
Ilya Sergey

ilyasergey.net

Reasoning about Consensus Protocols

Consensus
• Common meaning:  

a way for a set of parties to come to a shared agreement.

• In computing: ensuring that among the values proposed by  
a collection of processes, a single one is chosen.

• Uniformity: Only a single value is chosen

• Non-triviality: Only a value that has been proposed may be chosen

• Irrevocability: Once agreed on a value, the processes do not change
their decision.

Why Consensus?

Why Consensus at SIGPL School?

• Because distributed systems are correctness-critical software.

• PL area provides verification methods and language abstractions.

• Reasoning about correctness of distributed consensus and its
applications is a difficult problem.

Why Distributed Consensus is difficult?

• Arbitrary message delays (asynchronous network)

• Independent parties (nodes) can go offline (and also back online)

• Network partitions

• Message reorderings

• Malicious (Byzantine) parties

• Arbitrary message delays (asynchronous network)

• Independent parties (nodes) can go offline (and also back online)

• Network partitions

• Message reorderings

• Malicious (Byzantine) parties

Why Distributed Consensus is difficult?

Reaching a Consensus

(and constructing a protocol for this)

Jyoti

Parkview

La Yeon

Reaching a Consensus on  
where to have a dinner

Jyoti ParkviewLa Yeon

?? ??

Jyoti ParkviewLa Yeon

?? ??

PP

Centralised protocol

“Acceptor”

Jyoti ParkviewLa Yeon

Problem 1

A single acceptor can go offline or take forever to answer.

?? ??

Jyoti ParkviewLa Yeon

?? ??

Jyoti ParkviewLa Yeon

Problem 2

Multiple acceptors might disagree on the outcomes:  
now they need to reach a consensus themselves.

Separation of Concerns

• Proposers: suggest a value (a restaurant to go);

• Acceptors: support some proposal;

• The proposer with a majority of acceptors supporting its
proposal wins.  
 
Others learn the outcome by querying all the acceptors.

Acceptors

Proposers

PJ J
J

P
P

Acceptors

Proposers

J P

J P

J

Key Idea 1
Rely on majority quorums for agreement  

to prevent the “split brain” problem.

• Common meaning: Quorum is the minimum number of members to
conduct the business on behalf of the entire group they represent;

• In computing: quorum is a necessary number of processes to agree
on the decision in the presence of potentially faulty ones.

Key Properties of Quorums
• Property 1: any two quorums must have non-empty intersection

n/2 + 1 n/2 + 1

• Property 2: no need for the global agreement: can tolerate some faults

Quorum of n/2 + 1 acceptors

P

J P

J J
n = 3

Problem

A quorum is difficult to obtain in a single interaction.
 

As the result, such a system will often get stuck.

Acceptors

Proposers

PJ J
J

P
PL L L

Acceptors

Proposers

J PL

J P
L

Key Ideas 2 and 3
• Proceed in rounds:

• A proposer first “secures” itself a quorum, willing to support its
proposal (i.e., becomes a “leader”);

• Only if a quorum is secured, it goes on to “propose” a value. 

• Introduce fixed globally known priorities between proposers  
to “break ties” when securing quorums.

• Acceptors only “choose to support” proposers with higher priorities  
than they have already seen.

Some Terminology

• Rounds — Phases
• Phase 1 — “prepare”, securing quorums to propose
• Phase 2 — “accept”, sending values to accept 

• Fixed priorities — Ballots

1 2 3

1 3

1
3

31

Phase 1

1 2 3

31

1

3

1

3

Phase 1

1 2 3

3

1

3

1 1

3

Phase 1

1 2 3

3

1 1 3

1
3

Phase 1

1 2 3

3

1 1 3

3

Phase 1

1 2 3

1 3 3

Phase 1

1 2 3

1 3 3

PP

Phase 2

1 2 3

1 P 3

P

Phase 2

1 2 3

1 P P

Phase 2

Problem 3

Because of asynchrony, low-priority Phase 2 can be
interrupted by a high-priority Phase 1

1 2 3

1 1 3

Phase 2 Phase 1

3JJ
3

1 2 3

J 1 3

3J
3

1 2 3

J J 3

33

J wins!

1 2 3

3 J 3

3

1 2 3

3 3 3

1 2 3

3 3 3

PPP

1 2 3

P P P

Oops :(P wins!

Problem 3

How to ensure irrevocability of consensus  
in the presence of priorities and asynchrony?

• Cooperation between Proposers and Acceptors:
• Acceptors, when agreeing to support a proposer, must “tell” what was

the highest-ballot value they have accepted;
• Higher-ballot proposers re-propose already (partially) accepted values

from the lower-ballot proposers, who secured the quorum before.  

• This way, a proposer “knows" that, once it secured its quorum, either
• its own proposal, or some higher-ballot one will be accepted
• if its proposal got accepted, it will not be revoked  

(thanks to quorum intersection)

Key Idea 4

1 2 3

J J 3

33

J wins!

1 2 3

3 J 3

3

J wins!

accepted J from 1 Must  
re-propose J

1 2 3

3 3 3

J wins!

accepted J from 1 Must  
re-propose J

1 2 3

3 3 3

JJJ

J wins!

1 2 3

J J J

J wins!
J wins indeed

Two-Phase Ballot-based Consensus
• Proposers suggest values, acceptors decide upon acceptance;

• Each proposal goes in two rounds:
• Phase 1: securing a quorum of acceptors for a proposal
• Phase 2: sending out the proposal

• Acceptors agree only to support ballots higher than what they’ve seen;

• They inform proposers of previously accepted values,  
which those then re-propose.

The Algorithm in a Nutshell
Proposer Acceptor

• Send my ballot b to all acceptors

• Wait for response of at least n/2 + 1 acceptors

• Upon receiving a ballot b
• if it’s the first one, remember it and send “ok” back.
• if it’s higher than b’ we supported before, send

back a previously accepted (b’, v’), and remember
b as what’s currently supported.

• When heard back from n/2 + 1 acceptors, 
send them back (b, w), where

• b is my ballot
• w is the value from the acceptors with  

the highest ballot, or my own value.

• Accept incoming value w if it comes with a
ballot b, which we currently support;  
ignore otherwise.

Phase 1

Phase 2

Learning an Accepted Value

• Send request to all acceptors;

• If at least n/2 + 1 acceptors respond back with the same
value v, this is an accepted value.

• Correctness of this reasoning follows from irrevocability.

Paxos

• A practical fault-tolerant distributed consensus algorithm;

• Invented in 1990, published in 1998;

• Nowadays used everywhere: Google (Bigtable, Chubby),  
IBM, Microsoft;

• You have just seen it explained.

History of Paxos

Leslie Lamport  
(also known for LaTeX, Vector clocks, TLA)  

Turing Award winner 2014

1990: Paxos first described

1998: Paxos paper published

2005: First practical deployments

2010: Widespread use!

2014: Lamport gets Turing Award

History of Paxos

Leslie Lamport  
(also known for LaTeX, Vector clocks, TLA)  

Turing Award winner 2014

1990: Paxos first described

1998: Paxos paper published

2005: First practical deployments

2010: Widespread use!

2014: Lamport gets Turing Award

Recent archaeological discoveries on the island of
Paxos reveal that the parliament functioned despite
the peripatetic propensity of its part-time legislators.

The legislators maintained consistent copies of the
parliamentary record, despite their frequent forays
from the chamber and the forgetfulness of their
messengers

History of Paxos
1990: Paxos first described

1998: Paxos paper published

2005: First practical deployments

2010: Widespread use!

2014: Lamport gets Turing Award

• The ABCDs of Paxos [2001]
• Paxos Made Simple [2001]
• Paxos Made Practical [2007]
• Paxos Made Live [2007]
• Paxos Made Moderately Complex [2011]
• Paxos Consensus, Deconstructed and Abstracted [2018]

Leslie Lamport  
(also known for LaTeX, Vector clocks, TLA)  

Turing Award winner 2014

Multi-Paxos

• Presented in the original Lamport’s 1998 paper.

• Uses the described idea for a sequence of “slots” (think transactions).

• Includes reconfiguration (changing set of acceptors on the fly).

• Naive implementation: run Simple Paxos for each slot.

• Better approach — secure a quorum for several slots.

Exploring the Paxos Zoo
with Network Combinators

• A framework for combining different optimisations of Simple/Multi Paxos
• Written in Scala/Akka, available at  

https://github.com/certichain/network-transformations
• Accompanying paper:  

Paxos Consensus, Deconstructed and Abstracted by García-Pérez et al, 2018.

def setupAndRunPaxos[A](slotValueMap: Map[Int, List[A]], factory: PaxosFactory[A]) {
 val acceptorNum = 7
 val learnerNum = 3
 val proposerNum = 5

 val instance = factory.createPaxosInstance(system, proposerNum, acceptorNum, learnerNum)

 proposeValuesForSlots(slotValueMap, instance, factory)

 Thread.sleep(400) // Wait for some time
 learnAcceptedValues(slotValueMap, instance, factory)
}

Alternative Consensus Protocols

• View-Stamped Replication  
by Brian M. Oki and Barbara Liskov, 1989

• Raft  
by Diego Ongaro and John K. Ousterhout, 2014

Formal Verification of Consensus
• Initially only the model of the protocol was verified:

• P. Kellomäki, 2004, Simple Paxos in PVS

• M. Jaskelioff and S. Merz, 2005, Disk Paxos in Isabelle/HOL

• O. Padon et al. 2017, Simple/Multi-Paxos in Ivy 

• Verified runnable implementations came later:

• V. Rahli et al., 2015, Multi-Paxos in EventML

• C. Hawblitzel et al., 2015, Multi-Paxos in Dafny

• J. Wilcox et al., 2015, Raft in Coq

• C. Dragoi et al., 2016, (Synchronous) Simple Paxos in PSync

• A. Pillai, 2018, Simple Paxos Coq (incomplete)  

• Fault-Tolerant Consensus Protocols are a critical component of modern
distributed systems and applications

• Consensus properties are uniformity, non-triviality, and irrevocability

• The key ideas of Lamport’s Paxos protocol are:
• Majority quorums (avoiding split brain and enabling fault-tolerance);
• Two-phase structure (secure-commit);
• Dichotomy and cooperation between proposers and acceptors.

To Take Away

To be continued…

• L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.
• L. Lamport. Paxos made simple. SIGACT News, 32, 2001.
• T.D. Chandra et al. Paxos made live: an engineering perspective. PODC 2007
• B. W. Lampson, The ABCD's of Paxos. PODC 2001
• P. Kellomäki. An Annotated Specification of the Consensus Protocol of Paxos Using Superposition in PVS. 2004
• C. Dragoi et al. PSync: a partially synchronous language for fault-tolerant distributed algorithms. In POPL, 2016.
• M. Jaskelioff and S. Merz. Proving the correctness of disk Paxos. Archive of Formal Proofs, 2005.
• C. Hawblitzel et al. IronFleet: proving practical distributed systems correct. In SOSP 2015.
• D. Ongaro and J. K. Ousterhout. In search of an understandable consensus algorithm. USENIX Annual Technical Conference, 2014
• B.M. Oki and B. Liskov, Viewstamped Replication: A General Primary Copy. PODC 1988
• O. Padon, et al. Paxos made EPR: decidable reasoning about distributed protocols. PACMPL, 1(OOPSLA):108:1–108:31, 2017.
• V. Rahli, et al. Formal specification, verification, and implementation of fault-tolerant systems using EventML. In AVOCS. EASST, 2015.
• A. Pillai, Mechanised Verification of Paxos-like Consensus Protocols, BSc Thesis, 2018
• R. van Renesse and D. Altinbuken. Paxos Made Moderately Complex. ACM Comput. Surv., 47(3):42:1–42:36, 2015.
• J.R. Wilcox et al., Verdi: a framework for implementing and formally verifying distributed systems, PLDI 2015
• Á. García-Pérez et al., Paxos Consensus, Deconstructed and Abstracted, ESOP 2018

Bibliography

