Reasoning about Consensus Protocols

lya Sergey

llyasergey.net

Consensus

o Common meaning:
a way for a set of parties to come to a shared agreement.

e In computing: ensuring that among the values proposed by
a collection of processes, a single one is chosen.

* Uniformity: Only a single value is chosen
* Non-triviality: Only a value that has been proposed may be chosen

 |rrevocability: Once agreed on a value, the processes do not change
their decision.

W
hy Consensus?

Jgﬁﬁl":ii’

eThereum

Why Consensus at SIGPL School?

 Because distributed systems are correctness-critical software.
 PL area provides verification methods and language abstractions.

* Reasoning about correctness of distributed consensus and its
applications is a difficult problem.

Why Distributed Consensus is difficult”

Arbitrary message delays (asynchronous network)

Independent parties (nodes) can go offline (and also back online)
Network partitions

Message reorderings

Malicious (Byzantine) parties

Why Distributed Consensus is difficult”

Arbitrary message delays (asynchronous network)
Independent parties (nodes) can go offline (and also back online)
Network partitions

Message reorderings

Reaching a Consensus

(and constructing a protocol for this)

oo S B @ nl=e | pd=Te \
-0 0 ﬁ %‘é}%%} a ﬁ X ..) Sp) 0|§E_,(E-':J ¢g%g
HSY7IoHE E2ESHD | SRSk 3;; A ¥ <=1 8
= o ye0586ga., & 6825 Eiyy 3887UER
= oé\' R’ 7.'§Leve2' AbAZ=0LO 0eS 91 w8 -
3ﬂ/®b© o SK%‘-w - Hstey Asieich . 0|90} Ho A
I = 22 inlo ST == S HEHEY © Q2 |)
Rk egtag JHEC HYH sep FEIRAEH Mg tlofEe FHde =539 t6/)9,\/ 090/,(/
I . - 0| ATy Mg % e,
\J tl = 9a5).
HetsE e 7-Eleven 1o 04
sEleven h . M o Yo, %on
Eney guy - S HEZEE 20 E fr . B | o 4
e o SREW 3943 w PEFYTMB SK Er_mergy i Paris ﬁﬂ?%fc?"e _
o Oy 0 r== ” A
\!’ Hrolcilol” cu xchaic) n S5t +HUSE
. A HiC o gu C
7-Eleven g544 s = . EO:MHQEAI JX2E _ ol S
HlEe e X cu ey seYd A
acy - SRR ohac <
DT R 3 RN [E R Al mejciolagy o Vo
Seqq, okl 3t - 3 - o~,09
s9Yd > 5 EHA MES LA 9
21ug oz 2l3ud o el BHYE o Caffebene . R
2 i yuugy 5 2| K| &
=% o) AILFH o &S At i m
" gopgy Fyug T % Dongguk | A
GS25 o%@E\@%\O/) %&é-“‘é“'%'." Bz SO ZHASH
AIU=E SdEd 424y 009/7 7-Eie.ven i 7o <0t
<! - w010 R aén@* N gl
W - Pl X . o ugwmirzeas O g KOS e
gems HMHR o NI ey U LS = "oy, otlor Y
| d DO:) -
wo b '! Qb DI
e SRR MEAmA Ag,g,. U U e oS
g - F BREE X 9, 2
: T -
At HMAESHY B S suy
DL e — § 636/;
xeryd SIUPHZ K2 1 HECH| § 0 15
SEEL & &
ME RS > @ = i \%\1
. L el BS Cfd)
= Paris Baguelte O
aszd 1} 2| B} 2| < CHEHol| S
g HERY e = JEE IR
d ﬁéA SR AR T - . A ey sHEe
. 2|5 o o HBZEH= S FeIp o179 2 sl
< AR £ Q S “
" T S Oilbank ¥
0|30} E S Q =T E 3,
S La Yeon " %
S > Mosoe | oo Mo Ty

Reaching a Consensus on
where to have a dinner

Centralised protocol

-~

~

Proplem 1

A single acceptor can go offline or take forever to answer.

/\

R
??.

4
4
4
4
L 4

Proplem 2

Multiple acceptors might disagree on the outcomes:

Nnow they need to reach a consensus themselves.

Separation of Concerns

* Proposers: suggest a value (a restaurant to go);
* Acceptors: support some proposal;

* [he proposer with a majority of acceptors supporting its
proposal wins.

Others learn the outcome by querying all the acceptors.

Acceptors

Proposers

Acceptors

Proposers

Key ldea 1

Rely on majority quorums for agreement

to prevent the “split brain™ problem.

« Common meaning. Quorum is the minimum number of members to
conduct the business on behalf of the entire group they represent;

* [n computing. quorum is a necessary number of processes to agree
on the decision in the presence of potentially faulty ones.

Key Properties of Quorums

e Property 1: any two quorums must have non-empty intersection

e Property 2: no need for the global agreement: can tolerate some taults

Proplem

A quorum Is difficult to obtain In a single interaction.

As the result, such a system will often get stuck.

Acceptors

Proposers

Acceptors

Proposers

Key ldeas 2 and 3

e Proceed In rounds:

* A proposer first “secures” itself a quorum, willing to support its
proposal (I.e., becomes a “leader’);

o Only if a quorum is secured, it goes on to “propose” a value.

 |Introduce fixed globally known priorities between proposers
to “break ties” when securing quorums.

 Acceptors only "choose to support” proposers with higher priorities
than they have already seen.

sSome Terminology

 Rounds — Phases
 Phase 1 — “prepare”, securing quorums to propose

 Phase 2 — "accept”, sending values to accept

* Fixed priorities — Ballots

Phase 1

Phase 1

‘--------‘

1

Phase 1

‘--------‘

1

‘--------‘

|

0
0
0
0
0
0
0
4

Phase 1

‘--------‘

1

‘--------‘

|

‘--------‘

'3

0
0
0
0
0
0
0
4

[
[
[
[
[
[
[
4

‘--------‘

1

1

Phase 1

‘--------‘

‘--------‘

'3

[
[
[
[
[
[
[
4

Phase 1

il B I = =N = = =
Il B B B BB BE BB =

il o I = N == = =
Il B B B BB BB = =

il I I = == = = =

il B I = =N = = =

il o I = N == = =

Phase 2

il B I = =N = = =
Il B B B BB BE BB =

il o I = N == = =
Il B B B BB BB = =

Proplem 3

Because of asynchrony, low-priority Phase 2 can be

interrupted by a high-priority Phase 1

‘--------‘

0
0
0
0
0
0
0
4

J

Phase 2

‘--------‘

[
[
[
[
[
[
[
4

Phase 1

‘--------‘

'3

[
[
[
[
[
[
[
4

‘--------‘

[
[
[
[
[
[
[
4

‘--------‘

'3

[
[
[
[
[
[
[
4

‘--------‘

'3

[
[
[
[
[
[
[
4

gmEEEREEEN
@

0
0
0
0
0
0
0
4

‘--------‘

13 :
:]
®
— i

i

i

i

’

il B I = =N = = =
Il B B B BB BE BB =

il B I = =N = = =
Il B B B BB BE BB =

il B I = =N =N = =
Il B B B BB BN = =

Proplem 3

HOowW tO ensure Irrevocabillity of consensus

N the presence of priorities and asynchrony”?

Key ldea 4

* Cooperation between Proposers and Acceptors:

* Acceptors, when agreeing to support a proposer, must “tell” what was
the highest-ballot value they have accepted;

* Higher-ballot proposers re-propose already (partially) accepted values
from the lower-ballot proposers, who secured the guorum before.

* [his way, a proposer "kKnows" that, once It secured its quorum, either
* |ts own proposal, or some higher-ballot one will be accepted

* if Its proposal got accepted, it will not be revokeo
(thanks to quorum intersection)

‘--------‘

'3

[
[
[
[
[
[
[
4

‘--------‘

3

0
0
0
0
0
0
0
4

‘--------‘

'3

[

i 5
[

v [

[

Al
[

J

Must
re-propose J

‘--------‘

3

0
0
0
0
0
0
0
4

‘--------‘

13

[
[
[
[
[
[
[
4

‘--------‘

'3

[

i 5
[

v [

[

Al
[

J

Must
re-propose J

J wins indeed

Two-Phase Ballot-based Consensus

* Proposers suggest values, acceptors decide upon acceptance;

 Each proposal goes in two rounds:
 Phase 1: securing a quorum of acceptors for a proposal

 Phase 2: sending out the proposal
* Acceptors agree only to support ballots higher than what they've seen;

* They inform proposers of previously accepted values,
which those then re-propose.

T'he Algorithm in a Nutshell

Proposer Acceptor
Phase 1
.— ---
5 Upon receiving a ballot b
: Send my ballot b to all acceptors if it's the first one, remember it and send “ok” back.
. . if it's higher than b’ we supported before, send
: o Wait for response of at least n/2 + 1 acceptors pack a previously accepted (b’, v*), and remember
5 b as what's currently supported.
]

« When heard back from n/2 + 1 acceptors,
send them back (b, w), where

| Acceptincoming value w if it comes with a
* bis my ballot nallot b, which we currently support;

 w is the value from the acceptors with ignore otherwise.
the highest ballot, or my own value.

|_earning an Accepted Value

* Send request to all acceptors;

o |t at least n/2 + 1 acceptors respond back with the same
value v, this Is an accepted value.

o Correctness of this reasoning follows from irrevocabillity.

Paxos

A practical fault-tolerant distributed consensus algorithm:;
Invented In 1990, published In 1998;

Nowadays used everywhere: Google (Bigtable, Chubby),
IBM, Microsoft;

You have |ust seen It explained.

History of Paxos

1990: Paxos first described

1998: Paxos paper published

2005: First practical deployments
2010: Widespread use!

| Leslie Lamport
2014 Lamport gets Turing Award (also known for LaTeX, Vector clocks, TLA)
Turing Award winner 2014

History of Paxos

1990: Paxos first described

1998: Paxos paper published Leslie Lamport

(also known for LaleX, Vector clocks, TLA)
Turing Award winner 2014

Recent archaeological discoveries on the island of
2005: First practical dep Paxos reveal that the parliament functioned despite

the peripatetic propensity of its part-time legislators.
2010: Widespread use!

The legislators maintained consistent copies of the
2014: Lamport gets Turil parliamentary record, despite their frequent forays

from the chamber and the forgetfulness of their

messengers

History of Paxos

1990: Paxos first described

1998: Paxos paper published

Leslie Lamport
(also known for LaleX, Vector clocks, TLA)
Turing Award winner 2014

e The ABCDs of Paxos [2001]
2005: Fi ¢ Paxos Made Simple [2001]
2010 W ° Paxos Made Practical [2007]
e Paxos Made Live [2007]
e Paxos Made Moderately Complex [2011]
e Paxos Consensus, Deconstructed and Abstracted [2018]

2014: L:

Multl-Paxos

Presented In the original Lamport's 1998 paper.

Uses the described idea for a sequence of “slots” (think transactions).
Includes reconfiguration (changing set of acceptors on the fly).

Naive implementation: run Simple Paxos for each slot.

e Better approach — secure a quorum for several slots.

-Xploring the Paxos Z0o
with Network Combinators

* A framework for combining different optimisations of Simple/Multi Paxos

* Written in Scala/Akka, available at
https://github.com/certichain/network-transformations

 Accompanying paper:
Paxos Consensus, Deconstructed and Abstracted by Garcia-Pérez et al, 2018.

def setupAndRunPaxos[A](slotValueMap: Map[Int, List[A]], factory: PaxosFactory[A]) {
val acceptorNum = 7

val learnerNum = 3
val proposerNum = 5

val instance = factory.createPaxosInstance(system, proposerNum, acceptorNum, learnerNum)
proposeValuesForSlots(slotValueMap, instance, factory)

Thread.sleep(400) // Wait for some time
learnAcceptedValues(slotValueMap, instance, factory)

Alternative Consensus Protocols

* View-Stamped Replication
by Brian M. Oki and Barbara Liskov, 1989

o Ralft
by Diego Ongaro and John K. Ousterhout, 2014

Formal Verification of Consensus

* |nitially only the model of the protocol was verified:
e P. Kellomé&ki, 2004, Simple Paxos in PVS
e M. Jaskelioff and S. Merz, 2005, Disk Paxos in Isabelle/HOL

* O.Padon et al. 2017, Simple/Multi-Paxos in lvy

* Verified runnable implementations came later:
* V. Rahli et al., 2015, Multi-Paxos in EventML
 C. Hawblitzel et al., 2015, Multi-Paxos in Dafny
e J. Wilcox et al., 2015, Raft in Coq
 C. Dragoi et al., 2016, (Synchronous) Simple Paxos in PSync
* A. Pillai, 2018, Simple Paxos Coqg (incomplete)

o lake Away

» Fault-Tolerant Consensus Protocols are a critical component of modern
distributed systems and applications

e Consensus properties are uniformity, non-triviality, and irrevocability

 [he key ideas of Lamport's Paxos protocol are:
» Majority quorums (avoiding split brain and enabling fault-tolerance);
e [wo-phase structure (secure-commit);

 Dichotomy and cooperation between proposers and acceptors.

To be continued...

Blollograpny

L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133-169, 1998.

L. Lamport. Paxos made simple. SIGACT News, 32, 2001.

T.D. Chandra et al. Paxos made live: an engineering perspective. PODC 2007

B. W. Lampson, The ABCD's of Paxos. PODC 2001

P. Kellomé&ki. An Annotated Specification of the Consensus Protocol of Paxos Using Superposition in PVS. 2004

C. Dragoi et al. PSync: a partially synchronous language for fault-tolerant distributed algorithms. In POPL, 2016.

M. Jaskelioff and S. Merz. Proving the correctness of disk Paxos. Archive of Formal Proofs, 2005.

C. Hawblitzel et al. IronFleet: proving practical distributed systems correct. In SOSP 2015.

D. Ongaro and J. K. Qusterhout. In search of an understandable consensus algorithm. USENIX Annual Technical Conference, 2014
B.M. Oki and B. Liskov, Viewstamped Replication: A General Primary Copy. PODC 1988

O. Padon, et al. Paxos made EPR: decidable reasoning about distributed protocols. PACMPL, 1(OOPSLA):108:1-108:31, 2017.

V. Rahli, et al. Formal specification, verification, and implementation of fault-tolerant systems using EventML. In AVOCS. EASST, 2015.
A. Pillai, Mechanised Verification of Paxos-like Consensus Protocols, BSc Thesis, 2018

R. van Renesse and D. Altinbuken. Paxos Made Moderately Complex. ACM Comput. Surv., 47(3):42:1-42:36, 2015.

J.R. Wilcox et al., Verdi: a framework for implementing and formally verifying distributed systems, PLDI 2015

A. Garcia-Pérez et al., Paxos Consensus, Deconstructed and Abstracted, ESOP 2018

