

Synchronisation Primitives

for Smart Contracts

Jake Goh Si Yuan

Capstone Final Report for BSc (Honours) in

Mathematical, Computational and Statistical Sciences

Supervised by: Dr. Ilya Sergey

iii

Acknowledgements

1. Associate Professor Ilya Sergey for his advice and wisdom as my

main advisor, helping me to shape out this entire project from the

wrinkle of an idea it was, and giving it space to bloom like the re-

sults that it is.

2. Dr Timothy M. Wertz for his guidance with proof and probabilistic

analysis, and for having taught me those classes that gave me the

mathematical foundations and insights to complete this project.

3. Professor Olivier Danvy for his assistance with affairs within and

without academia, and constructive comments on how to improve

on all aspects of this capstone endeavour.

iv

YALE-NUS COLLEGE

Abstract

Mathematical, Computational and Statistical Sciences

B.Sc (Hons)

Synchronization Primitives for Smart Contracts

by Jake GOH Si Yuan

We explore the use of synchronization primitives in smart contracts, and

make inferences about possible liveness side effects that could occur from

the introduction of said primitives. From these possible side effects, we

created several recovery and alleviation mechanisms that can be used as

extensions with these synchronisation primitives, and prove that these

mechanisms can provide the protection that is claimed. Finally, we per-

form some analysis with regards to a proof-on-concept analysis and dis-

cuss about the limitations and possible ways of improving on these limi-

tations.

HTTPS://WWW.YALE-NUS.EDU.SG/

v

Contents

Acknowledgements iii

Abstract iv

1 Background and Motivations 1

1.1 Background . 1

1.1.1 Synchronization Primitives 2

1.1.2 Non-triviality of mutexes in smart contracts 3

2 Locking System 4

2.1 Locking in Smart Contracts 4

2.1.1 Toy Example . 4

2.2 The toy example and a simple naked mutex 5

2.3 The synchronized function modifier 6

2.3.1 Mechanism Overview 6

2.3.2 Lock Record . 7

2.3.2.1 Generalised Lock Record for Single Vari-

ables . 7

2.3.2.2 Generalised Lock Record for Single and

Dynamic Variables 8

2.3.3 Synchronized modifier for dynamic variables . . . 9

2.3.3.1 Expanded Toy Example 9

2.3.3.2 Synchronized Dynamic 9

2.4 Liveness and Denial of Service 10

2.4.1 Denial of Service example 10

vi

2.5 Recovery and Alleviation Mechanisms 11

2.5.1 Timeouts and sessions 11

2.5.1.1 Actor focused 12

2.5.1.2 Mechanism Overview 13

2.5.1.3 Limitation 13

2.5.2 Exponential deposits and decaying refunds 14

2.5.2.1 Fair usage through exponential deposits . 15

2.5.2.2 Decaying deposit refunds 15

2.5.2.3 Mechanism Overview 16

2.5.2.4 Limitation 17

2.5.3 Whitelisting and registration 18

2.5.3.1 Time limits 19

2.5.3.2 Registration fee 19

2.5.3.3 Refund holding period 20

2.5.3.4 Mechanism Overview 20

2.5.3.5 Limitation 22

2.5.4 Lock limits per session 22

2.6 Data Structures . 22

2.6.1 Lock Record . 22

2.6.2 User Record . 23

2.6.2.1 Session Record 23

2.6.2.2 Deposit Record 23

2.6.2.3 Whitelist Record 24

3 Experiment and Analysis 25

3.1 Implementation . 25

3.1.1 Config Used . 25

3.2 Analysis . 26

3.2.1 Safety Property of Recovery and Alleviation Mech-

anisms . 26

vii

3.2.1.1 Optimal Strategy for Attacker 26

3.2.1.2 Assumptions and Simplifications Made . 27

3.2.1.3 Proof of Safety Property 27

3.2.2 Gas and Economic Costs 30

3.2.2.1 Explaining the differences 31

4 Discussion 33

4.1 Usability Friction . 33

4.2 Resource Costs . 33

4.3 Liveness and Distributed Denial of Service 34

5 Related Work 35

5.1 Adding concurrency to smart contracts 35

6 Conclusion 36

Bibliography 37

viii

Dedicated to Golden Goh Kok Chye.

1

Chapter 1

Background and Motivations

1.1 Background

Blockchains are distributed databases that allow for write operations through

append-only transactions. These transactions are evaluated and executed

in sequential order. By that nature, concurrency problems are not possi-

ble as there would not be any overwriting over existing data. However,

there have been new abstractions built on top of its distributed database

essence that makes it possible for concurrent issues to arise. One such

abstraction that we will focus on, is the smart contract, which is essen-

tially a general purpose stateful computational object that lives on the

blockchain.

Although the smart contract creation code and the method execut-

ing codes are appended to the blockchain via transactions that follow

sequential ordered execution, two possible sources of concurrency prob-

lems arise:

1. The execution of a complete smart contract computation may take

place over multiple transactions and use intermediary states, therefore

leaving these states susceptible for concurrent access between the trans-

actions.

Chapter 1. Background and Motivations 2

2. Multiple smart contract methods, within the same contract and/or

with other contracts, can be executed in a single transaction. There may

be intermediary states shared by these methods whose integrity can be

violated by reentrant access.

These sources of concurrency problems have arised in exploits, such

as the multiple chances with one ticket in the Block King contract [1]

which is an example of the first source of problem, and the infamous

re-entrancy attack on the DAO [2] which is an example of the second

source of problem. There is also a recognized class of problems classified

as front-running, or transaction ordering dependence, which stems from

the first source.

1.1.1 Synchronization Primitives

Despite the prevalance of concurrency problems in smart contracts, there

has only been limited attempts done to introduce synchronization prim-

itives. As of right now, there are no such primitives that exist on the vir-

tual machine level. Instead, they are done on the application, or the smart

contract, layer through programming language scripting. Most notably,

there is the OpenZeppelin re-entrancy guard [6], which is a simple mutex

that was designed and therefore limited to only solve concurrency prob-

lems within one transaction.

In this paper, we will explore the use of mutexes on the application

layer for concurrency problems stemming from multi-transactions exe-

cutions. By using account addresses as the unique identifier, and some

state in the smart contract, we are able to build out a mutex that can be

used across both single and multiple transaction(s) executions.

Chapter 1. Background and Motivations 3

1.1.2 Non-triviality of mutexes in smart contracts

The use of mutexes in smart contracts, especially over multiple transac-

tions, is a non-trivial problem as the common mutex side effects of dead-

lock and starvation can easily occur and may cripple the smart contract’s

functionality. Smart contract method executions can only be triggered via

manual transactions and not automated within the blockchain, the smart

contract may be permanently disabled without carefully designed recov-

ery mechanisms. The decentralized nature of the blockchain suggests

that such mechanisms have to be carefully built along with the locking

logic in order to not create situations where the smart contracts are stuck

in lock. For instance, a standard user may take up the lock for a smart

contract with only one state variable, and have an incentive to keep it

continually locked, with the intention to deny service to any other user.

Using standard mechanisms such as timeouts or queues directly may not

be effective as it is relatively easy to circumvent that through daisy chain-

ing lock-release and using multiple addresses. The relative ease of using

multiple addresses in particular, spins up some complications which are

closer in form to distributed denial of service attacks.

At the same time, computations and access to memory and state costs

actual value, such as in the gas model [4] in the Ethereum blockchain.

Therefore, any useful design of mutexes in smart contracts has to mini-

mize its resource usage, whilst maintaining its concurrency security guar-

antees.

4

Chapter 2

Locking System

2.1 Locking in Smart Contracts

Problems with concurrent use of shared resources carry a similar form.

There is an arbitrary piece of persistent data that an actor, be it a thread

or an account, relies on for some computation. This computation usu-

ally requires multiple access over different steps, be it read or write, to

the data. The integrity of the computation relies on the data being un-

changed unless explicitly intended by the actor. In other words, these

problems occur when other actors modify or write to the data before the

computation of the original actor is complete. The use of mutexes, or

locks, can solve this problem as it will only allow permissioned access to

the shared data to the original actor, and protect it from concurrent access

that may disturb the integrity of the computation.

2.1.1 Toy Example

Before I begin with describing the solution, I will first describe a base

example of a contract that may be fallible to concurrency issues.

1 contract Example {

2 uint foo;

3

4 function increaseFoo (){

5 foo = foo + 1;

Chapter 2. Locking System 5

6 }

7

8 }

In this example, there is a state variable foo that can be increased by

calling the function increaseFoo. We can quickly see how that may lead

to a concurrency issue with the following scenario with two actors Alice

and Bob.

Let us assume that foo starts from 0, and Alice would like to make foo

have the value of 2. In the first block, only Alice calls the function and

increases foo to 1. In the next block, Alice calls the function again with

the intention and expectation that foo would go to 2. However, before

Alice’s transaction is executed, Bob calls the function, increasing foo to

2. Alice’s transaction executes after, bringing foo to a final value of 3

instead of 2 as expected.

2.2 The toy example and a simple naked mutex

Let us now solve the toy example with the scenario with the lock design.

The solution takes a leaf out of Java’s book[5], by introducing a synchro-

nized function modifier.

1 contract Example {

2 uint foo;

3

4 function increaseFoo () synchronized("foo"){

5 foo = foo + 1;

6 }

7 }

In the solution, the synchronized function modifier takes in a parame-

ter that references the shared state that would be modified in the function.

In this case, the name of the shared state is referenced. The synchronized

Chapter 2. Locking System 6

code block is executed before the main increaseFoo code block. The syn-

chronized code block encapsulates all the different mechanisms that has

to be run to ensure the proper locking of foo. I will elaborate on this in a

later section.

Let us go back to the scenario. Alice first runs increaseFoo, bringing

it to 1, and at the same time taking the lock. Again, Bob tries to call the

function before Alice is able to do it the second time. However, as Bob

does not currently hold the lock, his transaction is rejected. Alice, being

the holder of the lock, or locker, is able to call the function the second

time, therefore bringing foo to 2, as she intended to do so in the first

place.

2.3 The synchronized function modifier

Here, I will go into a more in depth explanation about how the solution

works, through looking at the synchronized function modifier

2.3.1 Mechanism Overview

When the synchronized code block is triggered, using the toy example,

here is what happens

1. Check if foo is locked, if it is move to step 2, else move to step 3.

2. Check if the current locker of foo is the actor, if so, proceed to step

4. Else, terminate and return.

3. Lock foo and set the locker to the actor, proceed to step 4.

4. Continue to the main function normally

Chapter 2. Locking System 7

2.3.2 Lock Record

We can see that step 1 and 2 implies the existence of some persistent data

that records whether a state variable, such as foo is locked, and who it is

locked to. In the case of the toy example where there is only a single state

variable, we would be able to use something like :

1 address fooLock;

If fooLock is set to the zero address, then foo is considered to be un-

locked. However, if fooLock is set to a non-zero address, such as Alice’s

address, then it is considered to be locked, with the locker being Alice.

This way of representing the lock allows us to combine the lock status

and the reference to the locker in one elegant sweep.

2.3.2.1 Generalised Lock Record for Single Variables

However, this only targets a single state variable. We can imagine that

in a smart contract there might be multiple state variables that require

concurrency protection. There is a need to generalize the specific solution

above. This can be achieved by extending the lock record using a hash

table like data structure, such as Solidity’s mapping, so that we can use a

reference to the state variable as the key, and the locker’s address as the

value.

1 mapping(bytes32 => address) lockMap;

I have chosen to use a state variable reference of type bytes32 as using

unbounded types, such as string, for mapping keys is not available as of

the time of writing. However, it is not difficult to convert something

of type string, such as the name of the state variable(if chosen as the

reference), to bytes32, by using a fixed-length output hashing function

such as keccak256.

Chapter 2. Locking System 8

2.3.2.2 Generalised Lock Record for Single and Dynamic Variables

Some smart contract may need fine grained access inside dynamic vari-

ables. By dynamic variables, I refer an array, a hashtable(like mapping),

or an arbitrary struct. The current design makes it difficult, without some

creativity in the part of the developer, to have such fine grained con-

trol and protect elements within dynamic variables without locking the

whole thing up. We can again extend the current lock record design, by

encapsulating it within another hash table.

1 mapping(bytes32 => mapping(bytes32 => address)) lockMap;

The key to the outer hash table would be the reference to the state vari-

able. This state variable could be a single variable such as an int or string,

or it could also be a dynamic variable. The value of the outer hash table

would be another hash table. For a dynamic variable, the key to the in-

ner hash table would be the same key used to retrieve the value in the

dynamic variable. For a single variable, the key used would be a zero.

The value for both cases would be the address of the locker.

For example, let’s say there is a dynamic variable of mapping type of

name foo and Alice would like to lock the data element which is refer-

enced by a uint key of 123.

1 mapping(uint => string) foo;

To lock this particular data element, Alice would have to set

lockMap[hash("foo")][hash(123)] to her own address. If foo were a sin-

gle variable, then Alice would have to set lockMap[hash("foo")][hash(0)]

instead. There are no risks of collisions as each state variables, single or

dynamic, would have unique names.

Chapter 2. Locking System 9

2.3.3 Synchronized modifier for dynamic variables

With the introduction of dynamic variables, the synchronized function

modifier has to be able to include the new data regarding key of dynamic

variable.

2.3.3.1 Expanded Toy Example

Before we do that, let us expand the toy example to include a dynamic

variable.

1 contract Example {

2 uint foo;

3 mapping(uint => uint) bar;

4

5 function increaseFoo () synchronized("foo"){

6 foo = foo + 1;

7 }

8

9 function increaseBar(uint key) {

10 bar[key] = bar[key] + 1;

11 }

12

13 }

2.3.3.2 Synchronized Dynamic

To protect an element inside of bar, a new function modifier named syn-

chronizedD, shortened from synchronizedDynamic is introduced. The

synchronizedD modifier has the same operational semantics as synchro-

nized as described in 2.3.1. The difference between the two modifiers is

the expanded parameters input to take in the key of the element as well.

Therefore, with the toy example, the function would look like this :

1 function increaseBar(uint key) synchronizedD("bar", key){

2 bar[key] = bar[key] + 1;

Chapter 2. Locking System 10

3 }

Of course, it would be possible to re-use the same synchronized word

and have it expanded. This would mean that for single state variables,

the developer would just have to put a dummy zero input for the key

parameter. However, this may lead to some confusion, and as a design

choice, I have chosen to define it with a different name.

2.4 Liveness and Denial of Service

The astute reader who is familiar with distributed systems and/or smart

contracts would notice that using the lock system in its most simple form

would very easily lead to situations where deadlocks and starvation may

occur. At the same time, if these situations are triggered by a malicious

actor with the intention of slowing down or stopping the normal func-

tionalities of the smart contract, then we can define it as a denial of ser-

vice attack.

Unfortunately, as with the canonical denial of service attacks, there

are no ways to completely stop this from happening without severely

hampering the regular functionality of the subject of the attacks. How-

ever, there are methods that we can borrow from solutions to starvation

and denial of service, combined with some cryptoeconomics, to reduce

the impact of the attacks whilst not unfairly punishing regular usage.

2.4.1 Denial of Service example

Before we move on to introduce the solutions that I have come up with,

I will illustrate with the single state variable toy example how a denial

of service attack may occur. It will also apply for dynamic state variable

Chapter 2. Locking System 11

locks as there is no difference between the operational semantics of the

two locks.

1 contract Example {

2 uint foo;

3 function increaseFoo () synchronized("foo"){

4 foo = foo + 1;

5 }

6 function release(address locker){

7 if(locker == msg.sender){

8 unlock(locker);

9 }

10 }

11 }

In our discussions above, it was implied that there was a release func-

tion which can be used to unlock the locks held by a particular locker. In

this example, this is made explicit to make the scenario clearer.

In normal usage, Alice would call increaseFoo, take the lock through

synchronized, and continue with using it via increaseFoo or other func-

tions that would also use the foo lock. When she is done, she would call

release with her address and unlock foo for another actor to use. How-

ever, if Alice does not call release, whether out of forgetfulness or malice,

then the lock would be permanently in place and she would have essen-

tially rendered part of or all of the smart contract useless.

2.5 Recovery and Alleviation Mechanisms

2.5.1 Timeouts and sessions

To reiterate, there needs be a recovery mechanism for locks to be auto-

matically released after the user is done, or has exceeded a certain fair

Chapter 2. Locking System 12

amount of usage time, with the lock. To introduce such a recovery mech-

anism, we can borrow a tried and tested mechanism from the standard

concurrency toolbox– timeouts. This means that locks will in action only

for a reasonable amount of time, where the state variable being locked

will be exclusive to the actor. After the time has passed, the state variable

is essentially unlocked and can now be locked and used by any actor.

In order for this to work, there has to be a timed property existing in

persistent data somewhere, such that when a lock is first taken, the timed

property can be set to either when the lock is taken, or when the lock is

expired.

2.5.1.1 Actor focused

At the same time, there has to be some kind of reference between this

timed property with either lock itself, or the actor who takes the lock.

The typical implementation in the standard concurrency toolbox is to at-

tach the timeout to the lock. This would mean that an actor would be

able to take multiple locks concurrently. If we were to assume that there

are malicious actors whose intent is to cause a denial of service attack,

this choice would be suboptimal.

Therefore, it would be better to pick the latter and have timeouts that

are attached to an actor, creating a mechanism that is more session-like.

This means that when an actor will have a limited amount of time where

he will be able to take locks and have exclusive access to the state vari-

ables associated with the locks. The amount of time is determined by

when the first lock is taken, and the standard timeout duration stipu-

lated by the smart contract. At the end of timeout, or if the actor calls

release before then, all the locks held by the actor will be unlocked and

available for use.

Chapter 2. Locking System 13

2.5.1.2 Mechanism Overview

To see how timeouts will work in steps, I will extend the synchronized

mechanism and highlight the steps relevant to timeouts.

1. Check if foo is locked, if it is move to step 2, else move to step 4.

2. Check if the session of current locker of foo has expired. If so, move

to step 4, else move to step 3

3. Check if the current locker of foo is the actor, if so, proceed to step

7. Else, terminate and return.

4. Check if actor has an existing session. If so, proceed to step 6. Else,

move to step 5.

5. Set a new timeout for the actor. Proceed to step 6

6. Lock foo and set the locker to the actor, proceed to step 7.

7. Continue to the main function normally

For release, or the unlocking of all held locks, it will be a trivial loop

that sets all locks held by the actor back to the zero address. Before time-

outs, release was to be triggered exclusively by the locker. This exclu-

sivity will still remain intact whilst the session has not timed out yet.

However, when it has timed out, any actor would be able to call release.

2.5.1.3 Limitation

Timeouts help to introduce a recovery mechanism to the liveness issue.

This solution would be enough if we were dealing with non-malicious ac-

tors only. However, that is an assumption that is naive, especially when

one considers the events that have taken place in the short history of

blockchain and smart contracts.

Chapter 2. Locking System 14

A malicious actor may exploit the fact that locking and unlocking is al-

most free. This means that the actor may lock and unlock simultaneously,

and the state variable that is associated would for all functional purposes

be held in a stasis for as long as the actor intends. Of course, this is not

entirely free, as the malicious actor would still have to pay gas fees for

every lock and unlock transaction that he executes. This idea does mo-

tivate us to think economically. If we were to assume rational actors in

the system, then there would be ways to disincentivize and economically

limit the malicious ones, as I will display in the next two sections.

2.5.2 Exponential deposits and decaying refunds

One of the simplest ways to introduce economic motivations into the sys-

tem is to have the actor place a deposit with every lock that he takes.

When the lock is returned by the locker, he will get a refund of the deposit

that he placed. When used by itself, this will economically incentivize an

actor to release the lock.

When used together with a timeouts and sessions system, the lock

can be released by any other actor when the session has expired. The

deposit will also go to the actor that triggers the release. This will form

an economic incentive for other actors to "clean" the smart contract, thus

increasing the total liveness of it.

However, in this simple form, it does not increase the cost that a ma-

licious actor will incur in a strategy of simultaneous lock-unlock. The

malicious actor will receive the full deposit back with each unlock that

occurs, and just has to be careful to not let the session expire to prevent a

third party unlocking it.

Chapter 2. Locking System 15

2.5.2.1 Fair usage through exponential deposits

To harden this mechanism and also encourage fairer usage, I introduce

the concept of a cool-off and an exponentially growing deposit for re-

peated use. The cool-off is defined as a period of time, after a session has

ended, whether released or expired, when the deposit for another session

would be exponentially more expensive.

Deposit
n+1 = Deposit

n
⇤ 2Timeend+Timecooloff�Timenow

This extension will be able to heavily disincentize an actor from hav-

ing multiple successive sessions, therefore making the system much fairer

by giving all other actors a better chance at taking a lock.

It will also alleviate the denial of service attempts through the lock-

unlock strategy by a malicious actor, who now has a Timecooloff buffer

period where he would not be able to perform the attack unless he is

willing or able to pay a much higher deposit cost. In that Timecooloff pe-

riod, other actors would be able to take the lock of state variables that

were previously held by the the malicious actor, therefore reducing the

effect of the denial of service.

2.5.2.2 Decaying deposit refunds

Another extension that could be use to harden this mechanism is through

decaying deposit refunds. This means that the amount of deposit re-

funded to the actor is adjusted by how long he has used the session.

Refund = Deposit ⇤ Timeend � Timenow

Timestandard timeout

Chapter 2. Locking System 16

The current design, as can be seen from the equation above, sets the decay

rate at a linear scale, which can be changed easily based on the require-

ments of the smart contract. For instance, the smart contract developer

may feel that having the decay equation set like this may be unfairly pun-

ishing regular users of the smart contract. It would be trivial to adjust it

such that decay only kicks in after a certain reasonable amount of time,

so regular users would be able to receive their full deposits.

This extension will be able to incentivize an actor to promptly com-

plete their computation and release the locks, so as to not lose too much

of their deposit and incur unnecessary cost.

For the malicious actor with the lock-unlock strategy, this extension

will force him to choose between increasing the frequency in which lock-

unlock occurs so as to reduce the loss of deposit thus incurring more costs

in transaction gas fees, and losing more of the deposit. In both cases, this

extension will increase the cost of the malicious attack. When combined

with exponential deposits, the malicious actor will be forced to balance

between losing the deposit and shortening the attack time, providing a

good amount of alleviation to the attack’s effect.

2.5.2.3 Mechanism Overview

To see how deposit will work in steps, I will extend the synchronized

mechanism with timeouts, and highlight the steps relevant to deposit.

1. Check if foo is locked, if it is move to step 2, else move to step 4.

2. Check if the session of current locker of foo has expired. If so, move

to step 4, else move to step 3

3. Check if the current locker of foo is the actor, if so, proceed to step

8. Else, terminate and return.

Chapter 2. Locking System 17

4. Check if actor has an existing session. If so, proceed to step 6. Else,

move to step 5.

5. Check if the actor has a sufficient amount of deposit. If so, proceed

to step 6. Else, terminate and return.

6. Set a new timeout for the actor. Proceed to step 7

7. Lock foo and set the locker to the actor, proceed to step 8.

8. Continue to the main function normally

It is important to note that the exponential deposit and refund decay

extensions do not affect the steps in the mechanism as they only change

the conditions and effects of deposit.

For release, there is no difference in operational semantics. There is

only one additional step after all the unlocking is done, for the actor who

released the locks, be it the original locker or some other actor after the

expiration of the locker’s session, to be refunded the remaining deposit.

Whether the deposit is done in a push or pull manner can be determined

by the developer, although it should be noted that doing it as a push

may possibly incur a re-entracy attack, like the DAO exploit, in a poor

implementation.

2.5.2.4 Limitation

Having a deposit mechanism increases the amount of friction in the smart

contract for a regular user. If the hardening extensions such as exponen-

tial deposits and decaying refunds are used, it would mean that a regular

user may end up spending much more transaction costs than they would

have without the deposit mechanism, and there would be a higher av-

erage latency. It must be noted that in a system with limited resources,

any mechanism to encourage fair usage would lead to some additional

Chapter 2. Locking System 18

friction in utilization, and therefore this is something that is expected.

At first glance, a malicious actor implementing the lock-unlock strat-

egy for a denial of service attack seems to be limited. This would be true

if the actor is only limited to one uniquely identifying address that he

can perform this attack from. However, that is clearly not the case in

current smart contract systems. A malicious actor is able to coordinate

and perform the attack from multiple addresses trivially, as there is no

additional cost to having and using many addresses, thus making this

a distributed denial of service attack. With this distributed lock-unlock

strategy, the attacker can circumvent the exponential deposit extension

by performing lock-unlock with different addresses successively, rotat-

ing with addresses with cool-off that has expired.

2.5.3 Whitelisting and registration

The distributed denial of service attack is viable when the cost of hav-

ing multiple identities or addresses is relatively cheap, therefore making

that action more expensive would help to alleviate such an attack. At

the same time, we have to continue to balance punishing or preventing

attackers with not adding too much friction or costs to regular users.

A mechanism used to alleviate standard distributed denial of service

attack is whitelisting. This means that only certain identities are allowed

to access the service being attacked. In our case, actors would have to

register their addresses with the smart contract before they are allowed

to interact with it.

Chapter 2. Locking System 19

2.5.3.1 Time limits

Whitelisting can be made more effective effective if there was a fixed time

limit to how long the whitelist would be. Having an expiring registration

for the whitelist would provide an additional step to the functional and

resource cost of the malicious actor, who would have to continue regis-

tering after expiry to persist an attack.

This would not unnecessarily punish a regular user, as long as the

whitelist period is set at a reasonable time that is able to cover the time it

takes for regular use. The time it takes to carry out an effective distributed

denial of service attack would typically be much longer than a regular use

time.

2.5.3.2 Registration fee

If registration for whitelisting was free, then the whitelist mechanism

would have done little to alleviate distributed denial of service attacks

besides. Therefore, a refundable registration fee can be implemented to

increase that cost. Having a registration fee would directly limit the num-

ber of addresses that a malicious actor can use at one time, as the actor

would have a finite balance of tokens.

Upper limit of Addresses ⇡ Total balance of Actor
Registration fee

Note that this is only an approximation as there are also costs to ex-

ecuting the attack from transaction costs and deposits that has to be fac-

tored in as well. However, these costs should be much lesser than the

registration fee so as to not unfairly punish regular users, so the biggest

factor in determining the upper limit of addresses would be the registra-

tion fee.

Chapter 2. Locking System 20

2.5.3.3 Refund holding period

A refund holding period can be used to harden the registration fee and

time limit extensions. The refund holding period can be defined as a pe-

riod of time, after the whitelist period has ended, when the registration

fee cannot be refunded. The registration fee can only be taken back after

the refund holding period has passed.

By having a refund holding period, a malicious actor with a limited

amount of resources would have even less addresses that he is able to

utilize if he wants to perform an attack. The actor would have to choose

between having entire periods of time equivalent to the refund holding

period where there is no attack going on, or staggering the registration

of different addresses at different periods of time. Choosing the former

would lead to a suboptimal attack strategy, and choosing the latter would

mean that there would be less addresses available to use. The smart con-

tract developer may also be able to choose a registration fee and refund

holding period such that the attacker may be limited to one address.

2.5.3.4 Mechanism Overview

To see how whitelisting will work in steps, I will extend the synchro-

nized mechanism with whitelisting, and highlight the steps relevant to

whitelisting.

1. Check if the actor has a non-expiring registration, if it is, move to

step 2. Else, terminate and return.

2. Check if foo is locked, if it is move to step 3, else move to step 5.

3. Check if the session of current locker of foo has expired. If so, move

to step 5, else move to step 4

Chapter 2. Locking System 21

4. Check if the current locker of foo is the actor, if so, proceed to step

9. Else, terminate and return.

5. Check if actor has an existing session. If so, proceed to step 7. Else,

move to step 6.

6. Check if the actor has a sufficient amount of deposit. If so, proceed

to step 7. Else, terminate and return.

7. Set a new timeout for the actor. Proceed to step 8

8. Lock foo and set the locker to the actor, proceed to step 9.

9. Continue to the main function normally

Whitelisting would also require components to register and to request

for the refund of registration fee. It is relatively trivial, but for the sake of

clarity I will go through the mechanisms.

For registration:

1. Check if actor has a sufficient amount of registration fee. If so, pro-

ceed to step 2. Else, terminate and return.

2. Update the actor’s user record with registration with registration

time and registration amount.

For refund of registration fee:

1. Check if actor’s refund holding period has passed. If so, proceed to

step 2. Else, terminate and return.

2. Update the actor’s user record with registration refund and refund

the amount to actor’s address.

Chapter 2. Locking System 22

2.5.3.5 Limitation

The obvious limitation with whitelisting is the significant friction that it

brings to the smart contract. There is now an additional transaction that

an actor would have to send before being able to even use the contract.

Since a non-trivial amount of registration fee is necessary for whitelisting

to be effective, a regular user of the smart contract would need to have

that amount of tokens before he is able to use it.

2.5.4 Lock limits per session

The smart contract that undergoes a denial of service attack has an attack

surface of size determined by the number of state variables that can be

locked. One of the most direct and simplest ways to alleviate the effect of

the denial of service attack is to limit that attack surface. To do that, we

can have a hard limit on how many locks a malicious actor is able to take

in one session.

As long as the lock limit is set to the maximum number of locks needed

for the longest, most complex computation in the smart contract, a regu-

lar user will not be hampered by this mechanism.

2.6 Data Structures

In this section I will describe the data structures that I have designed and

implemented for the features to work.

2.6.1 Lock Record

As I have described above at 2.3.2

Chapter 2. Locking System 23

2.6.2 User Record

For most of the recovery and alleviation mechanisms to work, a record of

the actor’s actions is necessary. For User Record, I will break it down to

the different components that it is composed of.

2.6.2.1 Session Record

The session record consists of an array to keep track of the locks that

the actor has taken up in his session, so that unlocks and release can be

performed more efficiently; and it also contains the expiry time of the

session, and the time when all locks were released. The implementation

may not have the different components as its own structs so as to make

the library more gas-efficient.

1 struct LockInfo{

2 bytes32 dataName;

3 bytes32 key;

4 }

5 SessionRecord struct {

6 LockInfo [] lockInfos;

7 uint256 expiryTime;

8 uint256 unlockTime

9 }

2.6.2.2 Deposit Record

The deposit record consists the amount of deposit paid for the current or

last session, a boolean to reflect whether the deposit has been refunded.

1 DepositRecord struct {

2 uint256 depositFee;

3 bool depositRefunded;

4 }

Chapter 2. Locking System 24

2.6.2.3 Whitelist Record

The whitelist record consists of the time when the whitelist registration

expires, and a boolean to reflect whether the registration fee has been

refunded. The decision to not include the refund holding period is made

so as to be more gas efficient. It is trivial to derive the refund holding

period using an offset in the library config.

1 WhitelistRecord struct {

2 uint256 whitelistExpiry;

3 bool registrationRefunded;

4 }

25

Chapter 3

Experiment and Analysis

3.1 Implementation

The protocol and toy example described in the last chapter was imple-

mented in Solidity, and can be found at https://github.com/jakegsy/

synchronizationPrimitivesSmartContract/tree/master/contracts. The

implemented smart contract is deployed on the Kovan Ethereum Testnet

at the address 0xda2523d8eee5d096baed310bbafe0e48849da80.

3.1.1 Config Used

Session Period 5 Blocks

Cool Off Period 10 Blocks

Whitelist Period 45 Blocks

Refund Holding Period 90 Blocks

Deposit Fee 0.001 Ether

Whitelist Fee 0.1 Ether

Maximum Locks 3

https://github.com/jakegsy/synchronizationPrimitivesSmartContract/tree/master/contracts
https://github.com/jakegsy/synchronizationPrimitivesSmartContract/tree/master/contracts
https://kovan.etherscan.io/address/0xda2523d8eee5d096baed310bbafe0e48849da802

Chapter 3. Experiment and Analysis 26

3.2 Analysis

3.2.1 Safety Property of Recovery and Alleviation Mecha-

nisms

In this section, I will use the recovery and alleviation mechanisms to

show that given the right config, a distributed denial of service attack

can be made to be unsuccessful. A successful distributed denial of ser-

vice attack can be defined as one where all possible state variables are

locked up by the malicious actor for as long he desires and has the bal-

ance to do so. To make things simpler, I will only use and try to show for

the harder scenario of one state variable in the smart contract. It would

be easy to see how the same safety property will not only be present, but

also stronger in the existence of many state variables. I will use the toy

example with only foo as the state variable.

3.2.1.1 Optimal Strategy for Attacker

The attacker performing a distributed denial of service attack has to en-

sure that he has all the unexpiring locks to all possible state variables for

as long as possible. At the same time, the attacker wants to minimize the

fees spent to execute this attack, though that is a secondary concern.

Therefore, the attacker would employ the strategy of locking and un-

locking with the minimum amount of addresses. This way, the attacker

would not have to be penalized for consecutive sessions, while main-

taining ownership of the lock. The addresses would also be staggered

in whitelist registration so as to minimize the waste of precious whitelist

periods.

Chapter 3. Experiment and Analysis 27

3.2.1.2 Assumptions and Simplifications Made

In this scenario, I assume that the attacker has only a finite amount of

cryptocurrency that he is able to use in this attack. I will define the avail-

able balance to the attacker as X.

At the same time, I will also assume that all recovery and alleviation

mechanisms are used in the smart contract, and it has a config of

Session Period = a

Cool-off Period = b

Whitelist Period = c

Refund Holding Period = d

Registration Fee = Y

Finally, I will assume that the attacker’s transactions are always taken

first and succesful, such that the transition of locks between addresses are

always uninterruptible.

3.2.1.3 Proof of Safety Property

Lemma 3.2.1. The maximum amount of whitelisted addresses that an actor with

a balance of X, on a smart contract that has a whitelist fee of Y, can have at any

point of time, is bX

Y
c.

Proof. Since the actor only has a total balance of X, discounting possible

transaction fees, he is only able to register for X

Y
addresses at once. Since

we do not know whether X is divisible by Y, we take bX

Y
c as there is no

meaning for a partially registered address.

Chapter 3. Experiment and Analysis 28

Lemma 3.2.2. The maximum amount of sessions that an address, that is owned

by an attacker who is using the optimal strategy, can have in a whitelist period

of c is d c

a+b
e.

Proof. In the optimal strategy, the attacker would want to avoid using the

address to have a session while it is in the cool-off period. Therefore, after

every session period of a, the attacker would wait for the cool-off period

of b to pass before using the address to take another session. As such,

we can use a+b as the total time for a session, and derive the maximum

amount from the whitelist period of c.

Corollary 3.2.2.1. The maximum amount of sessions that an address, that is

owned by an attacker who is using the optimal strategy, can have in a whitelist

period of c and refund holding period of d is d c

a+b
e.

Proof. We know from 3.2.2 in a period of c, the maximum number of ses-

sions that an address can have is d c

a+b
e. Since c is contained within c + d,

and the particular address cannot take up additional sessions within d,

we can expand the 3.2.2 to c + d.

Lemma 3.2.3. The minimum amount of sessions that an attacker must have in

a c + d period of time, to carry out the optimal strategy, is d c+d

b
e

Proof. Given the assumption that the transition of locks between sessions

of different addresses is always uninterruptible, it is easy to see that for

any arbitrary period of time, there must be sessions covering every mo-

ment for the optimal strategy to be carried out. Therefore, for a c + d

period of time, it has to be covered by c+d

b
successive sessions.

Lemma 3.2.4. The minimum amount of addresses that an attacker has to use,

to carry out the optimal strategy, is

⇠
c+d

b

d c

a+b
e

⇡
, where a is the session period, b is

the cool-off period, c is the whitelist period and d is the refund holding period.

Proof. First, let us consider the period of c+ d. This can be considered one

cycle of an address, where it is able to take up sessions in c and be idle in

Chapter 3. Experiment and Analysis 29

d. The cycle of one address is important in an analysis of the minimum

amount of addresses needed for the optimal strategy over arbitrary time,

as the cycle effectively repeats itself with no differences.

To make this point clearer, let us consider what happens for an op-

timal strategy in one cycle. The address whose cycle we are consider,

takes up a whitelist registration, and a session at the same time. As the

session expires, the attacker registers another address and takes up a ses-

sion, whilst the first address is in cool-off. This continues on until the first

address’ cool-off is over and it takes up another session, or the first ad-

dress’ whitelist period is over and other addresses take up the remaining

sessions until the end of the first address’ refund holding period is over.

When the refund holding period is over, the first address returns to the

first step, taking up a whitelist and session, effectively repeating the cycle

with no differences. Therefore, we can easily infer the result of arbitrary

time by analysing within one cycle.

In a c + d period, for an optimal strategy, from 3.2.3 we know that

there are d c+d

b
e sessions that has to be taken, and from 3.2.2.1 we know

that each address can only take up d c

a+b
e. Therefore, the minimum num-

ber of addresses is ⇠d c+d

b
e

d c

a+b
e

⇡
=

⇠ c+d

b

d c

a+b
e

⇡

Theorem 3.2.5. It is impossible for a malicious actor who has a balance of X,

who is using optimal strategy, to perform a successful distributed denial of ser-

vice attack if

⇠
c+d

b

d c

a+b
e

⇡
> bX

Y
c, where a is the session period, b is the cool-off

period, c is the whitelist period, d is the refund holding period and Y is the reg-

istration fee.

Chapter 3. Experiment and Analysis 30

Proof. By 3.2.4, we know that the minimum number of addresses neces-

sary to carry out the optimal strategy for a successful distributed denial

of service attack is
⇠

c+d

b

d c

a+b
e

⇡
. We also know from 3.2.1 that the maximum

number of addresses an actor can have is X

Y
. If the minimum amount

of addresses needed for a successful attack is higher than the maximum

number an actor can have, then there will necessarily be gaps as the

attack is performed. Therefore, the distributed denial of service attack

would not be considered successful.

As we can see from the theorem, that given the right adjustment of

the config that gives the relation needed in 3.2.5, we can actually prevent

a successful distributed denial of service attack, hence proving the safety

property.

3.2.2 Gas and Economic Costs

In this section I will perform an analysis regarding the gas and economic

costs of using the locking system in my implementation. It will not be

the minimum possible gas used as the implementation was written with

clarity as a priority, but it will be a good enough approximation.

Chapter 3. Experiment and Analysis 31

Operation
Contract with-

out Locking

Contract with

Locking
Diff

Contract Creation 1705943 167515 1538428

Setting State Variable

(1st Single)
152433 41709 110724

Setting State Variable

(2nd Single)
28544 26709 1835

Setting State Variable

(1st Dynamic)
167946 42030 125916

Setting State Variable

(2nd Dynamic)
29057 27030 2027

1st Whitelist Register 43541 N/A N/A

2nd Whitelist Register 28541 N/A N/A

Unlocking 1 lock 49936 N/A N/A

Unlocking 3 locks 66315 N/A N/A

It is important to note that there is a need to evaluate and compare

the first and later calls for the operations as all of the operations involve

storing values to the smart contract, and there is a difference in gas cost

between initially setting a value and modifying an already set value.

3.2.2.1 Explaining the differences

3.2.2.1.1 Contract Creation There are significantly more routines and

state variables needed to use the Locking library via the inheritance of

the Lockable contract. Deploying the Lockable contract by itself would

have cost 957213 gas.

3.2.2.1.2 Setting State Variables Let us focus on the 1st operation at

setting state variable. There is an approximately 120000 difference in gas

Chapter 3. Experiment and Analysis 32

cost between a contract with locking and without locking. This can be ex-

plained by the storage of values in LockRecord and UserRecord, which

takes up to an additional 6 SSTORE opcodes costing 20000 each. We can

see it more clearly when we evaluate the 2nd operation, and the differ-

ence drops to a negligible amount.

1 +
a

b
+

d

c
+

a

b

d

c
<

x

y

33

Chapter 4

Discussion

4.1 Usability Friction

It is quite evident that there is a non-negligible amount of usability fric-

tion that arises from the use of the locking system and the various re-

covery and alleviation mechanisms. This cost is unavoidable as synchro-

nization primitives add overhead in all occurences, smart contracts or

otherwise. It is a trade-off for getting more correctness and safety into

the smart contract, and should be considered with those properties in

mind. The backward immutability of blockchain and smart contracts ne-

cessitates that these properties are prioritized.

4.2 Resource Costs

From 3.2.2 we can see that there is a non-trivial amount of additional

resource cost when utilizing the locking system. Note that this is a proof-

of-concept implementation that is focused on displaying the safety and

liveness properties of the locking system. These resource costs can be re-

duced significantly through optimization, be it through a pre-processor

or an implementation of the locking system as a standalone smart con-

tract service.

Chapter 4. Discussion 34

There can also be protocol or virtual machine level optimization through

introducing new routines specific to synchronization primitives and ex-

tending address properties. Given how gas is currently metered with

relation to actual computational resource usage in nodes, this would sig-

nificantly reduce the resources needed on the blockchain layer.

4.3 Liveness and Distributed Denial of Service

The recovery and alleviation mechanisms have been shown to incentivize

and thus improve on liveness in the system, and a proof was shown in

3.2.1.3 that given the right config, a distributed denial of service attack

can be defeated. It may appear that the config appropriate to defeat the

distributed denial of service attack can drastically increase the resource

and friction cost in using the system. However, it should be noted that

the config can be modified whilst the smart contract is already deployed.

This means that the distributed denial of service protection config can be

turned on when necessary, and allowing a less punitive config when there

is not an attack.

It is important to also note that the effectiveness of the mechanisms

grow as the duration of the attack increases, as the resource balance of the

malicious attacker would gradually reduce over time due to transaction

and deposit costs. Thus, making the protection a "war of attrition" which

only makes the smart contract grow in value(due to the deposits going to

the contract) and liveness over time.

35

Chapter 5

Related Work

5.1 Adding concurrency to smart contracts

This paper [3], published in 2017 by Dickerson et. al proposes a way to

detect concurrency conflicts through techniques from software transac-

tional memory applied at validation time, with the intention of speeding

up mining and validation through concurrency. Our research differs from

this in where we focus our evaluation on concurrency – the actual execu-

tion of smart contracts for them, and the correct execution of intentional

business logic on smart contracts for ours. That being said, there are meth-

ods being utilized by Dickerson et. al that can be integrated into future

research.

36

Chapter 6

Conclusion

I have thus far shown in this paper that introducing synchronization

primitives such as mutexes into smart contracts creates non-trivial live-

ness issues that require additional extension mechanisms in order to alle-

viate and circumvent. The mechanisms themselves are interesting cryp-

toeconomics topics on their own and may have further applications in

areas outside of synchronization.

The complete proposed locking system is a proof-of-concept that is

currently unfeasible, cost-wise, to use as at a production level. Further

improvements can be done in optimisation through implementing it as a

smart-contract-as-a-service or introducing it on a protocol or virtual ma-

chine level, before it is ready to be used. That being said, the value of

this paper is in the evaluation of synchronization primitives when intro-

duced to smart contracts and the potential safety and correctness benefits

it brings to the table. With these properties, it is not too difficult to see that

the exploits and bugs, that occured in the short history of smart contracts

and will occur in the future, could and can be protected against if these

primitives were to be used.

37

Bibliography

[1] Block King Contract. https://etherscan.io/address/

0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1.

Last Accessed: 2019-03-18.

[2] DAO. https://medium.com/swlh/the-story-of-the-dao-its-

history-and-consequences-71e6a8a551ee.

Last Accessed: 2019-03-18.

[3] Thomas Dickerson et al.

“Adding Concurrency to Smart Contracts”. In: Proceedings of the

ACM Symposium on Principles of Distributed Computing. PODC ’17.

Washington, DC, USA: ACM, 2017, pp. 303–312.

ISBN: 978-1-4503-4992-5. DOI: 10.1145/3087801.3087835.

URL: http://doi.acm.org/10.1145/3087801.3087835.

[4] Ethereum Gas Model.

https://github.com/ethereum/wiki/wiki/Design-Rationale.

Last Accessed: 2019-03-18.

[5] Java Synchronized. https://www.baeldung.com/java-synchronized.

Last Accessed: 2019-03-18.

[6] OpenZeppelin Re-entrancy.

https://github.com/OpenZeppelin/openzeppelin-

solidity/blob/master/contracts/utils/ReentrancyGuard.sol.

Last Accessed: 2019-03-18.

https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1
https://etherscan.io/address/0x3ad14db4e5a658d8d20f8836deabe9d5286f79e1
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://doi.org/10.1145/3087801.3087835
http://doi.acm.org/10.1145/3087801.3087835
https://github.com/ethereum/wiki/wiki/Design-Rationale
https://www.baeldung.com/java-synchronized
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/utils/ReentrancyGuard.sol
https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/utils/ReentrancyGuard.sol

	Acknowledgements
	Abstract
	Background and Motivations
	Background
	Synchronization Primitives
	Non-triviality of mutexes in smart contracts

	Locking System
	Locking in Smart Contracts
	Toy Example

	The toy example and a simple naked mutex
	The synchronized function modifier
	Mechanism Overview
	Lock Record
	Generalised Lock Record for Single Variables
	Generalised Lock Record for Single and Dynamic Variables

	Synchronized modifier for dynamic variables
	Expanded Toy Example
	Synchronized Dynamic

	Liveness and Denial of Service
	Denial of Service example

	Recovery and Alleviation Mechanisms
	Timeouts and sessions
	Actor focused
	Mechanism Overview
	Limitation

	Exponential deposits and decaying refunds
	Fair usage through exponential deposits
	Decaying deposit refunds
	Mechanism Overview
	Limitation

	Whitelisting and registration
	Time limits
	Registration fee
	Refund holding period
	Mechanism Overview
	Limitation

	Lock limits per session

	Data Structures
	Lock Record
	User Record
	Session Record
	Deposit Record
	Whitelist Record

	Experiment and Analysis
	Implementation
	Config Used

	Analysis
	Safety Property of Recovery and Alleviation Mechanisms
	Optimal Strategy for Attacker
	Assumptions and Simplifications Made
	Proof of Safety Property

	Gas and Economic Costs
	Explaining the differences

	Discussion
	Usability Friction
	Resource Costs
	Liveness and Distributed Denial of Service

	Related Work
	Adding concurrency to smart contracts

	Conclusion
	Bibliography

