
Reasoning about Byzantine Protocols

Ilya Sergey

ilyasergey.net

Why Distributed Consensus is difficult?

• Arbitrary message delays (asynchronous network)

• Independent parties (nodes) can go offline (and also back online)

• Network partitions

• Message reorderings

• Malicious (Byzantine) parties

Why Distributed Consensus is difficult?

• Arbitrary message delays (asynchronous network)

• Independent parties (nodes) can go offline (and also back online)

• Network partitions

• Message reorderings

• Malicious (Byzantine) parties

Byzantine Generals Problem

• A Byzantine army decides to attack/retreat
• N generals, f of them are traitors (can collude)
• Generals camp outside the battle field:  

decide individually based on their field information
• Exchange their plans by unreliable messengers

• Messengers can be killed, can be late, etc.
• Messengers cannot forge a general’s seal on a message

Byzantine Consensus

• All loyal generals decide upon the same plan of action.

• A small number of traitors (f << N) cannot cause the loyal generals to adopt
a bad plan or disagree on the course of actions.

• All the usual consensus properties:  
uniformity (amongst the loyal generals), non-triviality, and irrevocability.

Why is Byzantine Agreement Hard?
• Simple scenario

• 3 generals, general (3) is a traitor

• Traitor (3) sends different plans to (1) and (2)

• If decision is based on majority

• (1) and (2) decide differently

• (2) attacks and gets defeated  

(1)

(2) (3)

I will attack

Ok, so will I

I retreat
Okay, I retreat tooI a

tta
ck

I re
tre

at

• More complicated scenarios

• Messengers get killed, spoofed

• Traitors confuse others:  
(3) tells (1) that (2) retreats, etc

Byzantine Consensus in Computer Science
• A general is︎ a program component/processor/replica

• Replicas communicate via messages/remote procedure calls
• Traitors are malfunctioning replicas or adversaries 

• Byzantine army is a deterministic replicate service
• All (good) replicas should act similarly and execute the same logic
• The service should cope with failures, keeping its state consistent across the replicas  

• Seen in many applications:
• replicated file systems, backups, distributed servers
• shared ledgers between banks, decentralised blockchain protocols. 

Byzantine Fault Tolerance Problem
• Consider a system of similar distributed replicas (nodes)

• N replicas in total

• f of them might be faulty (crashed or compromised)

• All replicas initially start from the same state 

• Given a request/operation (e.g., a transaction), the goal is

• Guarantee that all non-faulty replicas agree on the next state

• Provide system consistency even when some replicas may be inconsistent

Previous lecture: Paxos
• Communication model

• Network is asynchronous: messages are delayed arbitrarily,
but eventually delivered; they are not deceiving.

• Protocol tolerates (benign) crash-failure  

• Key design points

• Works in two phases — secure quorum, then commit

• Require at least 2f + 1 replicas to tolerate f faulty replicas

• N = 3, f = 1

• N/2 + 1 = 2 are good

• everyone is proposers/acceptor

Paxos and Byzantine Faults

11

Paxos and Byzantine Faults
1

• N = 3, f = 1

• N/2 + 1 = 2 are good

• everyone is proposers/acceptor

Paxos and Byzantine Faults

PJ

1

1

1

• N = 3, f = 1

• N/2 + 1 = 2 are good

• everyone is proposers/acceptor

Paxos and Byzantine Faults

J

??

P

1
• N = 3, f = 1

• N/2 + 1 = 2 are good

• everyone is proposers/acceptor

What went wrong?

• Problem 1:  
Acceptors did not communicate with each other to check the
consistency of the values proposed to everyone. 

• Let us try to fix it with an additional Phase 2 (Prepare), executed
before everyone commits in Phase 3 (Commit).

Phase 1: “Pre-prepare”

PJ

11

1

Phase 2: “Prepare”

got P from 1
J? P?

1

got P from 1

Phase 2: “Prepare”

got J from 1
J? P?

1

got J fro
m 1

Phase 2: “Prepare”

got P from 1

J? P?

1

got J fro
m 1

Phase 2: “Prepare”

J? P?

1

Two out of three
want to commit J

It’s a quorum for J!

Two out of three
want to commit P
It’s a quorum for P!

Phase 3: “Commit”

J P

1

What went wrong now?

• Problem 2:  
Even though the acceptors communicated, the quorum size was  
too small to avoid “contamination” by an adversary.

• We can fix it by increasing the quorum size relative to  
the total number of nodes.

Choosing the Quorum Size
• Paxos: any two quorums must have non-empty intersection

f + 1 f + 1

Sharing at least one node: must agree on the value

N ≥ 2 * f + 1
z }| {

Choosing the Quorum Size

f + 1 f + 1

An adversarial node in the intersection can “lie” about the value:

to honest parties it might look like there is not split, but in fact, there is!

 2 * f + 1 2 * f + 1

N ≥ 2 * f + 1z }| {

Choosing the Quorum Size

Up to f adversarial nodes will not manage to deceive the others.

• Byzantine consensus: let’s make a quorum to be ≥ 2/3 * N + 1  
any two quorums must have at least one non-faulty node in their intersection.

f + 1

Two Key Ideas of Byzantine Fault Tolerance

• 3-Phase protocol: Pre-prepare, Prepare, Commit
• Cross-validating each other’s intentions amongst replicas

• Larger quorum size: 2/3*N + 1 (instead of N/2 + 1)
• Allows for up to 1/3 * N adversarial nodes
• Honest nodes still reach an agreement

Practical Byzantine Fault Tolerance
(PBFT)

• Introduced by Miguel Castro & Barbara Liskov in 1999
• almost 10 years after Paxos  

• Addresses real-life constraints on Byzantine systems:
• Asynchronous network
• Byzantine failure
• Message senders cannot be forged (via public-key crypto)

PBFT Terminology and Layout
• Replicas — nodes participating in a consensus  

(no more acceptor/proposer dichotomy) 

• A dedicated replica (primary) acts as a proposer/leader
• A primary can be re-elected if suspected to be compromised
• Backups — other, non-primary replicas  

• Clients — communicate directly with primary/replicas
• The protocol uses time-outs (partial synchrony) to detect faults

• E.g., a primary not responding for too long is considered compromised

Overview of the Core PBFT Algorithm

Request → Pre-Prepare → Prepare → Commit → Reply

z}|{

Executed by ReplicasExecuted by

Client

client C

replica 0

replica 1

replica 2

replica 3

m(v) [pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

Request

Client C sends a message to all replicas

client C

replica 0

replica 1

replica 2

replica 3

m(v)

Pre-prepare
• Primary (0) sends a signed pre-prepare message with the to all backups

• It also includes the digest (hash) D(m) of the original message

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

client C

replica 0

replica 1

replica 2

replica 3

m(v)

Prepare
• Each replica sends a prepare-message to all other replicas
• It proceeds if it receives 2/3*N + 1 prepare-messages consistent with its own

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

client C

replica 0

replica 1

replica 2

replica 3

m(v)

Commit
• Each replica sends a signed commit-message to all other replicas
• It commits if it receives 2/3*N+1 commit-messages consistent with its own

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

client C

replica 0

replica 1

replica 2

replica 3

m(v)

Reply
• Each replica sends a signed response to the initial client
• The client trusts the response once she receives N/3 + 1 matching ones

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

What if Primary is compromised?
• Thanks to large quorums, it won’t break integrity of the good replicas
• Eventually, replicas and the clients will detect it via time-outs

• Primary sending inconsistent messages would cause the system to  
“get stuck” between the phases, without reaching the end of commit

• Once a faulty primary is detected, backups-will launch a view-change,  
re-electing a new primary

• View-change is similar to reaching a consensus but gets tricky in the
presence of partially committed values

• See the Castro & Liskov ’99 PBFT paper for the details…

PBFT in Industry
• Widely adopted in practical developments:

• Tendermint
• IBM’s Openchain
• Elastico/Zilliqa
• Chainspace

• Used for implementing sharding to speed-up blockchain-based consensus
• Many blockchain solutions build on similar ideas

• Stellar Consensus Protocol

PBFT and Formal Verification

• M. Castro’s PhD Thesis  
Proof of the safety and liveness using I/O Automata (2001)

• L. Lamport:  
Mechanically Checked Safety Proof of a Byzantine Paxos Algorithm  
in TLA+ (2013)

• Velisarios by V. Rahli et al, ESOP 2018  
A version of executable PBFT verified in Coq

PBFT Shortcomings

• Can be used only for a fixed set of replicas

• Agreement is based on fixed-size quorums

• Open systems (used in Blockchain Protocols) rely on alternative
mechanisms of Proof-of-X (e.g., Proof-of-Work, Proof-of-Stake)

Reasoning about
Blockchain Protocols

based on joint work with George Pîrlea

1. Understand blockchain consensus
• what it is
• how it works: example
• why it works: our formalisation

2. Lay foundation for verified practical implementation
• verified Byzantine-tolerant consensus layer
• platform for verified smart contracts

Motivation

!39

Future work

What it does

!40

bl
oc

kc
ha

in

co
ns

en
su

s
pr

ot
oc

ol• transforms a set of transactions
into a globally-agreed sequence

• “distributed timestamp
server” (Nakamoto2008)

!41

transactions
can be anything

!42

!43

GB = genesis block

!44

How it works

!45

• distributed
• multiple nodes

• all start with same GB

!46

what everyone
eventually agrees on

view of all
participants’ state

• distributed
• multiple nodes
• message-passing

over a network

• all start with same GB

!47

• distributed
• multiple nodes
• message-passing

over a network

• all start with same GB
• have a transaction pool

!48

• distributed
• multiple nodes
• message-passing

over a network

• all start with same GB
• have a transaction pool
• can mint blocks

!49

• distributed =>
concurrent
• multiple nodes
• message-passing over

a network

• multiple transactions can
be issued and
propagated concurrently

!50

• distributed =>
concurrent
• multiple nodes
• message-passing over

a network

• blocks can be minted
without full knowledge of
all transactions

!51

• chain fork has
happened, but nodes
don’t know

!52

!53

• as block messages
propagate, nodes become
aware of the fork

Problem: need to choose
• blockchain “promise” =  

one globally-agreed chain 

• each node must choose one chain
• nodes with the same information

must choose the same chain

!54

Problem: need to choose
• blockchain “promise” =  

one globally-agreed chain 

• each node must choose one chain
• nodes with the same information

must choose the same chain

!55

Problem: need to choose

!56

• blockchain “promise” =  
one globally-agreed chain 

• each node must choose one chain
• nodes with the same information

must choose the same chain

Problem: need to choose

!57

• blockchain “promise” =  
one globally-agreed chain 

• each node must choose one chain
• nodes with the same information

must choose the same chain

Solution: fork choice rule
•Fork choice rule (FCR, >):
• given two blockchains, says which one is “heavier”
• imposes a strict total order on all possible blockchains
• same FCR shared by all nodes

•Nodes adopt “heaviest” chain they know

!58

… > [GB, A, C] > … > [GB, A, B] > … > [GB, A] > … > [GB] > …

!59

FCR (>)

Bitcoin: FCR based on “most cumulative work”

• distributed
• multiple nodes
• all start with GB
• message-passing over a network
• equipped with same FCR

• quiescent consistency: when all
block messages have been
delivered, everyone agrees

!60

Quiescent consistency

Why it works

!61

• blocks, chains, block forestsDefinitions

• hashes are collision-free
• FCR imposes strict total order

Parameters and
assumptions

• local state + messages “in flight” =
global Invariant

• when all block messages are delivered,
everyone agrees

Quiescent
consistency

!62

Blocks and chains

!63

links blocks together

proof that this block
was minted in
accordance to the
rules of the protocol

proof-of-work

proof-of-stake

Minting and verifying

!64

try to generate a proof = “ask the protocol for permission” to mint

validate a proof = ensure protocol rules were followed

Resolving conflict

!65

Assumptions
•Hash functions are collision-free

•FCR imposes a strict total order on all blockchains

!66

Invariant: local state + “in-flight” = global

!67

global system step

Invariant is inductive
state

1

state
2

state
3

state
4

state
5

!68

system step

invariant holds

invariant holds

system step invariant holds

system step invariant holds

system step invariant holds

Invariant implies QC
•QC: when all blocks delivered, everyone agrees

How:
• local state + “in-flight” = global
• use FCR to extract “heaviest” chain out of local state

• since everyone has same state & same FCR
➢consensus

!69

Reusable components
•Reference implementation in Coq
•Per-node protocol logic
•Network semantics
•Clique invariant, QC property, various theorems

https://github.com/certichain/toychain

!70

https://github.com/certichain/toychain

To Take Away
• Byzantine Fault-Tolerant Consensus is a common issue addressed  

in distributed systems, where participants do not trust each other.
• For a fixed set of nodes, a Byzantine consensus can be reached via

• (a) making an agreement to proceed in three phases
• (b) increasing the quorum size
• These ideas are implemented in PBFT, which also relies on cryptographically

signed messages and partial synchrony.
• In open systems (such as those used in Proof-of-X blockchains), consensus can be

reached via a universally accepted Fork-Chain-Rule:
• It measures the amount of work, while comparing two “conflicting” proposals

To be continued…

Bibliography
• L. Lamport et al. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 4(3): 382-401, 1982
• M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In OSDI, 1999
• R. Guerraoui et al. The next 700 BFT protocols. In EuroSys 2010
• L. Lamport. Byzantizing Paxos by Refinement. In DISC, 2011
• C. Cachin et al. Introduction to Reliable and Secure Distributed Programming (2. ed.). Springer, 2011
• L. Lamport. Mechanically Checked Safety Proof of a Byzantine Paxos Algorithm (2013)
• M. Castro. Practical Byzantine Fault Tolerance. Technical Report MIT-LCS-TR-817. Ph.D. MIT, Jan. 2001.
• V. Rahli et al. Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq. ESOP, 2018
• L. Luu et al. A Secure Sharding Protocol For Open Blockchains. ACM CCS, 2016
• M. Al-Bassam et al. Chainspace: A Sharded Smart Contracts Platform. NDSS 2018
• E. Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains, MSc Thesis, 2016
• D. Maziéres. The Stellar Consensus Protocol: A Federated Model for Internet-level Consensus, 2016.
• G. Pîrlea, I. Sergey. Mechanising blockchain consensus. In CPP, 2018. 

