
A True Positives Theorem  
for a Static Race Detector

Ilya SergeyNikos Gorogiannis Peter O’Hearn

57

A True Positives Theorem for a Static Race Detector

NIKOS GOROGIANNIS, Facebook, UK and Middlesex University London, UK

PETER W. O’HEARN, Facebook, UK and University College London, UK

ILYA SERGEY∗, Yale-NUS College, Singapore and National University of Singapore, Singapore

RacerD is a static race detector that has been proven to be effective in engineering practice: it has seen
thousands of data races fixed by developers before reaching production, and has supported the migration of
Facebook’s Android app rendering infrastructure from a single-threaded to a multi-threaded architecture. We
prove a True Positives Theorem stating that, under certain assumptions, an idealized theoretical version of
the analysis never reports a false positive. We also provide an empirical evaluation of an implementation of this
analysis, versus the original RacerD.

The theorem was motivated in the first case by the desire to understand the observation from production
that RacerD was providing remarkably accurate signal to developers, and then the theorem guided further
analyzer design decisions. Technically, our result can be seen as saying that the analysis computes an under-
approximation of an over-approximation, which is the reverse of the more usual (over of under) situation in
static analysis. Until now, static analyzers that are effective in practice but unsound have often been regarded
as ad hoc; in contrast, we suggest that, in the future, theorems of this variety might be generally useful in
understanding, justifying and designing effective static analyses for bug catching.

CCS Concepts: • Theory of computation → Program analysis; • Software and its engineering →

Concurrent programming structures;

Additional Key Words and Phrases: Concurrency, Static Analysis, Race Freedom, Abstract Interpretation

ACM Reference Format:
Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2019. A True Positives Theorem for a Static Race
Detector. Proc. ACMProgram. Lang. 3, POPL, Article 57 (January 2019), 29 pages. https://doi.org/10.1145/3290370

1 CONTEXT FOR THE TRUE POSITIVES THEOREM

The purpose of this paper is to state and prove a theorem that has come about by reacting to
surprising properties we observed of a static program analysis that has been in production at
Facebook for over a year.
The RacerD program analyzer searches for data races in Java programs, and it has had signifi-

cantly more reported industrial impact than any other concurrency analysis that we are aware of. It
was released as open source in October of 2017, and the OOPSLA’18 paper by Blackshear et al. (2018)
describes its design, and gives more details about its deployment. They report, for example, that
over 2,500 concurrent data races found by RacerD have been fixed by Facebook developers, and
that it has been used to support the conversion of Facebook’s Android app rendering infrastructure
from a single-threaded to a multi-threaded architecture.

∗Work done while employed as a part-time contractor at Facebook.

Authors’ addresses: Nikos Gorogiannis, Facebook, UK, Middlesex University London, UK, nikosgorogiannis@fb.com; Peter
W. O’Hearn, Facebook, UK, University College London, UK, peteroh@fb.com; Ilya Sergey, Yale-NUS College, Singapore,
National University of Singapore, Singapore, ilya.sergey@yale-nus.edu.sg.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).
2475-1421/2019/1-ART57
https://doi.org/10.1145/3290370

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 57. Publication date: January 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

 2

Unsound (and incomplete) static analyses can be principled,
satisfying meaningful theorems  

that help to understand their behaviour and guide their design

One can have an unsound but effective static analysis,  
which has significant industrial impact,  

and which is supported by a meaningful theorem.

Key Messages

Context

 3

1.We had a demonstrably-effective industrial analysis:  
RacerD (OOPSLA'18); >3k fixes in Facebook Java codebase

2.No soundness theorem

Static Analyses for Bug Detection

Context

 5

1. We had a demonstrably-effective industrial analysis:  
RacerD (OOPSLA'18); >3k fixes in Facebook Java

2. No soundness theorem
3. Architecture: compositional abstract interpreter
4. No heuristic alarm filtering

Just ad hoc?

Our reaction:  
Semantics/theory should understand/explain, not lecture.

Conjecture

True Positives Theorem:  

Under certain assumptions, the static bug detector reports no false positives.

 6

Static Analyses  
for Program Validation

 7

C p
α

e

program  
execution

property 
of interest

“abstraction”

 8

The Essence of Static Analysis

e1

p

α

e2 α

 9

concreteSem(c) =
p2

p3

p4

p1

e2

e3

e1

e4e6

e5

Static Analysis

 10

p2

p3

p4

p1 }
}

“has bugs”

e6

e2

e3

e1

e4

e5 “correct”

Static Analysis

concreteSem(c) =

 11

Verifier  
or a  

Bug Detector?

 12

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Program Verifier

true negative

true positive

true negative

false positive

 13

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Sound Program Verifier

true negative

true positive

true negative

false positive

 14

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Sound Program Verifier

<

abstract over-approximation

false positive

true negative

true positive

true negative

 15

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Sound Program Verifier

<

abstract over-approximation

true negative

true positive

true negative

false positive

 16

p2

p3

p4

p1

e2

e3

e1

e4

e5

Sound Program Verifier

e6

 if (n == VERY_UNLIKELY_VALUE) {
 bug.explode();
 } else {
 // do nothing
 }

true positive

true negative

true positive

false positive

 17

Developer:
Go away, that never happens!

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Unsound Program “Verifier”

 if (n == VERY_UNLIKELY_VALUE) {
 bug.explode();
 } else {
 // do nothing
 }

false negative

true negative

true positive

false positive

 18

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

false negative

e6

“Sound” Program Verifier

false positive

true negative

true positive

 19

e6

p2

p3

p1

e2

e3

e1

e4

e5

“Sound” Program Verifier

<

concrete under-approximation abstract over-approximation

true negative

true positive

false positive

 20

• False negatives (bugs missed) are bad

• False positives (non-bugs reported) are okay

• Constructed as over-approximation (of under-approximation)

• Soundness Theorem:  
Under certain assumptions about the programs, the analyser has no false negatives.

Sound Static Verifiers

 21

p2

p3

p4

p1 }
}

“has bugs”

e6

e2

e3

e1

e4

e5 “correct”

 22

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Static Bug Finder

true negative

false negative

true positive

false positive

 23

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

Unsound Static Bug Finder

false positive

true negative

false negative

true positive

 24

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

<

abstract under-approximation

Sound (but imprecise) Static Bug Finder

false negative

true negative

false negative

true positive

 25

if (n != VERY_UNLIKELY_VALUE) {

 // bug happens here

 } else {

 // normal execution

 }

Loss of Precision in Static Bug Finders

e2

e3

Idea: over-approximate in concrete semantics!
 26

p2

p3

p4

p1

e6

e2

e3

e1

e4

e5

false negative

Sound (but Imprecise) Static Bug Finder

Let’s consider these two equivalent!Let’s merge these executions into
one that subsumes both!

true negative

false negative

true positive

 27

false negativee2

e3

p2

p3

p4

p1

e6

e1

e4

e5

true positive
e23

p2

 if (*) {
 // bug happens here
 } else {
 // normal execution
 }

1. overApproxConcreteSem(c) =
true negative

false negative

true positive

 28

e23
true positivep2

p3

p4

p1

e6

e1

e4

e5

true positive

true negative

false negative

Sound Static Bug Finder
 if (*) {
 // bug happens here
 } else {
 // normal execution
 }

<

abstract under-approximationconcrete over-approximation

1. overApproxConcreteSem(c) =

 29

• False negatives (bugs missed) are okay

• False positives (non-bugs reported) are bad

• Constructed as under-approximation of over-approximation

• Soundness (True Positives) Theorem:  
Under certain assumptions about the programs, the analyser has no false positives.

Towards Sound Static Bug Finders
(this work)

 30

A Recipe for True Positives Theorem

1. Over-approximate semantic elements to make up for “difficult” dynamic execution aspects  
Example: replace conditions and loops with their non-deterministic versions

2. Pick abstraction α for over-approximated executions that provably identifies “buggy” behaviours: 
 ∀ e: execution, hasBug(α(e)) ⇒ execution e has a bug

3. Design an abstract semantics asem, so it is complete wrt. α and over-approximated concrete semantics: 
 ∀ c : program, asem(c) = α(overApproxConcreteSem(c))

4. Together, asem and hasBug provide a TP-sound static bug finder.

 31

Case Study: RacerDX
• A provably TP-Sound version of Facebook’s RacerD concurrency analyser  

(Blackshear et al., OOPSLA’18)

• Buggy executions: data races in lock-based concurrent programs

• Syntactic assumptions: 
Java programs with well-scoped locking (synchronised), no recursion,
reflection, dynamic class loading; global variables are ignored.

• Concrete over-approximation:  
Loops and conditionals are non-deterministic.

 32

A True Race
A True Positives Theorem for a Static Race Detector 57:7

1 class Bloop {

2 public int f = 1;

3 }

4
5 class Burble {

6
7 public void meps(Bloop b) {

8 synchronized (this) {

9 System.out.println(b.f);

10 }

11 }

12
13 public void reps(Bloop b) {

14 b.f = 42;

15 }

16
17 public void beps(Bloop b) {

18 b = new Bloop();

19 b.f = 239;

20 }

21 }

Fig. 2. A Java class with a false race.

22 class Wurble {

23 Wurble x = new Wurble();

24 Bloop g = new Bloop();

25
26 public void qwop(Wurble w) {

27 zwup(w.x);

28 }

29
30 public void gwap(Wurble w) {

31 synchronized (this) {

32 System.out.println(w.x.g);

33 }

34 }

35
36 private void zwup(Wurble w) {

37 synchronized (this) {

38 System.out.println(w.x.g);

39 }

40 w = new Wurble();

41 w.g.f = 21;

42 }

43 }

Fig. 3. A class with a false interprocedural race.

reassigns a freshly allocated instance of Bloop to the formal b before assigning to the field of the
latter, thus, effectively avoiding a race with a concurrent access to b.f in meps.
This phenomenon of “destabilizing” an access path in a potentially racy program can be mani-

fested both intra-procedurally (as in Burble) and inter-procedurally. To wit, in another example
in Figure 3, the class Wurble demonstrates a similar instance of a false race, with the private

method zwup() “destabilizing” the path w.g by assigning a newly allocated Wurble instance to w,
thus, ensuring that qwop() and gwap() avoid a race with each other.
A sound static analyzer would typically be expected to report races in both of these examples,

corresponding to a loss of precision. However, having a non-negligible number of false positives is
not something a practical bug detector can afford.

To avoid this loss of signal effectiveness, RacerD employes an ownership tracking domain (Flana-
gan and Freund 2009; Naik et al. 2006), used to record the variables and paths that have been
assigned a newly allocated object, thus remedying the situation shown above.

Upon closer examination, we found that RacerD’s abstract domain, including that of ownership,
was not enough to allow us to prove that an access path resolves to the same address, before and
after execution. To wit, knowing that an access path x.f.g is not owned, does not guarantee that
the lvalue it corresponds to stays the same during execution. The reason we wanted this latter
property is that it is one of the simplest ways to exhibit a race: once we have set up an initial state
where a path resolves to a certain address, and have shown that execution of C1 | | C2 does not
modify that address (i.e., the path to address is stable), we are in the position to uncoditionally say
that if both programs access that address, they will race. The answer we came up with is that of
stability; its negation, instability (or wobbliness), over-approximates ownership.

Thus we pose the question: can we state the reasonable (i.e., non-trivial) conditions under which
we can in confidence state (i.e., formally prove) that all of RacerD’s reported races are true positives?

We refer to this desirable result as the True Positives Theorem (TPT) for a static race detector,
and in this paper we deliver such a theorem for a version of RacerD (called RacerDX, using
stability), formulating a set of assumptions under which it holds, and assessing their practical
implications and impact on signal.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 57. Publication date: January 2019.

A True Positives Theorem for a Static Race Detector 57:7

1 class Bloop {

2 public int f = 1;

3 }

4
5 class Burble {

6
7 public void meps(Bloop b) {

8 synchronized (this) {

9 System.out.println(b.f);

10 }

11 }

12
13 public void reps(Bloop b) {

14 b.f = 42;

15 }

16
17 public void beps(Bloop b) {

18 b = new Bloop();

19 b.f = 239;

20 }

21 }

Fig. 2. A Java class with a false race.

22 class Wurble {

23 Wurble x = new Wurble();

24 Bloop g = new Bloop();

25
26 public void qwop(Wurble w) {

27 zwup(w.x);

28 }

29
30 public void gwap(Wurble w) {

31 synchronized (this) {

32 System.out.println(w.x.g);

33 }

34 }

35
36 private void zwup(Wurble w) {

37 synchronized (this) {

38 System.out.println(w.x.g);

39 }

40 w = new Wurble();

41 w.g.f = 21;

42 }

43 }

Fig. 3. A class with a false interprocedural race.

reassigns a freshly allocated instance of Bloop to the formal b before assigning to the field of the
latter, thus, effectively avoiding a race with a concurrent access to b.f in meps.
This phenomenon of “destabilizing” an access path in a potentially racy program can be mani-

fested both intra-procedurally (as in Burble) and inter-procedurally. To wit, in another example
in Figure 3, the class Wurble demonstrates a similar instance of a false race, with the private

method zwup() “destabilizing” the path w.g by assigning a newly allocated Wurble instance to w,
thus, ensuring that qwop() and gwap() avoid a race with each other.
A sound static analyzer would typically be expected to report races in both of these examples,

corresponding to a loss of precision. However, having a non-negligible number of false positives is
not something a practical bug detector can afford.

To avoid this loss of signal effectiveness, RacerD employes an ownership tracking domain (Flana-
gan and Freund 2009; Naik et al. 2006), used to record the variables and paths that have been
assigned a newly allocated object, thus remedying the situation shown above.

Upon closer examination, we found that RacerD’s abstract domain, including that of ownership,
was not enough to allow us to prove that an access path resolves to the same address, before and
after execution. To wit, knowing that an access path x.f.g is not owned, does not guarantee that
the lvalue it corresponds to stays the same during execution. The reason we wanted this latter
property is that it is one of the simplest ways to exhibit a race: once we have set up an initial state
where a path resolves to a certain address, and have shown that execution of C1 | | C2 does not
modify that address (i.e., the path to address is stable), we are in the position to uncoditionally say
that if both programs access that address, they will race. The answer we came up with is that of
stability; its negation, instability (or wobbliness), over-approximates ownership.

Thus we pose the question: can we state the reasonable (i.e., non-trivial) conditions under which
we can in confidence state (i.e., formally prove) that all of RacerD’s reported races are true positives?

We refer to this desirable result as the True Positives Theorem (TPT) for a static race detector,
and in this paper we deliver such a theorem for a version of RacerD (called RacerDX, using
stability), formulating a set of assumptions under which it holds, and assessing their practical
implications and impact on signal.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 57. Publication date: January 2019.

 33

A False Race
A True Positives Theorem for a Static Race Detector 57:7

1 class Bloop {

2 public int f = 1;

3 }

4
5 class Burble {

6
7 public void meps(Bloop b) {

8 synchronized (this) {

9 System.out.println(b.f);

10 }

11 }

12
13 public void reps(Bloop b) {

14 b.f = 42;

15 }

16
17 public void beps(Bloop b) {

18 b = new Bloop();

19 b.f = 239;

20 }

21 }

Fig. 2. A Java class with a false race.

22 class Wurble {

23 Wurble x = new Wurble();

24 Bloop g = new Bloop();

25
26 public void qwop(Wurble w) {

27 zwup(w.x);

28 }

29
30 public void gwap(Wurble w) {

31 synchronized (this) {

32 System.out.println(w.x.g);

33 }

34 }

35
36 private void zwup(Wurble w) {

37 synchronized (this) {

38 System.out.println(w.x.g);

39 }

40 w = new Wurble();

41 w.g.f = 21;

42 }

43 }

Fig. 3. A class with a false interprocedural race.

reassigns a freshly allocated instance of Bloop to the formal b before assigning to the field of the
latter, thus, effectively avoiding a race with a concurrent access to b.f in meps.
This phenomenon of “destabilizing” an access path in a potentially racy program can be mani-

fested both intra-procedurally (as in Burble) and inter-procedurally. To wit, in another example
in Figure 3, the class Wurble demonstrates a similar instance of a false race, with the private

method zwup() “destabilizing” the path w.g by assigning a newly allocated Wurble instance to w,
thus, ensuring that qwop() and gwap() avoid a race with each other.
A sound static analyzer would typically be expected to report races in both of these examples,

corresponding to a loss of precision. However, having a non-negligible number of false positives is
not something a practical bug detector can afford.

To avoid this loss of signal effectiveness, RacerD employes an ownership tracking domain (Flana-
gan and Freund 2009; Naik et al. 2006), used to record the variables and paths that have been
assigned a newly allocated object, thus remedying the situation shown above.

Upon closer examination, we found that RacerD’s abstract domain, including that of ownership,
was not enough to allow us to prove that an access path resolves to the same address, before and
after execution. To wit, knowing that an access path x.f.g is not owned, does not guarantee that
the lvalue it corresponds to stays the same during execution. The reason we wanted this latter
property is that it is one of the simplest ways to exhibit a race: once we have set up an initial state
where a path resolves to a certain address, and have shown that execution of C1 | | C2 does not
modify that address (i.e., the path to address is stable), we are in the position to uncoditionally say
that if both programs access that address, they will race. The answer we came up with is that of
stability; its negation, instability (or wobbliness), over-approximates ownership.

Thus we pose the question: can we state the reasonable (i.e., non-trivial) conditions under which
we can in confidence state (i.e., formally prove) that all of RacerD’s reported races are true positives?

We refer to this desirable result as the True Positives Theorem (TPT) for a static race detector,
and in this paper we deliver such a theorem for a version of RacerD (called RacerDX, using
stability), formulating a set of assumptions under which it holds, and assessing their practical
implications and impact on signal.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 57. Publication date: January 2019.

A True Positives Theorem for a Static Race Detector 57:7

1 class Bloop {

2 public int f = 1;

3 }

4
5 class Burble {

6
7 public void meps(Bloop b) {

8 synchronized (this) {

9 System.out.println(b.f);

10 }

11 }

12
13 public void reps(Bloop b) {

14 b.f = 42;

15 }

16
17 public void beps(Bloop b) {

18 b = new Bloop();

19 b.f = 239;

20 }

21 }

Fig. 2. A Java class with a false race.

22 class Wurble {

23 Wurble x = new Wurble();

24 Bloop g = new Bloop();

25
26 public void qwop(Wurble w) {

27 zwup(w.x);

28 }

29
30 public void gwap(Wurble w) {

31 synchronized (this) {

32 System.out.println(w.x.g);

33 }

34 }

35
36 private void zwup(Wurble w) {

37 synchronized (this) {

38 System.out.println(w.x.g);

39 }

40 w = new Wurble();

41 w.g.f = 21;

42 }

43 }

Fig. 3. A class with a false interprocedural race.

reassigns a freshly allocated instance of Bloop to the formal b before assigning to the field of the
latter, thus, effectively avoiding a race with a concurrent access to b.f in meps.
This phenomenon of “destabilizing” an access path in a potentially racy program can be mani-

fested both intra-procedurally (as in Burble) and inter-procedurally. To wit, in another example
in Figure 3, the class Wurble demonstrates a similar instance of a false race, with the private

method zwup() “destabilizing” the path w.g by assigning a newly allocated Wurble instance to w,
thus, ensuring that qwop() and gwap() avoid a race with each other.
A sound static analyzer would typically be expected to report races in both of these examples,

corresponding to a loss of precision. However, having a non-negligible number of false positives is
not something a practical bug detector can afford.

To avoid this loss of signal effectiveness, RacerD employes an ownership tracking domain (Flana-
gan and Freund 2009; Naik et al. 2006), used to record the variables and paths that have been
assigned a newly allocated object, thus remedying the situation shown above.

Upon closer examination, we found that RacerD’s abstract domain, including that of ownership,
was not enough to allow us to prove that an access path resolves to the same address, before and
after execution. To wit, knowing that an access path x.f.g is not owned, does not guarantee that
the lvalue it corresponds to stays the same during execution. The reason we wanted this latter
property is that it is one of the simplest ways to exhibit a race: once we have set up an initial state
where a path resolves to a certain address, and have shown that execution of C1 | | C2 does not
modify that address (i.e., the path to address is stable), we are in the position to uncoditionally say
that if both programs access that address, they will race. The answer we came up with is that of
stability; its negation, instability (or wobbliness), over-approximates ownership.

Thus we pose the question: can we state the reasonable (i.e., non-trivial) conditions under which
we can in confidence state (i.e., formally prove) that all of RacerD’s reported races are true positives?

We refer to this desirable result as the True Positives Theorem (TPT) for a static race detector,
and in this paper we deliver such a theorem for a version of RacerD (called RacerDX, using
stability), formulating a set of assumptions under which it holds, and assessing their practical
implications and impact on signal.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 57. Publication date: January 2019.

Path prefix b is “unstable” (“wobbly”),  
as it’s reassigned, hence race is evaded.

 34

Complete Abstraction for Race Detection

(W, L, A)

“Wobbly” paths,
touched during execution

Locking level

Accesses/locks
with formals/fields

• asem(meps(b)) = ({b.f}, 0, {R(b.f, 1)})
• asem(reps(b)) = ({b.f}, 0, {W(b.f, 0)})
• asem(beps(b)) = ({b, b.f}, 0, {W(b, 0), W(b.f, 0)})

A True Positives Theorem for a Static Race Detector 57:7

1 class Bloop {

2 public int f = 1;

3 }

4
5 class Burble {

6
7 public void meps(Bloop b) {

8 synchronized (this) {

9 System.out.println(b.f);

10 }

11 }

12
13 public void reps(Bloop b) {

14 b.f = 42;

15 }

16
17 public void beps(Bloop b) {

18 b = new Bloop();

19 b.f = 239;

20 }

21 }

Fig. 2. A Java class with a false race.

22 class Wurble {

23 Wurble x = new Wurble();

24 Bloop g = new Bloop();

25
26 public void qwop(Wurble w) {

27 zwup(w.x);

28 }

29
30 public void gwap(Wurble w) {

31 synchronized (this) {

32 System.out.println(w.x.g);

33 }

34 }

35
36 private void zwup(Wurble w) {

37 synchronized (this) {

38 System.out.println(w.x.g);

39 }

40 w = new Wurble();

41 w.g.f = 21;

42 }

43 }

Fig. 3. A class with a false interprocedural race.

reassigns a freshly allocated instance of Bloop to the formal b before assigning to the field of the
latter, thus, effectively avoiding a race with a concurrent access to b.f in meps.
This phenomenon of “destabilizing” an access path in a potentially racy program can be mani-

fested both intra-procedurally (as in Burble) and inter-procedurally. To wit, in another example
in Figure 3, the class Wurble demonstrates a similar instance of a false race, with the private

method zwup() “destabilizing” the path w.g by assigning a newly allocated Wurble instance to w,
thus, ensuring that qwop() and gwap() avoid a race with each other.
A sound static analyzer would typically be expected to report races in both of these examples,

corresponding to a loss of precision. However, having a non-negligible number of false positives is
not something a practical bug detector can afford.

To avoid this loss of signal effectiveness, RacerD employes an ownership tracking domain (Flana-
gan and Freund 2009; Naik et al. 2006), used to record the variables and paths that have been
assigned a newly allocated object, thus remedying the situation shown above.

Upon closer examination, we found that RacerD’s abstract domain, including that of ownership,
was not enough to allow us to prove that an access path resolves to the same address, before and
after execution. To wit, knowing that an access path x.f.g is not owned, does not guarantee that
the lvalue it corresponds to stays the same during execution. The reason we wanted this latter
property is that it is one of the simplest ways to exhibit a race: once we have set up an initial state
where a path resolves to a certain address, and have shown that execution of C1 | | C2 does not
modify that address (i.e., the path to address is stable), we are in the position to uncoditionally say
that if both programs access that address, they will race. The answer we came up with is that of
stability; its negation, instability (or wobbliness), over-approximates ownership.

Thus we pose the question: can we state the reasonable (i.e., non-trivial) conditions under which
we can in confidence state (i.e., formally prove) that all of RacerD’s reported races are true positives?

We refer to this desirable result as the True Positives Theorem (TPT) for a static race detector,
and in this paper we deliver such a theorem for a version of RacerD (called RacerDX, using
stability), formulating a set of assumptions under which it holds, and assessing their practical
implications and impact on signal.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 57. Publication date: January 2019.

 35

Analysing Summaries for Races

• asem(meps(b)) = ({b.f}, 0, {R(b.f, 1)})
• asem(reps(b)) = ({b.f}, 0, {W(b.f, 0)})
• asem(beps(b)) = ({b, b.f}, 0, {W(b, 0), W(b.f, 0)})

meps(b) || reps(b) ⇒ Can race,

report a bug!

A True Positives Theorem for a Static Race Detector 57:7

1 class Bloop {

2 public int f = 1;

3 }

4
5 class Burble {

6
7 public void meps(Bloop b) {

8 synchronized (this) {

9 System.out.println(b.f);

10 }

11 }

12
13 public void reps(Bloop b) {

14 b.f = 42;

15 }

16
17 public void beps(Bloop b) {

18 b = new Bloop();

19 b.f = 239;

20 }

21 }

Fig. 2. A Java class with a false race.

22 class Wurble {

23 Wurble x = new Wurble();

24 Bloop g = new Bloop();

25
26 public void qwop(Wurble w) {

27 zwup(w.x);

28 }

29
30 public void gwap(Wurble w) {

31 synchronized (this) {

32 System.out.println(w.x.g);

33 }

34 }

35
36 private void zwup(Wurble w) {

37 synchronized (this) {

38 System.out.println(w.x.g);

39 }

40 w = new Wurble();

41 w.g.f = 21;

42 }

43 }

Fig. 3. A class with a false interprocedural race.

reassigns a freshly allocated instance of Bloop to the formal b before assigning to the field of the
latter, thus, effectively avoiding a race with a concurrent access to b.f in meps.
This phenomenon of “destabilizing” an access path in a potentially racy program can be mani-

fested both intra-procedurally (as in Burble) and inter-procedurally. To wit, in another example
in Figure 3, the class Wurble demonstrates a similar instance of a false race, with the private

method zwup() “destabilizing” the path w.g by assigning a newly allocated Wurble instance to w,
thus, ensuring that qwop() and gwap() avoid a race with each other.
A sound static analyzer would typically be expected to report races in both of these examples,

corresponding to a loss of precision. However, having a non-negligible number of false positives is
not something a practical bug detector can afford.

To avoid this loss of signal effectiveness, RacerD employes an ownership tracking domain (Flana-
gan and Freund 2009; Naik et al. 2006), used to record the variables and paths that have been
assigned a newly allocated object, thus remedying the situation shown above.

Upon closer examination, we found that RacerD’s abstract domain, including that of ownership,
was not enough to allow us to prove that an access path resolves to the same address, before and
after execution. To wit, knowing that an access path x.f.g is not owned, does not guarantee that
the lvalue it corresponds to stays the same during execution. The reason we wanted this latter
property is that it is one of the simplest ways to exhibit a race: once we have set up an initial state
where a path resolves to a certain address, and have shown that execution of C1 | | C2 does not
modify that address (i.e., the path to address is stable), we are in the position to uncoditionally say
that if both programs access that address, they will race. The answer we came up with is that of
stability; its negation, instability (or wobbliness), over-approximates ownership.

Thus we pose the question: can we state the reasonable (i.e., non-trivial) conditions under which
we can in confidence state (i.e., formally prove) that all of RacerD’s reported races are true positives?

We refer to this desirable result as the True Positives Theorem (TPT) for a static race detector,
and in this paper we deliver such a theorem for a version of RacerD (called RacerDX, using
stability), formulating a set of assumptions under which it holds, and assessing their practical
implications and impact on signal.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 57. Publication date: January 2019.

 36

• asem(meps(b)) = ({b.f}, 0, {R(b.f, 1)})
• asem(reps(b)) = ({b.f}, 0, {W(b.f, 0)})
• asem(beps(b)) = ({b, b.f}, 0, {W(b, 0), W(b.f, 0)})

Analysing Summaries for Races

meps(b) || beps(b) ⇒ Maybe don’t race,

don’t report a bug

A True Positives Theorem for a Static Race Detector 57:7

1 class Bloop {

2 public int f = 1;

3 }

4
5 class Burble {

6
7 public void meps(Bloop b) {

8 synchronized (this) {

9 System.out.println(b.f);

10 }

11 }

12
13 public void reps(Bloop b) {

14 b.f = 42;

15 }

16
17 public void beps(Bloop b) {

18 b = new Bloop();

19 b.f = 239;

20 }

21 }

Fig. 2. A Java class with a false race.

22 class Wurble {

23 Wurble x = new Wurble();

24 Bloop g = new Bloop();

25
26 public void qwop(Wurble w) {

27 zwup(w.x);

28 }

29
30 public void gwap(Wurble w) {

31 synchronized (this) {

32 System.out.println(w.x.g);

33 }

34 }

35
36 private void zwup(Wurble w) {

37 synchronized (this) {

38 System.out.println(w.x.g);

39 }

40 w = new Wurble();

41 w.g.f = 21;

42 }

43 }

Fig. 3. A class with a false interprocedural race.

reassigns a freshly allocated instance of Bloop to the formal b before assigning to the field of the
latter, thus, effectively avoiding a race with a concurrent access to b.f in meps.
This phenomenon of “destabilizing” an access path in a potentially racy program can be mani-

fested both intra-procedurally (as in Burble) and inter-procedurally. To wit, in another example
in Figure 3, the class Wurble demonstrates a similar instance of a false race, with the private

method zwup() “destabilizing” the path w.g by assigning a newly allocated Wurble instance to w,
thus, ensuring that qwop() and gwap() avoid a race with each other.
A sound static analyzer would typically be expected to report races in both of these examples,

corresponding to a loss of precision. However, having a non-negligible number of false positives is
not something a practical bug detector can afford.

To avoid this loss of signal effectiveness, RacerD employes an ownership tracking domain (Flana-
gan and Freund 2009; Naik et al. 2006), used to record the variables and paths that have been
assigned a newly allocated object, thus remedying the situation shown above.

Upon closer examination, we found that RacerD’s abstract domain, including that of ownership,
was not enough to allow us to prove that an access path resolves to the same address, before and
after execution. To wit, knowing that an access path x.f.g is not owned, does not guarantee that
the lvalue it corresponds to stays the same during execution. The reason we wanted this latter
property is that it is one of the simplest ways to exhibit a race: once we have set up an initial state
where a path resolves to a certain address, and have shown that execution of C1 | | C2 does not
modify that address (i.e., the path to address is stable), we are in the position to uncoditionally say
that if both programs access that address, they will race. The answer we came up with is that of
stability; its negation, instability (or wobbliness), over-approximates ownership.

Thus we pose the question: can we state the reasonable (i.e., non-trivial) conditions under which
we can in confidence state (i.e., formally prove) that all of RacerD’s reported races are true positives?

We refer to this desirable result as the True Positives Theorem (TPT) for a static race detector,
and in this paper we deliver such a theorem for a version of RacerD (called RacerDX, using
stability), formulating a set of assumptions under which it holds, and assessing their practical
implications and impact on signal.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 57. Publication date: January 2019.

 37

Formal Result

RacerDX enjoys the True Positives Theorem
wrt. Data Race Detection

(Details in the paper)

 38

Evaluation

What is the price to pay for
having the TP Theorem?

(Reporting no bugs whatsoever is TP-Sound)

 39

RacerD vs RacerDX

57:24 Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

Table 1. Evaluation: target projects and statistics.

Project Description URL

avrora An AVR emulator https://github.com/ibr-cm/avrora
Chronicle-Map A non-blocking key-value store https://github.com/OpenHFT/Chronicle-Map
jvm-tools Tool for JVM troubleshooting and profiling https://github.com/aragozin/jvm-tools
RxJava Library for asynchronous and event-based programs https://github.com/ReactiveX/RxJava
sunflow Rendering system for photo-realistic image synthesis https://github.com/fpsunflower/sunflow
xalan-j XSLT processor https://github.com/apache/xalan-j

(a) Evaluation targets.

Target LOC D CPU DX CPU CPU ±% D Reps DX Reps Reps ±% D #π DX #π #π ±%

avrora 76k 103 102 0.4% 143 92 36% 78 38 51%
Chronicle-Map 45k 196 196 0.1% 2 2 0% 2 2 0%
jvm-tools 33k 106 109 -3.6% 30 26 13% 14 11 21%
RxJava 273k 76 69 9.2% 166 134 19% 65 44 32%
sunflow 25k 44 44 -1.4% 97 42 57% 116 38 67%
xalan-j 175k 144 137 5.0% 326 295 10% 135 94 30%

(b) Evaluation results. CPU columns are in seconds; Reps are distinct reports; π are distinct paths.

RacerDX never reports a path not also reported by RacerD. We show the number of paths reported
in the columns “D #π ”, “DX #π ” and the proportion of the difference in “#π ±%”.

We can make the following observations:

• The difference between runtimes is largely within the noise margins, especially given that a large
percentage of these runtimes is spent compiling Java source into bytecode, as Infer extracts an
AST from the compiled artefact.

• The loss in terms of number of reports ranges between 10% and 57% (we exclude Chronicle-Map
as there are too few reports to start with), and the loss in terms of number of distinct access
paths ranges from 21% to 67%.

7.2.2 The Causes for Deterioration of Reporting Rate. We triaged a sample of reports that RacerD
made but RacerDX didn’t. We discerned two main classes of reports:

• In a call this.foo(this.f), the check whether one of the actuals is a proper prefix of another
(Figure 7, method call case) fails because this≺this.f. Thus, this is marked as unstable (is added
to theW component of the abstract state). But this means that all accesses in the caller method
will not be considered in data race reports, leading to potential false negatives.
A potential solution here may be to use the fact that the first argument of a non-static Java
method cannot be reassigned, and thus may be left out of the check above, but we have not at
present assessed how this might affect the status of our theorems.

• Inner (nested) classes are common in Java, and allow methods of an inner class object to reference
fields and methods of the containing class. To achieve this, the compiler inserts in the inner class
a hidden reference to the outer class object, and initialises this appropriately at construction.
Unfortunately, this also means that the this reference of the outer class is marked as unstable
whenever an inner class object is constructed, thus precluding accesses occurring in the enclosing
method from being reported.

Remarkably, all the reports we triaged were true positives. Both of these classes of missing
reports may benefit from elaborating the stability abstract domain to track escaping references, i.e.,
when a path is read it is not immediately marked as unstable, but only when the address read ends
up being stored somewhere. This is something we will investigate in further work.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 57. Publication date: January 2019.

 40

RacerD vs RacerDX

57:24 Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

Table 1. Evaluation: target projects and statistics.

Project Description URL

avrora An AVR emulator https://github.com/ibr-cm/avrora
Chronicle-Map A non-blocking key-value store https://github.com/OpenHFT/Chronicle-Map
jvm-tools Tool for JVM troubleshooting and profiling https://github.com/aragozin/jvm-tools
RxJava Library for asynchronous and event-based programs https://github.com/ReactiveX/RxJava
sunflow Rendering system for photo-realistic image synthesis https://github.com/fpsunflower/sunflow
xalan-j XSLT processor https://github.com/apache/xalan-j

(a) Evaluation targets.

Target LOC D CPU DX CPU CPU ±% D Reps DX Reps Reps ±% D #π DX #π #π ±%

avrora 76k 103 102 0.4% 143 92 36% 78 38 51%
Chronicle-Map 45k 196 196 0.1% 2 2 0% 2 2 0%
jvm-tools 33k 106 109 -3.6% 30 26 13% 14 11 21%
RxJava 273k 76 69 9.2% 166 134 19% 65 44 32%
sunflow 25k 44 44 -1.4% 97 42 57% 116 38 67%
xalan-j 175k 144 137 5.0% 326 295 10% 135 94 30%

(b) Evaluation results. CPU columns are in seconds; Reps are distinct reports; π are distinct paths.

RacerDX never reports a path not also reported by RacerD. We show the number of paths reported
in the columns “D #π ”, “DX #π ” and the proportion of the difference in “#π ±%”.

We can make the following observations:

• The difference between runtimes is largely within the noise margins, especially given that a large
percentage of these runtimes is spent compiling Java source into bytecode, as Infer extracts an
AST from the compiled artefact.

• The loss in terms of number of reports ranges between 10% and 57% (we exclude Chronicle-Map
as there are too few reports to start with), and the loss in terms of number of distinct access
paths ranges from 21% to 67%.

7.2.2 The Causes for Deterioration of Reporting Rate. We triaged a sample of reports that RacerD
made but RacerDX didn’t. We discerned two main classes of reports:

• In a call this.foo(this.f), the check whether one of the actuals is a proper prefix of another
(Figure 7, method call case) fails because this≺this.f. Thus, this is marked as unstable (is added
to theW component of the abstract state). But this means that all accesses in the caller method
will not be considered in data race reports, leading to potential false negatives.
A potential solution here may be to use the fact that the first argument of a non-static Java
method cannot be reassigned, and thus may be left out of the check above, but we have not at
present assessed how this might affect the status of our theorems.

• Inner (nested) classes are common in Java, and allow methods of an inner class object to reference
fields and methods of the containing class. To achieve this, the compiler inserts in the inner class
a hidden reference to the outer class object, and initialises this appropriately at construction.
Unfortunately, this also means that the this reference of the outer class is marked as unstable
whenever an inner class object is constructed, thus precluding accesses occurring in the enclosing
method from being reported.

Remarkably, all the reports we triaged were true positives. Both of these classes of missing
reports may benefit from elaborating the stability abstract domain to track escaping references, i.e.,
when a path is read it is not immediately marked as unstable, but only when the address read ends
up being stored somewhere. This is something we will investigate in further work.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 57. Publication date: January 2019.

 41

RacerD vs RacerDX

57:24 Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey

Table 1. Evaluation: target projects and statistics.

Project Description URL

avrora An AVR emulator https://github.com/ibr-cm/avrora
Chronicle-Map A non-blocking key-value store https://github.com/OpenHFT/Chronicle-Map
jvm-tools Tool for JVM troubleshooting and profiling https://github.com/aragozin/jvm-tools
RxJava Library for asynchronous and event-based programs https://github.com/ReactiveX/RxJava
sunflow Rendering system for photo-realistic image synthesis https://github.com/fpsunflower/sunflow
xalan-j XSLT processor https://github.com/apache/xalan-j

(a) Evaluation targets.

Target LOC D CPU DX CPU CPU ±% D Reps DX Reps Reps ±% D #π DX #π #π ±%

avrora 76k 103 102 0.4% 143 92 36% 78 38 51%
Chronicle-Map 45k 196 196 0.1% 2 2 0% 2 2 0%
jvm-tools 33k 106 109 -3.6% 30 26 13% 14 11 21%
RxJava 273k 76 69 9.2% 166 134 19% 65 44 32%
sunflow 25k 44 44 -1.4% 97 42 57% 116 38 67%
xalan-j 175k 144 137 5.0% 326 295 10% 135 94 30%

(b) Evaluation results. CPU columns are in seconds; Reps are distinct reports; π are distinct paths.

RacerDX never reports a path not also reported by RacerD. We show the number of paths reported
in the columns “D #π ”, “DX #π ” and the proportion of the difference in “#π ±%”.

We can make the following observations:

• The difference between runtimes is largely within the noise margins, especially given that a large
percentage of these runtimes is spent compiling Java source into bytecode, as Infer extracts an
AST from the compiled artefact.

• The loss in terms of number of reports ranges between 10% and 57% (we exclude Chronicle-Map
as there are too few reports to start with), and the loss in terms of number of distinct access
paths ranges from 21% to 67%.

7.2.2 The Causes for Deterioration of Reporting Rate. We triaged a sample of reports that RacerD
made but RacerDX didn’t. We discerned two main classes of reports:

• In a call this.foo(this.f), the check whether one of the actuals is a proper prefix of another
(Figure 7, method call case) fails because this≺this.f. Thus, this is marked as unstable (is added
to theW component of the abstract state). But this means that all accesses in the caller method
will not be considered in data race reports, leading to potential false negatives.
A potential solution here may be to use the fact that the first argument of a non-static Java
method cannot be reassigned, and thus may be left out of the check above, but we have not at
present assessed how this might affect the status of our theorems.

• Inner (nested) classes are common in Java, and allow methods of an inner class object to reference
fields and methods of the containing class. To achieve this, the compiler inserts in the inner class
a hidden reference to the outer class object, and initialises this appropriately at construction.
Unfortunately, this also means that the this reference of the outer class is marked as unstable
whenever an inner class object is constructed, thus precluding accesses occurring in the enclosing
method from being reported.

Remarkably, all the reports we triaged were true positives. Both of these classes of missing
reports may benefit from elaborating the stability abstract domain to track escaping references, i.e.,
when a path is read it is not immediately marked as unstable, but only when the address read ends
up being stored somewhere. This is something we will investigate in further work.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 57. Publication date: January 2019.

 42

• A True Positive-Sound static bug finder never reports false positives. It can
be designed as an under-approximation of an over-approximation

• An abstraction α for TP-Sound static bug detection can be very simple,  
but it has to be complete (i.e., sufficient) to report bugs.

To Take Away: Theory

 43

• RacerDX is TP-Sound race detector, whose precision and performance are
comparable with Facebook’s RacerD (Blackshear et al., OOPSLA’18)

• If RacerDX had been deployed initially rather than RacerD, it would have found
1000s of bugs, far outstripping all reported impact in previous concurrency
analyses (counterfactual reasoning)

• Until now, static analysers for bug catching that are effective in practice but
unsound have often been regarded as ad hoc; in the future, they can be
principled, satisfying theorems to inform and guide their designs.

To Take Away: Practice

Thanks!
 44

