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Consensus

o Common meaning:
a way for a set of parties to come to a shared agreement.

e In computing: ensuring that among the values proposed by
a collection of processes, a single one is chosen.

* Uniformity: Only a single value is chosen
* Non-triviality: Only a value that has been proposed may be chosen

 |rrevocability: Once agreed on a value, the processes do not change
their decision.
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Why Consensus at SIGPL School?

 Because distributed systems are correctness-critical software.
 PL area provides verification methods and language abstractions.

* Reasoning about correctness of distributed consensus and its
applications is a difficult problem.



Why Distributed Consensus is difficult”

Arbitrary message delays (asynchronous network)

Independent parties (nodes) can go offline (and also back online)
Network partitions

Message reorderings

Malicious (Byzantine) parties
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Reaching a Consensus

(and constructing a protocol for this)
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Reaching a Consensus on
where to have a dinner






Centralised protocol
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Proplem 1

A single acceptor can go offline or take forever to answer.
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Proplem 2

Multiple acceptors might disagree on the outcomes:

Nnow they need to reach a consensus themselves.



Separation of Concerns

* Proposers: suggest a value (a restaurant to go);
* Acceptors: support some proposal;

* [he proposer with a majority of acceptors supporting its
proposal wins.

Others learn the outcome by querying all the acceptors.



Acceptors

Proposers



Acceptors

Proposers



Key ldea 1

Rely on majority quorums for agreement

to prevent the “split brain™ problem.

« Common meaning. Quorum is the minimum number of members to
conduct the business on behalf of the entire group they represent;

* [n computing. quorum is a necessary number of processes to agree
on the decision in the presence of potentially faulty ones.



Key Properties of Quorums

e Property 1: any two quorums must have non-empty intersection

e Property 2: no need for the global agreement: can tolerate some taults






Proplem

A quorum Is difficult to obtain In a single interaction.

As the result, such a system will often get stuck.



Acceptors

Proposers
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Key ldeas 2 and 3

e Proceed In rounds:

* A proposer first “secures” itself a quorum, willing to support its
proposal (I.e., becomes a “leader’);

o Only if a quorum is secured, it goes on to “propose” a value.

 |Introduce fixed globally known priorities between proposers
to “break ties” when securing quorums.

 Acceptors only "choose to support” proposers with higher priorities
than they have already seen.



sSome Terminology

 Rounds — Phases
 Phase 1 — “prepare”, securing quorums to propose

 Phase 2 — "accept”, sending values to accept

* Fixed priorities — Ballots



Phase 1
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Proplem 3

Because of asynchrony, low-priority Phase 2 can be

interrupted by a high-priority Phase 1
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Proplem 3

HOowW tO ensure Irrevocabillity of consensus

N the presence of priorities and asynchrony”?



Key ldea 4

* Cooperation between Proposers and Acceptors:

* Acceptors, when agreeing to support a proposer, must “tell” what was
the highest-ballot value they have accepted;

* Higher-ballot proposers re-propose already (partially) accepted values
from the lower-ballot proposers, who secured the guorum before.

* [his way, a proposer "kKnows" that, once It secured its quorum, either
* |ts own proposal, or some higher-ballot one will be accepted

* if Its proposal got accepted, it will not be revokeo
(thanks to quorum intersection)
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J wins indeed




Two-Phase Ballot-based Consensus

* Proposers suggest values, acceptors decide upon acceptance;

 Each proposal goes in two rounds:
 Phase 1: securing a quorum of acceptors for a proposal

 Phase 2: sending out the proposal
* Acceptors agree only to support ballots higher than what they've seen;

* They inform proposers of previously accepted values,
which those then re-propose.



T'he Algorithm in a Nutshell

Proposer Acceptor
Phase 1
.— -------------------------------------------------------
5  Upon receiving a ballot b
:  Send my ballot b to all acceptors  if it's the first one, remember it and send “ok” back.
. .  if it's higher than b’ we supported before, send
: o Wait for response of at least n/2 + 1 acceptors pack a previously accepted (b’, v*), and remember
5 b as what's currently supported.
]

« When heard back from n/2 + 1 acceptors,
send them back (b, w), where

|  Acceptincoming value w if it comes with a
* bis my ballot nallot b, which we currently support;

 w is the value from the acceptors with ignore otherwise.
the highest ballot, or my own value.




|_earning an Accepted Value

* Send request to all acceptors;

o |t at least n/2 + 1 acceptors respond back with the same
value v, this Is an accepted value.

o Correctness of this reasoning follows from irrevocabillity.



Paxos

A practical fault-tolerant distributed consensus algorithm:;
Invented In 1990, published In 1998;

Nowadays used everywhere: Google (Bigtable, Chubby),
IBM, Microsoft;

You have |ust seen It explained.



History of Paxos

1990: Paxos first described

1998: Paxos paper published

2005: First practical deployments
2010: Widespread use!

| Leslie Lamport
2014 Lamport gets Turing Award (also known for LaTeX, Vector clocks, TLA)
Turing Award winner 2014
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1998: Paxos paper published Leslie Lamport

(also known for LaleX, Vector clocks, TLA)
Turing Award winner 2014

Recent archaeological discoveries on the island of
2005: First practical dep Paxos reveal that the parliament functioned despite

the peripatetic propensity of its part-time legislators.
2010: Widespread use!

The legislators maintained consistent copies of the
2014: Lamport gets Turil parliamentary record, despite their frequent forays

from the chamber and the forgetfulness of their

messengers




History of Paxos

1990: Paxos first described

1998: Paxos paper published

Leslie Lamport
(also known for LaleX, Vector clocks, TLA)
Turing Award winner 2014

e The ABCDs of Paxos [2001]
2005: Fi ¢ Paxos Made Simple [2001]
2010 W ° Paxos Made Practical [2007]
e Paxos Made Live [2007]
e Paxos Made Moderately Complex [2011]
e Paxos Consensus, Deconstructed and Abstracted [2018]

2014: L:




Multl-Paxos

Presented In the original Lamport's 1998 paper.

Uses the described idea for a sequence of “slots” (think transactions).
Includes reconfiguration (changing set of acceptors on the fly).

Naive implementation: run Simple Paxos for each slot.

e Better approach — secure a quorum for several slots.



-Xploring the Paxos Z0o
with Network Combinators

* A framework for combining different optimisations of Simple/Multi Paxos

* Written in Scala/Akka, available at
https://github.com/certichain/network-transformations

 Accompanying paper:
Paxos Consensus, Deconstructed and Abstracted by Garcia-Pérez et al, 2018.

def setupAndRunPaxos[A](slotValueMap: Map[Int, List[A]], factory: PaxosFactory[A]) {
val acceptorNum = 7

val learnerNum = 3
val proposerNum = 5

val instance = factory.createPaxosInstance(system, proposerNum, acceptorNum, learnerNum)
proposeValuesForSlots(slotValueMap, instance, factory)

Thread.sleep(400) // Wait for some time
learnAcceptedValues(slotValueMap, instance, factory)




Alternative Consensus Protocols

* View-Stamped Replication
by Brian M. Oki and Barbara Liskov, 1989

o Ralft
by Diego Ongaro and John K. Ousterhout, 2014



Formal Verification of Consensus

* |nitially only the model of the protocol was verified:
e P. Kellomé&ki, 2004, Simple Paxos in PVS
e M. Jaskelioff and S. Merz, 2005, Disk Paxos in Isabelle/HOL

* O.Padon et al. 2017, Simple/Multi-Paxos in lvy

* Verified runnable implementations came later:
* V. Rahli et al., 2015, Multi-Paxos in EventML
 C. Hawblitzel et al., 2015, Multi-Paxos in Dafny
e J. Wilcox et al., 2015, Raft in Coq
 C. Dragoi et al., 2016, (Synchronous) Simple Paxos in PSync
* A. Pillai, 2018, Simple Paxos Coqg (incomplete)



o lake Away

» Fault-Tolerant Consensus Protocols are a critical component of modern
distributed systems and applications

e Consensus properties are uniformity, non-triviality, and irrevocability

 [he key ideas of Lamport's Paxos protocol are:
» Majority quorums (avoiding split brain and enabling fault-tolerance);
e [wo-phase structure (secure-commit);

 Dichotomy and cooperation between proposers and acceptors.

To be continued...
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