and performance are comparable
with Facebook’s RacerD

* |f RacerDX had been deployed initially rather than RacerD, it would have found 1000s of

bugs, far outstripping all reported impact in previous concurrency analyses
(counterfactual reasoning)

* Until now, static analysers for bug catching that are effective in practice but unsound
have often been regarded as ad hoc;
In the future, they can be principled, satisfying theorems to inform and guide their design.

Thanks!

80

