A True Positives [heorem
for a Static Race Detector

Nikos Gorogiannis “eter O'Heamn lya Sergey

facebook facebook YaleNUSCollege

S

Middlesex
University
London

Key Mlessages

Unsound (and incomplete) static analyses can be principled,
satistying meaningful theorems
that help to understand their benhaviour and guide their design

One can have an unsound but effective static analysis,
which has significant industrial impact,
and which is supported by a meaningful theorem.

Context

1. We had a demonstrably-effective industrial analysis:
RacerD (OOPSLA'18); >3k fixes iIn Facebook Java codebase

2.No soundness theorem

Static Analyses tfor Bug Detection
iNnfer

) Securify ErrorProne
FINdBugs
Resharper

Context

1. We had a demonstrably-effective industrial analysis:
RacerD (OOPSLA'18); >3k fixes in Facebook Java

2. No soundness theorem
3. Architecture: compositional abstract interpreter
4, No heuristic alarm filtering

Just ad hoc? | A

Our reaction:
Semantics/theory should understand/explain, not lecture.

5

Conjecture

True Positives Theorem:

Under certain assumptions, the static bug detector reports no false positives.

Static Analyses
for Program Validation

The Essence of Static Analysis

“abstraction’

X
(——e

Drogram Droperty
execution of Interest

Static Analysis

e
concreteSem(c) = @ @

Static Analysis

-7
} “has bugs”
o

concreteSem(c) = @ @ @
® e
‘correct”

11

Verifier
or a
Bug Detector?

Program Veritier

pi | true positive

pz | false positive

@ @ @ ps | true negative

— P4 | true negative

13

Sound Program Verifier

pi | true positive

pz | false positive

@ @ @ ps | true negative

— P4 | true negative

14

Sound Program Verifier

pz | false positive

abstract over-approximation

<

Sound Program Verifier

pi| true positive

pz | false positive

@ @ @ ps | true negative

— P4 | true negative

abstract over-approximation

<

16

Sound Program Verifier

éa)

Developer:
Go away, that never happens!

.

if (n == VERY UNLIKELY VALUE) ({

bug.explode();
} else {
// do nothing

}

17

true positive
false positive
true negative

true positive

Unsound Program “Veritier’

pir| true positive

p2 | false positive

ps | true negative

/_\ .
—— ps | false negative

if (n == VERY UNLIKELY VALUE) ({
bug.explode();

} else {
// do nothing

}

18

‘Sound” Program Veritier

pi | true positive

pz | false positive

@ @ @ ps | true negative

/\ '
— p« | false negative

19

‘Sound” Program Veritier

pi| true positive

pz | false positive

@ @ ps | true negative
4

concrete under-approximation abstract over-approximation

<

20

Sound Static Verifiers

- False negatives (bugs missed) are
» False positives (non-bugs reported) are okay

- Constructed as over-approximation (of under-approximation)

* Soundness Theorem:

Under certain assumptions about the programs, the analyser has no false negatives.

21

22

"has bugs”

“correct’’

Static Bug Finder

pi | true positive

pz | false positive

@ @ @ ps | true negative

/_\ '
— ps | Talse negative

23

Unsound Static Bug Finder

pz2 | false positive

Sound (but imprecise) Static Bug Finder

pir| true positive

pz | false negative

@ @ @ ps | true negative
4

/\ '
—— ps | Tfalse negative

abstract under-approximation

<

25

| oss of Precision in Static Bug Finders

a)

if (n != VERY UNLIKELY VALUE) ({

} else {

}

_ J

ldea: over-approximate In concrete semantics!

20

Sound (but Imprecise) Static Bug Finder

Let's merge these executions into
one that subsumes both!

27

true positive
false negative
true negative

false negative

r

.

if (*) {

// bug happens here
} else {

// normal execution

}

overApproxConcreteSem(c) =

28

true positive
talse pogiives
true negative

false negative

Sound Static Bug Finder

r

.

1f (*) {
// bug happens here
} else {

// normal execution

}

overApproxConcreteSem(c) =

concrete over-approximation

p1 || true positive

P2 || true positive

ps | true negative

29

/\ '
ps | Talse negative

abstract under-approximation

<

Towards sound Static Bug Finders

(this work)

- False negatives (bugs missed) are okay
- False positives (non-bugs reported) are
- Constructed as under-approximation of over-approximation

- Soundness (True Positives) Theorem:
Under certain assumptions about the programs, the analyser has no false positives.

30

A Recipe for True Positives Theorem

. Over-approximate semantic elements to make up for “difficult” dynamic execution aspects

Example: replace conditions and loops with their non-deterministic versions

2. Pick abstraction & for over-approximated executions that provably identifies “buggy’ behaviours:

V e execution, hasBug(X(e)) = execution e has a bug

3. Design an abstract semantics asem, so 1t is complete wrt. & and over-approximated concrete semantics:

V c:program, asem(c) = X(overApproxConcreteSem(c))

4. logether, asem and hasBug provide a [P-sound static bug finder.

31

Case Study: RacerDX

A provably TP-Sound version of Facebook’'s RacerD concurrency analyser
(Blackshear et al., OOPSLA18)

Buggy executions: data races in lock-based concurrent programs

Syntactic assumptions:

Java programs with well-scoped locking (synchronised), NO recursion,
reflection, dynamic class loading; global variables are ignored.

Concrete over-approximation:
Loops and conditionals are non-deterministic.

32

A lrue Race

class Bloop { class Burble {
public int f = 1;
) public void meps(Bloop b) {
synchronized (this) {
System.out.println(b.f);

b o o

)
¥

public void reps(Bloop b) {
b.f = 42;

¥

public void beps(Bloop b) {
b = new Bloop();
b.f = 239;
}
}

33

A False Race

class Bloop {
public int f = 1;
J

7

Path prefix b is “unstable” (“wobbly”),

as It's reassigned, hence race is evaded.

class Burble {

public void meps(Bloop b) {
synchronized (this) {
System.out.println(b.f);

} b o o

¥

public void reps(Bloop b) {
b.f = 42;
]

-g\\\1=§gublic void beps(Bloop b) {
b_

34

= new Bloop();
b.f = 239;

Complete Abstraction for Race Detection

(W, L, A)

public void meps(Bloop b) {
synchronized (this) {
System.out.println(b.f);
(c) }
Wobbly” paths, Accesses/locks }

touched during execution with formals/fields sublic void reps(Bloop b)

: b.f = 42;
Locking level)

public void beps(Bloop b) {
b = new Bloop();

((b.f}, 0, {R(b.f, 1)) br o
((b.f), 0, (W(b.f, O)}) }
((b, b.fl, 0, (W(b, 0), W(b.f, O)})

e asem(meps (b))

e asem(reps (b))

 asem(beps (b))

35

Analysing Summaries for Races

class Burble {

* asem(meps (b)) — ({bf}! O! {R(bf’ 1)}) publichvoi(.i mzpiéﬁ}oc))p{b) {
° asem(reps (b)) — ({bf}, O, {W(bf, O)}) } System.out.println(b.f);

¢ aSGm(bepS (b)) — ({b, bf}, O, {W(b, O), W(bf, O)}) public void reps(Bloop b) {
} = 42;

public void beps(Bloop b) {
b = new Bloop();
b.f = 239;

meps(b) || reps(b) = Can race, }
¥

report a bug!

36

Analysing Summaries for Races

class Burble {

® asem(meps (b)) — ({bf}, O, {R(bf, 1)}) publichvoi(.j mzp;{j}o;p{b) {
o asem(reps(b)) _ ({bf}, O, {W(bf, O)}) }System.out.println(b.f);
J
¢ aSGm(bepS (b)) — ({b, bf}, O, {W(b, O), W(bf, O)}) public void reps(Bloop b) {
} b.f = 42;
public void beps(Bloop b) {
b = ?eng}oop(>;
meps (b) || beps(b) y
J

37

Formal Result

RacerDX enjoys the [rue Positives [heorem
wrt. Data Race Detection

(Details in the paper)

Evaluation

What Is the price to pay for
having the TP Theorem?

(Reporting no bugs whatsoever is TP-Sound)

RacerD vs RacerbDX

Target LOC | DCPU DXCPU CPUx% D Reps DXReps Reps %

avrora 76k 103 102 0.4% 143 92 36%
Chronicle-Map 45k 196 196 0.1% 2 2 0%
jvm-tools 33k 106 109 -3.6% 30 26 13%
RxJava 273k 76 69 9.2% 166 134 19%
sunflow 25k 44 44 -1.4% 97 42 57%
xalan-j 175k 144 137 5.0% 326 295 10%

40

RacerD vs RacerbDX

Target LOC |DCPU DXCPU CPUx% | DReps DX Reps Reps %
avrora 76k 102 0.4% 143 92 36%
Chronicle-Map 45k 196 0.1% 2 2 0%
jvm-tools 33k 109 -3.6% 30 26 13%
RxJava 273k 69 9.2% 166 134 19%
sunflow 25k 44 -1.4% 97 42 57%
xalan-j 175k 5.0% 326 295 10%

41

RacerD vs RacerbDX

Target LOC DCPU DXCPU CPUx% |DReps DXReps Reps %
avrora 76k 103 102 0.4% 143 92 36%
Chronicle-Map 45k 196 196 0.1% 2 2 0%
jvm-tools 33k 106 109 -3.6% 30 26 13%
RxJava 273k 76 69 9.2% 166 134 19%
sunflow 25k 44 44 -1.4% 97 42 57%
xalan-j 175k 144 137 5.0% 326 295 10%

42

o lake Away: [heory

* A True Positive-Sound static bug finder never reports false positives. It can
be designed as an under-approximation of an over-approximation

* An abstraction o for TP-Sound static bug detection can be very simple,
but it has to be complete (i.e., sufficient) to report bugs.

43

1o lake Away: Practice

 RacerDX is TP-Sound race detector, whose precision and performance are
comparable with Facebook’s RacerD (Blackshear et al., OOPSLA18)

* |f RacerDX had been deployed initially rather than RacerD, it would have found
1000s of bugs, far outstripping all reported impact in previous concurrency
analyses (counterfactual reasoning)

* Until now, static analysers for bug catching that are eftective in practice but
unsound have often been regarded as ad hoc; in the future, they can be
principled, satisfying theorems to inform and guide their designs.

Thanks!

44

