
Reasoning about Byzantine Protocols

Ilya Sergey

ilyasergey.net



Why Distributed Consensus is difficult?

• Arbitrary message delays (asynchronous network) 

• Independent parties (nodes) can go offline (and also back online) 

• Network partitions 

• Message reorderings 

• Malicious (Byzantine) parties
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Byzantine Generals Problem

• A Byzantine army decides to attack/retreat  
• N generals, f of them are traitors (can collude)  
• Generals camp outside the battle field:  

decide individually based on their field information  
• Exchange their plans by unreliable messengers 

• Messengers can be killed, can be late, etc.  
• Messengers cannot forge a general’s seal on a message



Byzantine Consensus

• All loyal generals decide upon the same plan of action. 

• A small number of traitors (f << N) cannot cause the loyal generals to adopt 
a bad plan or disagree on the course of actions.  

• All the usual consensus properties:  
uniformity (amongst the loyal generals), non-triviality, and irrevocability.



Why is Byzantine Agreement Hard?
• Simple scenario

• 3 generals, general (3) is a traitor 

• Traitor (3) sends different plans to (1) and (2) 

• If decision is based on majority  

• (1) and (2) decide differently  

• (2) attacks and gets defeated  

(1)

(2) (3)

I will attack

Ok, so will I

I retreat
Okay, I retreat tooI a
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• More complicated scenarios 

• Messengers get killed, spoofed  

• Traitors confuse others:  
(3) tells (1) that (2) retreats, etc 



Byzantine Consensus in Computer Science
• A general is︎ a program component/processor/replica  

• Replicas communicate via messages/remote procedure calls  
• Traitors are malfunctioning replicas or adversaries 

• Byzantine army is a deterministic replicate service 
• All (good) replicas should act similarly and execute the same logic 
• The service should cope with failures, keeping its state consistent across the replicas  

• Seen in many applications: 
• replicated file systems, backups, distributed servers 
• shared ledgers between banks, decentralised blockchain protocols. 



Byzantine Fault Tolerance Problem
• Consider a system of similar distributed replicas (nodes) 

• N replicas in total 

• f of them might be faulty (crashed or compromised) 

• All replicas initially start from the same state 

• Given a request/operation (e.g., a transaction), the goal is 

• Guarantee that all non-faulty replicas agree on the next state  

• Provide system consistency even when some replicas may be inconsistent 



Previous lecture: Paxos
• Communication model

• Network is asynchronous: messages are delayed arbitrarily, 
but eventually delivered; they are not deceiving. 

• Protocol tolerates (benign) crash-failure  

• Key design points

• Works in two phases — secure quorum, then commit 

• Require at least 2f + 1 replicas to tolerate f faulty replicas 



• N = 3, f = 1  

• N/2 + 1 = 2 are good 

• everyone is proposers/acceptor 

Paxos and Byzantine Faults
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What went wrong?

• Problem 1:  
Acceptors did not communicate with each other to check the 
consistency of the values proposed to everyone. 

• Let us try to fix it with an additional Phase 2 (Prepare), executed 
before everyone commits in Phase 3 (Commit).



Phase 1: “Pre-prepare”

PJ
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Phase 2: “Prepare”

J? P?

1

Two out of three 
want to commit J 

It’s a quorum for J!

Two out of three 
want to commit P 
It’s a quorum for P!



Phase 3: “Commit”

J P

1



What went wrong now?

• Problem 2:  
Even though the acceptors communicated, the quorum size was  
too small to avoid “contamination” by an adversary. 

• We can fix it by increasing the quorum size relative to  
the total number of nodes.



Choosing the Quorum Size
• Paxos: any two quorums must have non-empty intersection

f + 1 f + 1

Sharing at least one node: must agree on the value

N ≥ 2 * f + 1
z }| {



Choosing the Quorum Size

f + 1 f + 1

An adversarial node in the intersection can “lie” about the value: 

to honest parties it might look like there is not split, but in fact, there is!



                    2 * f + 1                                             2 * f + 1            

N ≥ 2 * f + 1z }| {

Choosing the Quorum Size

Up to f adversarial nodes will not manage to deceive the others.

• Byzantine consensus: let’s make a quorum to be ≥ 2/3 * N + 1  
any two quorums must have at least one non-faulty node in their intersection.

f + 1



Two Key Ideas of Byzantine Fault Tolerance

• 3-Phase protocol: Pre-prepare, Prepare, Commit 
• Cross-validating each other’s intentions amongst replicas 

• Larger quorum size: 2/3*N + 1 (instead of N/2 + 1) 
• Allows for up to 1/3 * N adversarial nodes 
• Honest nodes still reach an agreement



Practical Byzantine Fault Tolerance 
(PBFT) 

• Introduced by Miguel Castro & Barbara Liskov in 1999 
• almost 10 years after Paxos  

• Addresses real-life constraints on Byzantine systems: 
• Asynchronous network 
• Byzantine failure 
• Message senders cannot be forged (via public-key crypto)



PBFT Terminology and Layout
• Replicas — nodes participating in a consensus  

(no more acceptor/proposer dichotomy) 

• A dedicated replica (primary) acts as a proposer/leader 
• A primary can be re-elected if suspected to be compromised 
• Backups — other, non-primary replicas  

• Clients — communicate directly with primary/replicas 
• The protocol uses time-outs (partial synchrony) to detect faults 

• E.g., a primary not responding for too long is considered compromised



Overview of the Core PBFT Algorithm

Request → Pre-Prepare → Prepare → Commit → Reply

z}|{

Executed by ReplicasExecuted by 

Client



client C

replica 0

replica 1

replica 2

replica 3

m(v) [pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

Request

Client C sends a message to all replicas



client C

replica 0

replica 1

replica 2

replica 3

m(v)

Pre-prepare
• Primary (0) sends a signed  pre-prepare message with the to all backups 

• It also includes the digest (hash) D(m) of the original message

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]



client C

replica 0

replica 1

replica 2

replica 3

m(v)

Prepare
• Each replica sends a prepare-message to all other replicas 
• It proceeds if it receives 2/3*N + 1 prepare-messages consistent with its own

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]



client C

replica 0

replica 1

replica 2

replica 3

m(v)

Commit
• Each replica sends a signed commit-message to all other replicas 
• It commits if it receives 2/3*N+1 commit-messages consistent with its own

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]



client C

replica 0

replica 1

replica 2

replica 3

m(v)

Reply
• Each replica sends a signed response to the initial client 
• The client trusts the response once she receives N/3 + 1 matching ones

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]



What if Primary is compromised?
• Thanks to large quorums, it won’t break integrity of the good replicas 
• Eventually, replicas and the clients will detect it via time-outs 

• Primary sending inconsistent messages would cause the system to  
“get stuck” between the phases, without reaching the end of commit  

• Once a faulty primary is detected, backups-will launch a view-change,  
re-electing a new primary 

• View-change is similar to reaching a consensus but gets tricky in the 
presence of partially committed values 

• See the Castro & Liskov ’99 PBFT paper for the details…



PBFT in Industry
• Widely adopted in practical developments: 

• Tendermint
• IBM’s Openchain
• Elastico/Zilliqa
• Chainspace

• Used for implementing sharding to speed-up blockchain-based consensus 
• Many blockchain solutions build on similar ideas 

• Stellar Consensus Protocol



PBFT and Formal Verification

• M. Castro’s PhD Thesis  
Proof of the safety and liveness using I/O Automata (2001) 

• L. Lamport:  
Mechanically Checked Safety Proof of a Byzantine Paxos Algorithm  
in TLA+ (2013) 

• Velisarios by V. Rahli et al, ESOP 2018  
A version of executable PBFT verified in Coq



PBFT Shortcomings

• Can be used only for a fixed set of replicas 

• Agreement is based on fixed-size quorums 

• Open systems (used in Blockchain Protocols) rely on alternative 
mechanisms of Proof-of-X (e.g., Proof-of-Work, Proof-of-Stake)



Reasoning about 
Blockchain Protocols

based on joint work with George Pîrlea



1. Understand blockchain consensus 
• what it is 
• how it works: example 
• why it works: our formalisation 

2. Lay foundation for verified practical implementation 
• verified Byzantine-tolerant consensus layer 
• platform for verified smart contracts

Motivation

!39

Future work



What it does
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ol• transforms a set of transactions 
into a globally-agreed sequence 

• “distributed timestamp 
server” (Nakamoto2008)
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transactions 
can be anything
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GB = genesis block
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How it works
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• distributed 
• multiple nodes 

• all start with same GB

!46

what everyone 
eventually agrees on

view of all 
participants’ state



• distributed 
• multiple nodes 
• message-passing 

over a network 

• all start with same GB
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• distributed 
• multiple nodes 
• message-passing 

over a network 

• all start with same GB 
• have a transaction pool 
• can mint blocks
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• distributed => 
concurrent 
• multiple nodes 
• message-passing over 

a network 

• multiple transactions can 
be issued and 
propagated concurrently
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• distributed => 
concurrent 
• multiple nodes 
• message-passing over 

a network 

• blocks can be minted 
without full knowledge of 
all transactions
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• chain fork has 
happened, but nodes 
don’t know

!52



!53

• as block messages 
propagate, nodes become 
aware of the fork



Problem: need to choose
• blockchain “promise” =  

one globally-agreed chain 

• each node must choose one chain 
• nodes with the same information 

must choose the same chain
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• blockchain “promise” =  
one globally-agreed chain 

• each node must choose one chain 
• nodes with the same information 

must choose the same chain



Solution: fork choice rule
•Fork choice rule (FCR, >): 
• given two blockchains, says which one is “heavier” 
• imposes a strict total order on all possible blockchains 
• same FCR shared by all nodes 

•Nodes adopt “heaviest” chain they know

!58



… > [GB, A, C] > … > [GB, A, B] > … > [GB, A] > … > [GB] > …

!59

FCR (>)

Bitcoin: FCR based on “most cumulative work”



• distributed 
• multiple nodes 
• all start with GB 
• message-passing over a network 
• equipped with same FCR 

• quiescent consistency: when all 
block messages have been 
delivered, everyone agrees 

!60

Quiescent consistency



Why it works
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• blocks, chains, block forestsDefinitions

• hashes are collision-free 
• FCR imposes strict total order

Parameters and 
assumptions

• local state + messages “in flight” = 
global Invariant

• when all block messages are delivered, 
everyone agrees

Quiescent 
consistency
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Blocks and chains
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links blocks together

proof that this block 
was minted in 
accordance to the 
rules of the protocol

proof-of-work

proof-of-stake



Minting and verifying
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try to generate a proof = “ask the protocol for permission” to mint 

validate a proof = ensure protocol rules were followed



Resolving conflict
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Assumptions
•Hash functions are collision-free 

•FCR imposes a strict total order on all blockchains
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Invariant: local state + “in-flight” = global

!67

global system step



Invariant is inductive
state 

1

state 
2

state 
3

state 
4

state 
5
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system step

invariant holds

invariant holds

system step invariant holds

system step invariant holds

system step invariant holds



Invariant implies QC
•QC: when all blocks delivered, everyone agrees 

How: 
• local state + “in-flight” = global 
• use FCR to extract “heaviest” chain out of local state 

• since everyone has same state & same FCR 
➢consensus

!69



Reusable components
•Reference implementation in Coq 
•Per-node protocol logic 
•Network semantics 
•Clique invariant, QC property, various theorems 

https://github.com/certichain/toychain

!70

https://github.com/certichain/toychain


To Take Away
• Byzantine Fault-Tolerant Consensus is a common issue addressed  

in distributed systems, where participants do not trust each other. 
• For a fixed set of nodes, a Byzantine consensus can be reached via 

• (a) making an agreement to proceed in three phases 
• (b) increasing the quorum size 
• These ideas are implemented in PBFT, which also relies on cryptographically 

signed messages and partial synchrony. 
• In open systems (such as those used in Proof-of-X blockchains),  consensus can be 

reached via a universally accepted Fork-Chain-Rule: 
• It measures the amount of work, while comparing two “conflicting” proposals

To be continued…
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