Mechanising Blockchain Consensus

George Pirlea and llya Sergey

Context

* Hundreds of deployed public
blockchains

« $600 625 645 35 #55 #80 820
billion total market cap

(7 day progression since Jan 1st)

This work

* Formalised a blockchain consensus protocol in Cog

* Proved eventual consistency in a clique topology

Motivation

1. Understand blockchain consensus
* what it is
* how it works: example
* why it works: our formalisation

2. Lay foundation for verified practical implementation
* verified Byzantine-tolerant consensus layer

* platform for verified smart contracts } Future work

What it does

{txq,txs,trs,try,tes}

N

, transactions
e transforms a set of transactions

| g can be anything
into a globally-agreed sequence .-
83
« “distributed timestamp %; é
server” (Nakamoto2008) =
@)
@)

v
tes — toexg — toey — txy — txo

{txq,txs,trs,try,tes}

v
txs,txs]| — |[txy] — [txy, txs]

v
tes — trs — txy — tx; — txy

{txq,txs,trs,try,tes}

v
txs,txs| |[txy] « |[txy,txs]

v
tes — trs — txy — tx; — txy

{txq,txs,trs,try,tes}

1< [tzs, tas] « [tza] < [tzy, tz)

GB = genesis block

v
tes — toexg — toey — txy — txo

HOW It WOrks

what everyone
eventually agrees on ‘\

* distributed
* multiple nodes

view of all
participants’ state

e all start with same GB

11

* distributed
* multiple nodes
* message-passing
over a network

e all start with same GB

GB

* distributed
* multiple nodes
* message-passing
over a network

* all start with same GB
* have a transaction pool

GB
{ tx1 }

GB
{ tx }

distributed
* multiple nodes
* message-passing
over a network

all start with same GB
have a transaction pool
can mint blocks

GB

IX]

* distributed =>
concurrent
* multiple nodes
* message-passing
over a network

* multiple transactions can
be issued and
propagated concurrently

GB

IX]

GB
A
* distributed => A
concurrent 1
* multiple nodes b
* message-passing L]
over a network W Na‘
. (2) (3)
* blocks can be mintead GB GB

1 A

without full knowledge of

. A A
all transactions
{ X2, 1X3 } { IX2, 1X3 }

* chain fork has
happened, but nodes
don’t know

17

* as block messages
propagate, nodes become
aware of the fork

GB

{}

Problem: need to choose

* blockchain “promise” =
one globally-agreed chain

 cach node must choose one chain

* nodes with the same information
must choose the same chain

(1)

(3)

Problem: need to choose

* blockchain “promise” =
one globally-agreed chain

 cach node must choose one chain

* nodes with the same information
must choose the same chain

(1)

(3)

Problem: need to choose

* blockchain “promise” =
one globally-agreed chain

 cach node must choose one chain

* nodes with the same information
must choose the same chain

(1)

(3)

Problem: need to choose

* blockchain “promise” =
one globally-agreed chain

 cach node must choose one chain

 nodes with the same information (3)
must choose the same chain

22

Solution: fork choice rule

* Fork choice rule (FCR, >):

* given two blockchains, says which one is “heavier”
* IMposes a strict total order on all possible blockchains
* same FCR shared by all nodes

* Nodes adopt “heaviest” chain they know

FCR (>)

..>[GB, A Cl>...>[GB,A Bl>...>[GB, A >...>[GB] > ...

Bitcoin: FCR based on “most cumulative work”

Quiescent consistency

* distributed
* multiple nodes
 all start with GB
* message-passing over a network
* equipped with same FCR

* quiescent consistency: when all
block messages have been
delivered, everyone agrees

Ix2, 1x3

X3

Why it works

Definitions blocks, chains, block forests

SEIEIEICIERERORN « hashes are collision-free
assumptions * FCR imposes strict total order

* local state + messages “in flight” =
global

Invariant

Quiescent » when all block messages are delivered,
consistency everyone agrees

27

links blocks together

Blocks and chains

hashy, : Block — Hash

N

Tx™; pf : Proof }

b € Block ::= { prev : Hash; txs:

¢ € Chain

GB : Block

Block™

proof-of-work

proof-of-stake

/

proof that this block
was minted In
accordance to the
rules of the protocol

Minting and verifying

/y try to generate a proof = “ask the protocol for permission” to mint
mkProof : Addr — Chain — option Proof

VAF : Proof — Time — Chain — bool
AN

N
validate a proof = ensure protocol rules were followed

Resolving conflict

FCR : Chain — Chain — bool

Assumptions

 Hash functions are collision-free

hash_inj : Vxuy, #x=4#y — x=y

* FCR imposes a strict total order on all blockchains
FCR rel : Yepco,c1=ca Ve >co Ve >0
FCR trans : VYcycpc3,c1 >c2 Acp >3 — €1 > C3
FCR _nrefl : Vc,c>c = False

Invariant: local state + “in-flight” = glolal

(1)
GB GB
7} ﬂ\
A A
A X
ﬂ\
B B
{ } 1x;3
t
X2
YN
(2) (3)
GB GB
A A
{ tx2, tx3 } { tx2, tx3 }

global system step
e

(1)

C

{}

e

GB

1\
A

1\

C

0

-~

~N

X3

32

Invariant 1s inductive

o

system step :>[}
system step :>[}
system step :>[}

system step :>[J

» invariant holds

» invariant holds

» invariant holds

» invariant holds

» invariant holds

33

Invariant implies QC

* QC: when all blocks delivered, everyone agrees

|_|

OW.
* local state + mt” = global

* use FCR to extract “heaviest” chain out of local state

* SINnce everyone has same state & same FCR
>CONSensus

34

Reusable components

* Reference implementation of block forests
* Per-node protocol logic

* Network semantics
* Cligue invariant, QC property, various theorems

https://qithub.com/certichain/toychain

35

https://github.com/certichain/toychain

Future work

* Network semantics with nodes joining/leaving at will

* Improved invariants:
* non-cligue topologies
* network partitions
* Byzantine faults

* \erified smart contracts platform

Take away

* Formalisation of a blockchain consensus protocol in CoQ:
* minimal set of required security primitives
* per-node protocol logic & data structures
* network semantics

* global eventual consistency in a clique topology

https://github.com/certichain/toychain

37

https://github.com/certichain/toychain

