
Toychain
Formally Verified Blockchain Consensus

George Pîrlea

MEng Computer Science

Advisors: Dr Earl Barr, Dr Ilya Sergey

Submission Date: 29th April 2019

This report is submitted as part requirement for the MEng degree in Computer Science
at UCL. It is substantially the result of my own work except where explicitly indicated

in the text. The report may be freely copied and distributed provided the source is
explicitly acknowledged.

Thesis advisors: Dr Earl Barr, Dr Ilya Sergey George Pîrlea

Toychain
Formally Verified Blockchain Consensus

Abstract

We present Toychain, the first proven-correct implementation of a Nakamoto-style
blockchain consensus protocol. We build upon our previous work, the first formali-
sation of a blockchain-based distributed consensus protocol with a mechanised proof of
consistency.

Our formalisation includes a reference implementation of the block forest data struc-
ture and provably-correct message handlers for the protocol logic. The formal model is
parametric wrt. implementations of several security primitives, such as hash functions,
a notion of a proof object, a Validator Acceptance Function, and a Fork Choice Rule.

We improve our original model by removing several overly-strong assumptions, no-
tably the assumption that hashing is injective. Then, we instantiate the model with a
SHA256-based proof-of-work scheme and extract our proven-correct OCaml implemen-
tation of Nakamoto consensus. Finally, we execute our implementation on a local area
network to test its effectiveness.

All our results are formalised in the Coq interactive theorem prover.

iii

Acknowledgments

I would like to thank both my supervisors, Earl Barr and Ilya Sergey, for their continued
support. Without them, this work would not have been possible.

When I was stuck on a difficult proof or confused by Coq’s peculiarities, Ilya always
provided the insight to get me through. Earl, with his extraordinary ability to ask
questions that stump and his attention to detail, has made my thinking clearer and this
report much better than it would have been otherwise. I am grateful to both of them.

I also wish to thank Anton Trunov and Karl Palmskog for their great technical advice.
Anton, sharing his expertise, helped me understand the bugs in Coq’s extraction mech-
anism and implement work-arounds. Karl, too, has been tremendously helpful. In fact,
his comments on the original Toychain triggered this work. Moreover, he graciously of-
fered his time to maintain the OPAM package and build infrastructure. Without either
Karl or Anton, Toychain would not be executable.

I also want to thank the NUS School of Computing, particularly for arranging my visit
to Singapore, where a large part of this thesis has been written and thank researchers
at both NUS and Zilliqa for their feedback.

Finally, I would like to thank all colleagues and staff at UCL for their support through-
out my degree. I am very grateful for the 4 years I spent studying in London.

iv

Contents

1 Introduction 3
1.1 Need for Trustworthy Consensus Protocols 3
1.2 Failures in Permissionless Systems . 4

1.2.1 Value Overflow Incident . 4
1.2.2 Accidental Hard Fork . 5
1.2.3 Inflation Bug . 5

1.3 Promise of Formal Verification . 6
1.3.1 Well-suited for Consensus Protocols 6
1.3.2 Powerful but not Magical . 6

1.4 Towards Verified Blockchain Consensus 6

2 Overview 8
2.1 Formal Verification of Distributed Systems 8

2.1.1 Verified Implementations . 10
2.2 Toychain . 12

2.2.1 Nakamoto Consensus . 12
2.2.2 Toychain by Example . 13
2.2.3 Modelling in Coq . 15
2.2.4 Block Forests . 20
2.2.5 System Invariant . 21
2.2.6 Dropped Assumptions . 23

3 Toychain Made Realistic 25
3.1 Unrealistic Assumptions . 25

3.1.1 Genesis Block Hash . 25
3.1.2 Hash Injectivity . 26

3.2 Strong Assumptions . 31

4 Toychain Made Practical 32
4.1 From Proof to Program . 32
4.2 Coq Modules and Parametricity . 33

4.2.1 Mechanised Proofs are Brittle . 33
4.2.2 Modules Preserve Opaqueness . 34
4.2.3 Toychain Made Modular . 34

4.3 Instantiating Consensus Parameters . 36
4.3.1 Type Definitions . 37
4.3.2 Proof of Work . 39

4.4 Extracting OCaml Code . 42
4.5 Formally-Verified Nakamoto Consensus 45

4.5.1 Caution: TCP/IP . 47

1

4.5.2 Running Toychain . 48
4.6 Limitations . 51

4.6.1 Performance . 51
4.6.2 Storage and Networking . 52
4.6.3 Trusted Computing Base . 53

5 Conclusion 54
5.1 Toychain . 54
5.2 Limitations . 54
5.3 Future work . 55

Bibliography 56

2

1
Introduction

I don’t know exactly how this can be prevented from happening again, but I
do know that it would be a mistake for the community to brush off this bug
just because it ended up being mostly harmless this time.

Michael Marquardt, founder of BitcoinTalk.org

This chapter motivates the need for provably-correct consensus protocols, explains the
benefits and limitations of formal verification, and presents our approach to developing
a framework for reasoning about blockchain consensus.

1.1 Need for Trustworthy Consensus Protocols

Distributed systems are widely deployed in industry and a significant amount of eco-
nomic activity depends on them functioning reliably. Nevertheless, outages do happen,
and quite regularly. For example, the entire VISA payment network was unavailable in
the UK and Ireland for 8 hours on June 1st, 2018 due to a “hardware failure” [VIS18].

Outages in a distributed system can be prevented, but prevention comes at a cost. If
some data needs to be available for the system to function, the risk of failure can be
mitigated by replication. If the data is stored on multiple servers, when one server fails,
another can take its place. However, replication introduces a significant challenge: the
different servers in the system must be in agreement about the data they hold.

The mechanism by which a number of servers come into agreement with each other
is called a consensus protocol. The consensus problem is a difficult one and it comes in
many flavours. Is the set of servers fixed, or does it change? Is it acceptable if distinct
clients receive different responses to the same query? What if some of the servers act
maliciously, rather than just crash? Do all the servers even know about each other?

Regardless of the answer to these questions, experience shows that consensus pro-
tocols are, generally speaking, difficult to understand and implement correctly. This
is due to the nature of the problem. When implementing a consensus protocol, some
mistakes lead to obvious, immediate failures — no agreement is reached even in the
absence of crashes. Such mistakes are easily caught by testing. Other mistakes, on the

3

other hand, can be surprisingly subtle and lead to failure only in very rare scenarios —
but with disastrous consequences.

It is this subtle kind of mistake which motivates the need for formal methods. As
distributed systems become more critically important, the cost of catastrophic failure
grows. To minimise risks, organisations are incentivised to seek a higher level of assur-
ance about the correctness of their systems.

1.2 Failures in Permissionless Systems

High levels of assurance are particularly important for permissionless systems such as
Bitcoin, in which anyone can join the protocol at any time and act in a potentially
malicious manner. When a system that is under the control of a single organisation
malfunctions in production, mitigating the error is often as simple as “turn it off and
on again”. No such possibility exists for decentralised systems like Bitcoin. And errors
do happen in these systems as well.

1.2.1 Value Overflow Incident

On August 15, 2010, Bitcoin experienced what came to be called the “value overflow
incident” — block number 74,638 contained a maliciously crafted transaction that cre-
ated 184 billion bitcoin [Gar10] (the intended total supply is 21 million). This happened
because the code that validated transactions checked for overflow in individual transac-
tion outputs, but not in their sum. Thus, a transaction with 0.5 bitcoin as input and
92 + 92 billion bitcoin as output was treated as valid, since the total output of the
transaction, 184 billion bitcoin, overflowed to a value less than the input. A new version
of the Bitcoin software that changed the consensus rules to reject the value overflow was
released within 5 hours [Nak10]. In a decentralised system, however, you cannot force
users to upgrade their software. How, then, was the overflowing transaction reverted?

The new release introduced a soft fork — a protocol change that tightens the consen-
sus rules, but keeps them compatible with older versions of the software. More precisely,
all behaviours that are acceptable under the new rules are also acceptable under the
old rules, but not vice versa. The new version of the Bitcoin software saw the trans-
action as invalid, and rejected the block that contained it. Meanwhile, older versions
continued to view the transaction as valid. However, as miners — protocol participants
who extend the blockchain — migrated to the updated rules, the chain that did not
include the invalid block became the heaviest chain∗. At that point, nodes running the

∗The chain with the most accumulated proof-of-work. Consensus rules dictate that nodes adopt the
heaviest valid chain. Honest miners create blocks only on top of this chain.

4

old software migrated to that chain, and the invalid block was orphaned.

1.2.2 Accidental Hard Fork

Even in the absence of malicious actors, simple software updates can lead to consensus
failures. Bitcoin v0.8.0, released in February 2013, changed its internal transaction
database from BerkeleyDB to LevelDB. On March 11, 2013, the Bitcoin network created
a block that had a larger number of transaction inputs than previously seen. This
lead to an unintentional hard fork — versions v0.7.2 and prior rejected block number
225,430, whereas v0.8.0 accepted it [Gar13]. It turns out that the configuration of the
database had implicitly become a network consensus rule: v0.7.2 and earlier could not
process blocks for which transaction processing acquired more than 10,000 database
locks; v0.8.0 did not have this limitation. At that point, the v0.7.2 consensus rules had
majority hashpower, so the Bitcoin developers addressed the issue by releasing a new
version, v0.8.1, that temporarily rejected blocks that would cause more than 10,000
locks to be taken [And13].

1.2.3 Inflation Bug

Sometimes, bugs lie undiscovered for years. Bitcoin was severely vulnerable for a period
of 18 months from March 2017 to September 2018. The root cause, similarly to the value
overflow incident, was a fault in the transaction processing logic. Versions 0.14.X of the
Bitcoin software would crash when processing blocks that include a transaction that
attempts to spend the same output twice. This made the Bitcoin network vulnerable
to a Denial of Service attack. Much more dangerously, in Bitcoin versions 0.15.X up to
0.16.2, the same transaction would in some circumstances allow a succesful double-spend,
i.e. the nodes would not only not crash — they would see the money-cloning transaction
as valid! [Bit18; Son18; Cor18]

“The whole community screwed up by not reviewing consensus changes thor-
oughly enough, more developers need to pay attention! It’s your responsi-
bility.” — Wladimir J. van der Laan [Laa18]

It is stupendously easy to introduce severe bugs into critical consensus code — the
history of such errors in Bitcoin and other similar systems proves as much. But we are
not doomed to perpetual failure.

5

1.3 Promise of Formal Verification

1.3.1 Well-suited for Consensus Protocols

Consensus protocols are complicated when we consider how they work, but what they do
is very simple — they ensure agreement between multiple parties. This combination of
having a complex implementation, but a simple specification makes consensus protocols
ideal targets for formal methods. On one hand, it means that bugs that will not be caught
by testing are very likely to creep in, which motivates the need for more assurance than
simple testing can provide. On the other hand, as a verifier, it also means that it is
easy to convince yourself that you are indeed verifying the right thing, i.e. that your
specification means what you intend.

1.3.2 Powerful but not Magical

It is crucially important to understand what verification is in order to understand what
it guarantees, but also, equally importantly, what it does not. Fundamentally, formal
verification means proving software correct with respect to a given rigorous specification
using mathematical reasoning. In other words, you are proving that the software meets
the specification. Even if you trust the proof, which you largely can trust if it is
mechanised (machine-checked), this does not mean that your software is correct. Indeed,
it may be that your specification is wrong [Ser18].

For this reason, formally verified software can and does have errors. For example,
CompCert, the verified C compiler, had a bug in how it compiled C99-style for loops:
i = 10; for (int i = 0; i < 3; i++) {}; return i; would return 3 rather than 10 [Bee17].
There was no error in CompCert’s proofs — all were mechanised and correct. The error
was in CompCert’s specification of C scoping rules.

By contrast, the specification of a blockchain consensus protocol is comparatively
simple. With less scope for specification error, we can be more certain that our formal
proofs actually do imply that the software is correct. Risks still exist, especially at the
interface between the verified and the unverified components of the software, but these
can be minimised in other ways.

1.4 Towards Verified Blockchain Consensus

Given the importance of systems such as Bitcoin, we argue that there is a strong need for
formally verified, provably-correct implementations. In this thesis, we make a significant
step towards achieving that goal.

6

We build upon our previous work, the first formalisation of Nakamoto consensus
mechanised in an interactive proof assistant [PS18], and extend it. In particular, we
remove all unrealizable assumptions from the original Toychain development, instanti-
ate the protocol with an example set of consensus rules, and extract a proven-correct
implementation directly from Coq.

Our long term goal is to have Toychain evolve into a principled framework for reason-
ing about the correctness and security properties of blockchain consensus protocols. One
immediate application of such a framework is that it would allow developers to prove
their updates correct before they are deployed, and thus guarantee that no failures will
be introduced.

Overview of Contents

Chapter 1 motivated the need for formally-verified protocols and gave an overview of
our approach.

Chapter 2 describes previous work on formal verification of distributed systems and
gives a high-level description of Toychain.

Chapter 3 explains our effort to remove onerous assumptions we made in the original
Toychain development, as a prerequisite for code extraction.

Chapter 4 details the process of extracting executable code from Coq and, looking
at the full Toychain system, precisely distinguishes which components are proven correct
and which are part of the trusted computing base.

Chapter 5 concludes by reflecting on what we have achieved thus far, discussing
limitations and identifying avenues for future work, with a focus on driving Toychain
towards its goal of informing real-world protocol implementations.

7

2
Overview

Defect-finding mechanisms must be applied until human confidence reaches
the level appropriate to the impact of an unfound bug.

Ron Jeffries, co-inventor of Extreme Programming

This chapter describes related work on formal verification of distributed systems and
gives a high-level overview of Toychain [PS18], the first mechanised formalisation of a
blockchain consensus protocol — which we extend in this work.

2.1 Formal Verification of Distributed Systems

Distributed systems are notoriously difficult to implement correctly. This is completely
understandable, given their inherently non-deterministic nature — programmers find it
difficult to reason about the combination of concurrency, network delays, and failure
scenarios. Nonetheless, distributed systems are used in industry, in situations where
downtime or data loss can be seriously costly.

The quest for improved reliability of distributed systems has triggered research into
better programming abstractions, defect-finding mechanisms, and formal verification.
This has lead to developments such as actor-based programming [BSd82], fault-injection
[DJ94; DJa96], model-checking of distributed protocols [Lam02; Yan+09], and recently,
formally verified implementations of practical distributed systems [Haw+15; Wil+15;
LBC16; Woo+16; SWT17].

Historically speaking, the first advancements in this area were abstractions meant
to make it easier for programmers to reason about and implement distributed systems.
This improved the situation, but only slightly. As tools developed, however, it became
possible to model-check protocols against formal specifications. This helped validate
the protocols, but crucially did not apply to actual implementations of distributed sys-
tems. To overcome this shortcoming, two different approaches sprung up. The systems
research community focused on fault-injection and, to a lesser degree, instrumenting im-
plementations for model-checking. By contrast, the programming languages community,

8

spurred by recent advancements in theorem proving, pursued full formal verification of
distributed system implementations, using tools such as Coq [BC04] and Dafny [Lei10].

Both the “systems” approach and the “verification” approach are valuable. One
crucial advantage of the systems approach is that it can be retrofitted onto existing
systems. Given an existing distributed system, it takes little effort to plug it into a
fault-injection framework such as Jepsen [Kin13] and start discovering bugs immediately.
This makes the systems approach to improving reliability very attractive for industrial
actors — it is low-investment and high-payoff. By contrast, formal verification has very
high initial costs and requires a completely new implementation. It cannot be retrofitted.
Nevertheless, it still is appealing in some situations because it gives strong correctness
guarantees that the systems approach cannot provide. Permissionless systems, which
we study in this work, are one of the key areas for which verification is well-suited.
Since the overall system is not under any one entity’s control, and thus cannot be easily
changed, it becomes much more important to ensure no faults exist before the system
is deployed.

For the purpose of formal verification, a distributed system can be modelled as a
collection of stateful processes that pass messages to each other over a network. The
network, in turn, can be either asynchronous, partially synchronous, or synchronous.
The choice dictates when messages get delivered. Verification consists of discovering
and establishing invariants — statements that relate the processes’ and the network’s
state and are preserved by system transitions — and proving that these invariants imply
the desired overall system property, e.g. safety or liveness. However, the concrete state
of the network is usually not sufficient to establish strong invariants. For example,
proving many properties requires storing historical information, rather than just the
most recent state. As such, for verification, the “concrete” state usually needs to be
augmented with “logical” or “ghost” state — information that is necessary for proofs,
but does not impact the protocol’s execution. Discovering what “logical” state needs to
be kept is an important part of the process of discovering system invariants.

Key to formal verification is that both the system model and the associated proofs
can be expressed in a programming language, e.g. Coq, such that the correctness of the
proofs can be machine-checked. This means that the proofs themselves do not need to
be trusted, as long as the checker is trusted. Moreover, since the model is expressed in
a programming language, it is possible to make it executable. In this case, the proofs
establish properties of an actual implementation of the system. In Section 2.1.1, we
review some important formally verified implementations of distributed systems.

9

2.1.1 Verified Implementations

Several recent works propose frameworks for reasoning about distributed protocols and
have developed formally verified implementations of realistic distributed systems. All of
them, however, implement traditional consensus protocols, rather than permissionless
protocols like Nakamoto consensus. While many of these existing frameworks could be
adapted to reason about blockchain consensus, permissionless protocols are significantly
different from traditional protocols and warrant different reasoning patterns.

In the original Toychain paper, we distilled the protocol semantics and demonstrated
a typical proof pattern for blockchain consensus by formally verifying a basic safety
property [PS18]. In this work, we build on the Toychain model and extract a verified
implementation of Nakamoto consensus. Our long-term goal is to transform Toychain
into a principled framework specifically for reasoning about the correctness and security
properties of blockchain consensus protocols and their implementations. In other words,
we want to tame the full generality of existing frameworks to make it easier to reason
about blockchain protocols, which are totally unlike the traditional protocols existing
frameworks were designed to work best with. In particular, counter-intuitively, reason-
ing about concurrency and fault tolerance (the main challenges current frameworks seek
to address) is practically not required for Nakamoto consensus: protocol messages have
no dependencies on each other, so the order in which they are delivered and processed
is irrelevant, and fault tolerance follows trivially since all nodes store every block in
perpetuity and make it available to anyone upon request via the gossip mechanism.

We describe the existing frameworks now, and overview our approach in Section 2.2.

IronFleet. IronFleet proposes a methodology to verify distributed systems based on
state-machine refinement and Hoare logic. State-machine refinement is used to reason
about concurrency at the protocol level. Crucially, it allows the verifier to “contain”
the complexity of reasoning about concurrency at a high-level, such that Hoare logic
can be used to verify the low-level message-handler implementations as if they operated
sequentially. IronFleet is used to prove both safety and liveness for an implementation
of MultiPaxos. IronFleet is implemented and verified in Dafny, which relies on the Z3
SMT solver [Haw+15].

Verdi. Verdi is a Coq framework for verifying distributed systems, based on verified
system transformers. Users of Verdi prove their implementation correct under an ide-
alised fault model, then translate, via the system transformer, this implementation to
an implementation that is correct under a different, more realistic, fault model. In
other words, Verdi decouples verifying application-level guarantees from the complexity

10

of verifying fault-tolerance mechanisms [Wil+15]. Using Verdi, Woos et al. implement
the Raft consensus protocol and prove it satisfies linearizability [Woo+16].

PSync. PSync is a domain-specific language embedded in Scala, used for automated
verification of fault-tolerant distributed systems. It is based on the Heard-Of (HO)
model and, under partial synchrony assumptions, is capable of verifying both safety
and liveness properties. PSync has been used to verify several protocol implementations,
including Paxos and Two-Phase Commit [DHZ16].

Chapar. Chapar presents a methodology for modular verification of causal consis-
tency (as opposed to strong consistency) and implements a verified replicated key-value
store server and client. The Chapar framework is written in Coq and the verified imple-
mentations are extracted to OCaml directly from Coq [LBC16].

Ivy. Ivy is an interactive tool for discovering invariants in distributed systems, using
bounded verification of infinite-state systems. The user proposes a candidate invariant
and Ivy either validates that the invariant is inductive or provides a counterexample.
This continues until an inductive invariant is found. Ivy has been used to verify the
safety of several protocols, but no implementation has been extracted from the Ivy
models [Pad+16].

Disel. Disel (Distributed Separation Logic) is a framework for compositional verifica-
tion of distributed systems and their clients, based on a distributed Hoare Type Theory.
It allows a human verifier to write protocol specifications, show that particular imple-
mentations follow the protocol, and then reason about the composition of protocols
abstractly, without reference to their respective implementations. Disel is implemented
in the Coq proof assistant and has been used to verify an implementation of Two-Phase
Commit [SWT17]. The network model in Toychain is inspired by Disel and our OCaml
networking code is based on Disel’s.

Velisarios. Velisarios is a Coq framework for verifying Byzantine-fault tolerant dis-
tributed systems, based on the logic-of-events model. It has been used implement the
PBFT consensus protocol and verify a crucial safety property — agreement. The PBFT
implementation is extracted from Coq to OCaml [Rah+18].

Pretend synchrony. Pretend synchrony is an approach to verifying distributed
systems written in Go, using Hoare-style verification conditions and SMT, based on
the observation that, in certain cases, asynchronous protocols can soundly be reasoned

11

about as if they were synchronous. It has been used to verify the correctness of Go
implementations of Two-Phase Commit, Raft leader election, Single-decree Paxos and
Multi-Paxos [Gle+19].

2.2 Toychain

Toychain is the first formalisation of a blockchain-based consensus protocol, with a proof
of eventual consistency mechanised in the Coq proof assistant [PS18]. In the following,
we provide a high-level overview of Toychain, aimed in particular at an audience new
to protocol verification. For a full description, please refer to the original paper.

2.2.1 Nakamoto Consensus

Broadly speaking, the idea of blockchain consensus is straightforward. A set of stateful
nodes communicate with each other over a network in an asynchronous message-passing
style. The goal of the nodes is to maintain and extend a ledger or blockchain of trans-
actions and ensure agreement over its contents.

During normal operation, a node can either (a) announce a transaction, which typi-
cally represents a state update in the system (we intentionally leave out details of what
goes into a transaction, as this is application-specific), or (b) create and broadcast a
block, which builds on top of a previous block (identified by its hash value) and contains
the encoding of a list of transactions to be appended to the blockchain. Crucially, each
block has a notion of a proof object, which allows nodes in the network to independently
verify that the block to which the proof object is attached was created in accordance
to the rules of the protocol. Upon receiving a block, a node validates the sequence of
transactions contained within it, checks the validity of the attached proof object, and
then adds the block to its local state. This process continues as more messages are
emitted and delivered.

Since nodes only accept blocks with valid proof objects, the network can control how
often new (valid) blocks are created by adjusting how easy or difficult it is to create a
proof object. The discipline by which blocks are created is dictated by a pair of locally-
computable functions, genProof and the Validator Acceptance Function (VAF), that
determine how often proof objects get created and, respectively, which proof objects are
valid. Having a block b and its associated proof object pf , it is fast to check whether
VAF b pf is true or false. What is difficult, however, is producing a pf object that is
valid with respect to a given block b. For example, in a proof-of-work scheme genProof

hashes the given block b with a random nonce. If this passes the difficulty threshold
set by VAF , genProof succeeds; otherwise it fails. Assuming the hash function used is

12

pre-image resistant, finding a suitable nonce is computationally hard. In other words,
minting new blocks is probabilistically rare.

As we have seen, nodes create blocks and broadcast them to the network. However,
this setup by itself does not deliver global agreement. Since the network has message
delays, situations can arise in which two different nodes create two different, valid blocks
that extend the same chain! This is called a fork — there are two conflicting blockchains
in the network. Even if the network then has a period of synchrony where all block mes-
sages are delivered to all nodes, i.e. all nodes have knowledge of all blocks, the conflict
will still exist. But the entire purpose of the protocol was to have all the nodes agree on
one chain. Somehow, every node must decide which chain to adopt and they must all
decide the same way. To do this, the nodes employ a third function, the Fork Choice
Rule (FCR), which imposes a strict total order on all possible blockchains. In other
words, given any two chains (including chains in the fork relation), FCR determines
which of the chains the node should adopt as the “heavier” chain. Since after the period
of synchrony, the nodes have full knowledge of all blocks and thus of all chains, they can
use FCR to pick the “heaviest” chain they have, which by the strictness assumption is
uniquely determined. Because they have the same blocks and the same FCR, all nodes
will get the same result — and thus be in agreement.

Fork Choice Rule Strictness. As you can see in the informal argument above,
the strictness assumption is crucial to guarantee agreement. It ensures that FCR can
uniquely decide which chain is heavier in any situation. This assumption, which is a core
assumption we make in Toychain, greatly simplifies our proofs, but does not match real-
world implementations, which have situations in which the FCR cannot unambiguously
decide between two chains — in such situations, consensus is not guaranteed. For
example, in Bitcoin, two chains of the same length will typically∗ compare as equal. This
means that global agreement is guaranteed only if the FCR imposes an unambiguous
winner amongst all the chains in the network. If network delays are small and the
time between consecutive block mintings is large (as they are for Bitcoin), one of the
forks will eventually become larger and “win”, so a non-strict FCR is not a problem
in practice. Nonetheless, it complicates reasoning. The strictness assumption lets us
ignore such complications.

2.2.2 Toychain by Example

The three functions genProof , VAF , and FCR are sufficient to ensure eventual agree-
ment. Having explained what these functions do, we now give a step-by-step example of

∗The exception is chains of the same length that cross difficulty-change boundaries.

13

(a) (b) (c) (d)

(e) (f) (g) (h)

GB

{ }

(1)

GB

{ }

(2)
GB

{ }

(3)

GB

{ }

(1)

GB

{ tx1 }

(2)
GB

{ }

(3)

tx1

tx1

GB

GB
GB

{ tx1 }

(1)

(2)
(3)

{ }

{ tx1 }

A

A

A

GB

{ tx1 }

(1)

GB

{ tx1 }

(2)
GB

{ tx1 }

(3)

GB

(1)

(3)

{ }

{ tx3 }

A

GB

A

(2)

{ tx2 }

GB

A

tx2

tx2

tx3
tx3

GB

(1)

(3)

{ tx2, tx3 }

{ }

A

GB

A

(2)

{ tx2, tx3 }

GB

A

tx2

B

BB

(1)

(3)

{ tx2 }

GB

A

GB

A

B

C

B

GB

A

B

{ tx2 }

(2)

C

C

{ }

GB

A

GB

A

B

B

(2)

C
{ }{ }

(1)

C

{ }

GB

A

B

(3)

C

GB GB GB GB

A
tx1

GB

A
tx1

GB

A
tx1

B
tx3

GB

A
tx1

B
tx3

C
tx2, tx3

GB

A
tx1

B
tx3

C
tx2, tx3

Figure 2.1: Stages of interaction in a blockchain network with 3 nodes. The (logical) “global” block forest
is shown in the top-right corner for each stage.

the workings of a Nakmoto-style blockchain consensus protocol, as modelled in Toychain.
Throughout this, we refer to the stages shown in Figure 2.1.

The goal of the protocol is to ensure that nodes agree on one ordering of transactions.
For efficiency reasons, the protocol does not order transactions directly, but rather
groups transactions into blocks and then orders the blocks. The nodes agree, using the
FCR, on a blockchain, which implicitly imposes a single ordering of transactions.

The protocol execution starts with all nodes in agreement, as shown in stage (a) in
Figure 2.1. They agree on the initial state of the system (i.e. everyone has the same
genesis block GB) and have the same definitions for genProof , VAF , and FCR. Each
stage in the figure also shows, in the top-right corner, a view of the logical “globally
shared” tree of blocks, which all nodes will agree upon once all messages containing
blocks (red arrows) are delivered. At any point, nodes can issue transactions. In stage
(b), node (2) creates and broadcasts transaction tx1 (dotted green arrow). Later, in
stage (c), the messages containing this transaction are delivered and the transaction is
included in the nodes’ respective transaction pool, which is now {tx1}. Nodes can also
create (“mint”) blocks. When a node mints and broadcasts a block, as in stage (d), it
embeds the transactions in its transaction pool into the block. This can be seen in the
top-right corner, where block A includes tx1.

14

Fork Choice Rule is Additive. One assumption we make, which is implicit in how
Figure 2.1 is drawn, is that adding a block to a chain always adds some strictly positive
“weight”, i.e. mining always improves your chain. For example, in stage (d), we assume
that the chain [GB, A] is strictly “heavier” than [GB]. All real-world fork choice rules
that we know of have this property, but it might be the case that it is not needed for
protocol correctness.

Returning to the protocol execution example, since the system is distributed, multiple
transactions can be issued concurrently. This is what happens in stage (e), where node
(2) creates tx2 and node (1) creates tx3. Because of network delays, a node can mint
a block without full knowledge of all transactions. This is what happens in stage (f),
where node (1) creates block B before it receives tx2. As such, block B only includes tx3.
Moreover, network delays also mean that blocks can be minted without full knowledge
of other blocks. Stage (g) shows this happening, as node (2) mints block C before it
receives block B. At this stage, a fork has been introduced in the network, as can
be seen in the top-right “global” view. The same transaction, tx3, has been included
in two “competing” blockchains: [GB, A, B] and [GB, A, C]. In stage (g), the fork
only exists in the “global” view — nodes are not aware of it. As block messages get
delivered, however, nodes become aware of the fork, as seen in stage (h), and use the
FCR on their local state to decide which of the competing chains to adopt. Since the
fork choice rule imposes a strict total order on blockchains, it uniquely determines which
of the two chains to adopt (for the sake of this example, we arbitrarily decide that FCR
chooses [GB, A, C], shown highlighted in green in the “global” view). This means that
in stage (h), nodes (1) and (3) agree to adopt chain [GB, A, C]. After stage (h), once all
block messages are delivered, i.e. when the system is in a quiescent state with no block
messages in transit, all the nodes will agree.

2.2.3 Modelling in Coq

Section 2.2.1 described the components that make up a Nakamoto consensus protocol
and Section 2.2.2 showed how an execution of the protocol evolves stage by stage. This
section explains how we represent all of this in the Coq proof assistant, to make it
possible to write machine-checked proofs about the system’s behaviour. Rather than
reiterate the more formal presentation in the original Toychain paper, we present the
model by directly listing Coq code and showing how it matches the description in the
previous sections.

The core idea is that the state of the network (i.e. the individual stages in Figure 2.1)
can be represented as a record data type, containing the state of each node and the list
of “in flight” messages (i.e. the arrows in the figure). Moreover, transitions between

15

Record World :=
mkW {
localState : StateMap; (* Mapping from node ID to local state *)
inFlightMsgs : seq Packet;
consumedMsgs : seq Packet;

}.

Listing 2.1: The network state consists of the local state of each node, the list of “in flight” messages, and
a record of which messages have been delivered already.

Record State :=
Node {
id : nid;
peers : peers_t; (* Not shown in the figure *)
blockTree : BlockTree; (* Mapping from hash to block *)
txPool : TxPool;

}.

Listing 2.2: Each node’s state contains the node’s integer ID, a list of that node’s peers, the local block
forest data structure, and the node’s transaction pool.

stages can be represented as an inductive data type with a separate constructor for
each way the network state can evolve: either a network message is delivered or a node
executes an internal action (issues a transaction or mints a block). For example, the
transition between stage (a) and stage (b) involves node (2) issuing a transaction, tx1.
This is easier to show with code.

Listing 2.1 shows the full Coq definition of a World, which corresponds to one stage
in Figure 2.1. The localState field corresponds to the rectangular blobs in the figure
which show each node’s state. Each of the blobs is represented by the data structure
shown in Listing 2.2. The arrows in the figure correspond to inFlightMsgs. Interest-
ingly, the “shared global state” in the top-right corner of each stage in the figure does
not appear in the Coq definition. It will show up, however, when we start discussing
the system invariant — the existence of the shared global state and its relation to each
node’s local state is a key part of the invariant.

There is one slight issue with the definition in Listing 2.1. An object of type World can
represent one of the stages in Figure 2.1, but it can also represent junk, i.e. worlds that
do not really make sense. For example, a World could have a node with an incorrectly
constructed BlockTree, that has a mapping from some hash h to some block b, but with
hash(b) ̸= h. We want to eliminate the possibility of such worlds when we reason about
our protocol. To do this, we define a coherence predicate Coh, which lets us restrict our
reasoning only to World objects that are correctly constructed.

This is enough to represent a static network, but several questions remain. How

16

1 Inductive system_step (w w' : World) : Prop :=
2 | Idle of Coh w & w = w'
3

4 | Deliver (p : Packet) (st : State) of
5 Coh w &
6 p \in inFlightMsgs w &
7 find (dst p) (localState w) = Some st &
8 let: (st', ms) := procMsg st (src p) (msg p) in
9 w' = mkW (upd (dst p) st' (localState w))

10 (seq.rem p (inFlightMsgs w) ++ ms)
11 (rcons (consumedMsgs w) p)
12

13 | Intern (proc : nid) (t : InternalTransition) (st : State) of
14 Coh w &
15 find proc (localState w) = Some st &
16 let: (st', ms) := (procInt st t) in
17 w' = mkW (upd proc st' (localState w))
18 (ms ++ (inFlightMsgs w))
19 (consumedMsgs w).

Listing 2.3: A world w can evolve into w' in three different ways: (1) do nothing, (2) deliver a packet
to a particular node, or (3) have a particular node execute an internal transition.

exactly can the network evolve, i.e. what is our network model? And how do we
represent it in Coq?

Network Model. We model an asynchronous network, where packets might be re-
arranged or arbitrarily delayed, but make several simplifying assumptions about how
the network behaves. In particular, we assume packets are never dropped or corrupted.
At face value, this seems outrageous, but the assumption makes sense in our context.
In a real-world deployment, nodes in Nakamoto consensus do not communicate directly
to each other, but indirectly via a gossip mechanism. The gossip mechanism’s job is to
guarantee that blocks and transactions are delivered to all nodes, regardless of network
conditions. In other words, the gossip mechanism allows nodes to pretend messages are
not dropped or corrupted — we discuss this further in Section 2.2.5. We do not di-
rectly model packet duplication, but the protocol logic is defined in a way that tolerates
message duplication, which is equivalent (packets wrap messages). Finally, we do not
model Byzantine adversaries, i.e. malicious participants.

To represent the way the network can evolve (i.e. our network model) in Coq, we
define an inductive data type, with a constructor for each way in which the network can
change.

Listing 2.3 shows the different ways a world w can evolve into a different world w'.
Each of these corresponds to one constructor of the system_step inductive data type.

17

1 Lemma property_step w w' :
2 property w → system_step w w' → property w'.

Listing 2.4: For an arbitrary property of worlds, this is the statement we need to prove to show that
the property is an invariant. The proof proceeds by case analysis on the constructors of system_step.

We only define transitions for coherent worlds (lines 2, 5 and 14). Firstly, a world can do
nothing and remain the same. This is the Idle constructor on line 2. Secondly, a world
can deliver one of its “in flight” messages, p (line 6) to a node with state st. When this
happens, the state st, which must be the actual state of the destination node (line 7),
is updated as dictated by the message handler procMsg (line 8). The message handler
returns the node’s new state st' and a list of messages the node sends ms. The new
world, w', is obtained from the original world w by updating the node’s state (line 9),
removing p and adding ms to the “in flight” messages (line 10), and marking message
p as consumed (line 11). This is the Deliver constructor on lines 4–11. Finally, a
world can process an internal transition, i.e. either issue a transaction or create a block.
The transitions are handled by the procInt handler (line 16). Note that the “in flight”
messages have no inherent order: on line 8, ms is appended, whereas on line 18 it is
prepended. The Coh w predicate, which is a precondition for all three kinds of system
step, requires that the original world w is coherent, e.g. the node IDs are consistent, all
nodes have the genesis block GB , each node’s local state is valid etc.

With this infrastructure in place, we can begin stating properties of the Toychain sys-
tem and proving them by induction. Listing 2.4 shows the general induction scheme: if a
property holds on an arbitrary world w, w evolves into w' (as defined by system_step),
and the property holds on w', then property is an invariant. In other words, proving
the statement on line 2 of Listing 2.4 establishes property as an invariant of the system.
After that, it suffices to establish that property holds of the initial state of the system
in order to prove that it holds at any point in the protocol’s execution.

It should now be clear how we model Toychain in Coq and how we prove proper-
ties of the system. In essence, we represent stages of the protocol execution as values
of the World data type and transitions between stages as different constructors of the
system_step data type. Then, we establish invariants by induction over system_step,
i.e. by considering every possible way in which the system can evolve. This is conceptu-
ally simple, but induction proofs over the state of an entire distributed system are, in
practice, very messy. Finally, we show that the invariants we establish imply desired
systems properties, e.g. quiescent consistency (“when all block messages are delivered,
everyone agrees”).

One question about the Coq model remains unaddressed. Where do genProof , VAF ,

18

1 Definition procInt (st : State) (tr : InternalTransition) :=
2 let: (Node n prs bt pool) := st in
3 match tr with
4 | TxT tx ⇒ pair st (emitBroadcast n prs (TxMsg tx))
5

6 (* Assumption: nodes broadcast to themselves as well! ⇒ simplifies logic *)
7 | MintT ⇒
8 let: bc := (btChain bt) in
9 let: attempt := genProof n bc in

10 match attempt with
11 | Some(pf) ⇒
12 if VAF pf bc then
13 let: allowedTxs := [seq t <- pool | txValid t bc] in
14 let: prevBlock := (last GenesisBlock bc) in
15 let: block := mkB (hashB prevBlock) allowedTxs pf in
16 if tx_valid_block (btChain bt) block then
17 let: newBt := (btExtend bt block) in
18 let: newPool := [seq t <- pool | txValid t (btChain newBt)] in
19 let: ownHashes := (keys_of newBt) ++ [seq hashT t | t <- newPool] in
20 pair (Node n prs newBt newPool) (emitBroadcast n prs (BlockMsg block))
21 else
22 pair st emitZero
23 else
24 pair st emitZero
25 | _ ⇒ pair st emitZero
26 end
27 end.

Listing 2.5: Handler for node internal transitions: either (1) issuing a transaction or (2) attempting to
mint a block.

and FCR show up? They have appeared nowhere thus far. The answer, unsurprisingly,
is that they show up in the definition of the protocol, i.e. in procMsg and procInt. Un-
til now, we have only shown the definition of the network semantics. The model of the
protocol is given by the executable functions procMsg and procInt, which internally
make use of genProof , VAF , and FCR. For example, lines 9 and respectively 12 in
Listing 2.5 show the process of attempting to create a valid proof object to attach to a
newly-created block (line 15), as well as the change to the node’s local state and corre-
sponding block broadcast (line 20). This uses genProof and VAF . Similarly, btChain,
a function which returns the “heaviest” chain in the local BlockTree, internally uses
FCR. The MintT transition attempts to create a new block building on top of this
“heaviest” chain, bc (lines 8–9). If a proof object is produced, it can be attached to a
new block which extends the last block of bc (lines 14–15).

The procMsg message handler is defined in a similar fashion.

19

`
GB

A

B

C

C

D

F

`
GB

A

B

C

C

D

E

F

GB

A

B

C

C

D

E

M

`
GB

A

B

C

D

E

G

GB

A

B

C

D

E

FG

`
GB

A

B

C

D

E

F G

GB

A

B

C

D

E

F

M
N

`

G

GB

A

B

C

D

E

F

X

Y

`

(a) (b) (c) (d) (e)

Figure 2.2: Different states of a valid block forest and its heaviest chain (green). States (d) and (e) are
abnormal and can only come to exist in the presence of malicious participants. The red block in state (d)

contains invalid transactions. The abnormal states are valid, i.e. consistent instances of the type.

2.2.4 Block Forests

The core data structure in the Toychain protocol is the “block forest” that nodes use
to store the blocks they have heard of. Figure 2.2 shows a valid (i.e. consistent) block
forest in different states, growing as blocks are added to it. The gray arrows depict the
hash-links between blocks, i.e. each block’s prev field. The heaviest chain in the forest
(according to FCR) is shown in green. Stage (a) shows a valid block forest with largest
chain [GB, A, B, C]. In stage (b), the forest is extended by adding a new block, G,
which points to another block F (shown in light gray) which has not yet been added to
the block forest. This can happen due to out-of-order message delivery. In this case, G
is called an “orphan” block.

Forests vs Trees. To align with prevailing terminology, the block forest data struc-
ture is called BlockTree in the Toychain source code. Real-world node implementations
such as Bitcoin Core only add blocks at the tips of their chains, i.e. their forests are
always trees. For example, in a situation like stage (b), Bitcoin Core would reject block
G — it would first wait to receive block F . This seems harmless, but has important
implications for the correctness of the protocol. Accepting orphan blocks, as Toychain
does, guarantees that message-delivery order does not matter. Rejecting them, as real-
world implementations do, protects against spam attacks (if F does not exist, the node
has accepted junk), but is correct only if G can be retrieved later. Generally speaking,
G can indeed be retrieved via gossip, but it is nonetheless important to explicitly point
out the assumption. For full generality, the node’s local data structure is a forest, not
a tree.

Coming back to Figure 2.2, stage (c) shows that when block F is finally delivered, the
heaviest chain in the local block forest (now a tree) is [GB, D, E, F, G]. Stage (d) shows
a block M (red) that contains an invalid transaction. The block forest is still valid (i.e.
correctly defined), but contains an invalid block, i.e. a block that will never be part of

20

Figure 2.3: The (logical) “global” block forest is shown in the top-right corner for each stage. For any
node, when you add the “in flight” block messages to that node’s state, you obtain the “global” block

forest — the law of block conservation.

the heaviest chain. Only malicious nodes can create invalid blocks. Similarly, stage (e)
shows a valid block forest, with two blocks X and Y that form a cycle. Neither of them
will ever be considered as part of a candidate chain.

Key Properties. The operation that adds a block to a block forest has two key
properties: it is idempotent and commutative. Block-addition being idempotent means
that adding the same block b multiple times to a block forest is equivalent to adding
it once. This allows for graceful handling of message duplication — duplicated blocks
are simply ignored. Similarly, the fact that block-addition is commutative means that
message delivery order is unimportant. As long as two nodes receive the same blocks,
they will have the same block forest, no matter the order in which they received the
blocks. These two properties are crucial in the formulation of our system invariant in
Section 2.2.5.

For a full description of the block forest data structure and the operations that can
be performed on it, please refer to the original Toychain paper.

2.2.5 System Invariant

What is the strongest invariant property we can prove for the Toychain model? One
way to discover invariants is to look at what is “conserved” throughout the execution of
the protocol. Figure 2.3, which shows a possible execution of the Toychain protocol, can
give us some ideas. For example, if we assume that all nodes in the network are directly
connected to each other, i.e. the network graph is a clique, the following statement is
invariant: there exists a logical (“ghost”) global block forest that is the union of all local

21

block forests and, for each node, if you add the “in flight” block messages to that node’s
state, you obtain the global block forest. This property, which we call the law of block
conservation, is an invariant.

Gossip Protocol. The law of block conservation relies on two assumptions: (1) the
network graph is a clique and (2) block messages are not dropped. Clearly, neither of
these two assumptions is realistic. Nonetheless, the property is still very useful, since
the Toychain protocol has a mechanism — the gossip protocol — to ensure that block
messages are propagated as if the network was a clique. The gossip protocol guarantees
that all blocks are available to all nodes even if block messages are dropped, as long as the
network graph is connected. We have not formally verified that the gossip mechanism
in Toychain provides this guarantee, but in Chapter 4 we empirically validate the claim.
As such, morally†, if the gossip mechanism is correct, then the law of block conservation
holds in an altered form: for each node, if you add the blocks “available” to that node
through the gossip protocol to the node’s state, you obtain the global block forest.

In fact, there is a stronger invariant than the law of block conservation. Figure 9
in the original Toychain paper states it formally [PS18], but here we offer an informal
description.

Clique Invariant. At any point in the execution of the protocol, there exists a
logical global block forest b̂f , a chain c, and a “canonical” node n which holds this
chain, such that:

(1) the law of block conservation holds with respect to b̂f

(2) b̂f is a tree and its heaviest chain is c

(3) any node has chain c or a less heavy chain

(4) the canonical node n has chain c

One direct implication of the clique invariant (and indeed, of the law of block con-
servation) is quiescent consistency: when all block messages are delivered, every node
agrees on what chain to adopt.

Understanding the proof that the clique invariant is inductive is not necessary to
understand the rest of this thesis, but we nonetheless present an outline. There are two
key ideas. First key idea: b̂f is always a tree and any local block forest is a subset of b̂f
(this is implied by the law of block conservation). The Deliver system step preserves

†We have not found a good abstraction for the gossip protocol, so have been unable to formally verify
this claim.

22

this: delivering a message (1) does not change b̂f and (2) follows the law of block
conservation (for one node, a block message being delivered moves the block from “in
flight” to the node’s local block forest). Moreover, delivering a message does not change
which chain is heaviest or which node holds the heaviest chain, i.e. c and n remain
unchanged. The Intern system step is trickier to handle, as it may change b̂f , c, and
n. Second key idea: because b̂f is a tree, mining locally is the same as mining globally.
An individual node mining is equivalent to the global block forest (i.e. the “network”,
abstractly) mining — a valid extension of the local chain is a valid extension of some
chain in the global block forest, i.e. mining only happens at the tips of the global block
forest (i.e. mining keeps b̂f a tree). As such, if the newly-mined chain c′ is heavier than
the previously heaviest chain in the network, then c′ becomes the new heaviest chain
(and n potentially changes). Otherwise, c remains the heaviest chain and n remains
unchanged. Since the node that mined the block also broadcast it, the law of block
conservation is conserved as well. This concludes the proof. The “canonical” node’s
existence shows that there is always at least one node which holds the heaviest chain,
i.e. the heaviest chain is not just a logical artefact, but a concrete value that specific
nodes see. If you are interested in the details, check the Toychain paper or, better yet,
the Coq source.

2.2.6 Dropped Assumptions

While the proof sketch in the previous section might seem straightforward, the devil is
in the details. Indeed, one of the benefits of an interactive theorem prover is that it
forces you to consider all the corner-cases that are easy to miss in a pen-and-paper proof.
Moreover, it forces you to precisely identify your assumptions. In the previous sections,
we have described two of Toychain’s crucial assumptions, namely that the fork choice
rule is strict and additive. In this section, we review some assumptions we made in the
original Toychain and explain the reasoning behind them, in anticipation of Chapter 3,
where we will remove these assumptions.

Genesis Block Hash. In the original Toychain, we make an assumption that is both
unreasonable and, with the benefit of hindsight, pointless. If you recall Figure 2.2, there
is a peculiarity we have not yet mentioned — the genesis block points back to itself! In
other words, prev GB = hash(GB). The idea behind this assumption is that it slightly
simplifies the logic for computing the chain that ends at a particular block b. Since
blockchains cannot have cycles, the recursive function compute_chain stops whenever
it encounters a cycle. The GB-hash assumption then guarantees that the genesis block
can only appear at the beginning of a chain. Of course, compute_chain can be defined

23

such that the GB-hash assumption is not needed. Moreover, the GB-hash assumption is
completely unrealistic. If hash is a cryptographic hash function, it is actually impossible
(or at least computationally infeasible) to create a genesis block.

Valid Chains Have No Cycles. Another assumption we make in the original paper
is that VAF will not accept a block b as a valid extension of a chain c if b ∈ c. In other
words, you cannot “reuse” blocks. This assumption, called VAF_nocycle, is perfectly
reasonable, but as it turns out, stronger than necessary. As we have previously said,
blockchains, irrespective of their validity, cannot have cycles — this follows from their
definition as chains of blocks linked by hashes. With this, VAF_nocycle reduces to
saying that VAF will accept the genesis block only at the beginning of a chain. We
prove this reduction in Chapter 3.

Hash is Injective. The most interesting assumption in the original Toychain is the
hash_inj assumption, which states that if two blocks have the same hash, then they are
in fact the same block. If you are familiar with hash functions, you will notice that this
assumption is false. Hash functions do have collisions! Collisions are probabilistically
rare and computationally infeasible to produce, but they do exist. However, when
verifying a blockchain consensus protocol (which makes extensive use of hashes), it is
very convenient to pretend that hash collisions do not exist. For example, it allows you
to represent a node’s local block forest as a map from hashes to blocks and easily prove
that additions to this data structure are commutative. As you recall, this is one of the
key properties needed for the protocol’s correctness. But the reality still stands — the
assumption is false! Does this undermine the entire Toychain formalisation? Are all our
proofs junk‡? Yes and no. Making this assumption does in fact undermine our claims
of correctness, since you now have to trust us not to have misused it to derive falsehood.
If we have, then all we have accomplished is a complicated, mechanically-checked proof
of False. But our proofs are not junk. In fact, we have been careful to use the hash_inj

assumption only in sound ways. One of the major accomplishments of the present
work is to prove this claim by completely removing the hash_inj assumption from the
Toychain development. Our explanation of this effort forms the bulk of Chapter 3.

‡Assuming falsehood lets you prove anything.

24

3
Toychain Made Realistic

I have learned throughout my life as a composer chiefly through my mistakes
and pursuits of false assumptions, not by my exposure to founts of wisdom
and knowledge.

Igor Stravinsky, Russian composer

This chapter explains our work to make the Toychain model realistic by removing
unreasonable assumptions. If you have not read Section 2.2.6 of Chapter 2, please do.

3.1 Unrealistic Assumptions

The original Toychain development makes two assumptions that no implementation can
possibly satisfy: GB_hash and hash_inj . These say that the genesis block points back
to itself and, respectively, that the hash function is injective. Before we can extract a
proven-correct implementation of Toychain, i.e. an implementation that we can prove
satisfies all the model’s assumptions, we need to remove these.

3.1.1 Genesis Block Hash

Axiom init_hash : prevBlockHash GenesisBlock = #GenesisBlock.

Listing 3.1: The GB_hash assumption in Coq. #GB is shorthand for hash(GB).

We made the GB_hash assumption very early in Toychain’s development and without
much thought, in order to simplify the definition of the compute_chain function. The
assumption meant that compute_chain terminated only when it encountered a cycle

— and we made use of this implication in several proofs. As such, removing the as-
sumption, rather than just being a case of trivially redefining compute_chain, involved
rewriting some important proofs. For example, the proof of btExtend_chain_prefix
(whose statement is shown in Listing 3.2) heavily relies on the termination condition
of compute_chain. Removing the assumption means changing the termination condi-
tion, which necessarily changes the proof. Other proofs had to be changed in a similar
fashion.

25

Lemma btExtend_chain_prefix bt a b :
valid bt → validH bt →
∃ p, p ++ (compute_chain bt b) = compute_chain (btExtend bt a) b .

Listing 3.2: Adding a block a to a block forest possibly “fills gaps”, with some blocks no longer being
orphans, i.e. existing chains (which did not extend all the way back to GB) can become longer.

Definition BlockTree := union_map Hash block.

Listing 3.3: Block forests are defined as maps from hashes to blocks. This is a valid representation only if
hash collisions do not occur. If they do, we cannot represent the resulting forest.

Removing the GB_hash assumption also forced us to write some new proofs. Inter-
estingly, in these proofs, we need to explicitly handle the corner-case where prev GB =

hash(GB), i.e. where GB_hash is true. For example, one of the properties of blockchains
is that they do not have cycles, i.e. blocks only appear once. One implication of this is
that blocks in a chain do not have self-cycles, i.e. prev B ̸= hash(B). The first block in
a chain, however, can be an exception. We need to handle this case explicitly.

3.1.2 Hash Injectivity

Compared to GB_hash, the hash_inj assumption is not only meaningful, but also
central to the entire Toychain formalisation. Indeed, to remove the hash injectivity
assumption, we had to make changes in every single proof. Moreover, we had to rewrite
almost all of the functions that operate on block forests, in order to make them resilient
to hash-collisions. This was a significant undertaking.

In our Coq development, we represent block forests as maps from hashes to blocks,
as shown in Listing 3.3. At first impression, it might seem like this is an issue, since
the definition itself fails if a hash collision does indeed occur — we cannot represent the
resulting block forest. However, this limitation is not significant. To see why, consider
what happens when a hash collision occurs during the execution of the protocol. For
one, the very definition of a blockchain breaks down. If a block’s prev field is h and
there are two different blocks with hash value h, which chain is being represented? It
could be either. What can we do?

Remember, the hash_inj assumption is false. Removing it means we have to redesign
the protocol such that it “works” even if hash collisions do happen. How can we do
this? Well, the easiest way is to say that, when a hash collision does happen, everything
breaks. Crucially, though, everything needs to break for all nodes and in the same way
for each node — we still need agreement. This is the solution we adopt. When a hash
collision does occur, all local block forests become invalid and all the nodes agree on the

26

1 Definition btExtend bt b :=
2 (* Only add "fresh" blocks *)
3 if #b \in dom bt then bt
4 else (#b \\→ b \+ bt).

Listing 3.4: If hash collisions cannot
happen, it suffices to check whether the

hash is already included in the forest.

1 Definition btExtend bt b :=
2 (* Only add "fresh" blocks *)
3 if #b \in dom bt then
4 if find (# b) bt == Some b then bt
5 (* Hash collision → undefined *)
6 else um_undef
7 else (#b \\→ b \+ bt).

Listing 3.5: When a hash collision happens,
we invalidate the entire forest.

valid bt = valid (btExtend bt b)

Listing 3.6: Forward reasoning.

valid (btExtend bt b) → valid bt

Listing 3.7: Backward reasoning.

trivial chain consisting of only the genesis block. Importantly, everything is guaranteed
to break only when block messages are delivered directly, rather than via the gossip
mechanism, since the current (unverified) implementation of the gossip mechanism uses
hashes as identifiers for its advertise-and-pull functionality. If a collision occurs, a node
which has already seen that hash will not request it again and thus will never see
the colliding block. It is possible to design a Nakamoto-style consensus protocol that
continues to function after a hash collision, but this requires extra effort, and is mainly
of theoretical, rather than practical interest. To our knowledge, no current real-world
implementation of Nakamoto consensus tolerates hash collisions in blocks.

To see the difference between the old logic to extend block forests and the new, hash-
collision aware logic, compare Listing 3.4 with Listing 3.5. They are different in two
significant ways. Firstly, the old btExtend could assume that if hash(b) is in the map’s
domain, then b is included in the forest. Obviously, this assumption no longer holds if
hash collisions can happen. This is why line 4 exists in Listing 3.5 — it checks that it is
indeed b that is included, rather than some other block that hashes to hash(b). Secondly,
and much more importantly, the new btExtend can return invalid block forests (line
6), whereas the old definition only returned valid ones. This is a major difference and
requires changing all proofs.

With the old definition, a valid block forest could be extended in any way and it
would remain valid. Since the initial block forest for any node is valid, the node’s block
forest would remain valid, unconditionally, throughout the execution of the protocol.
With the new definition, however, this reasoning principle no longer holds. In fact, we
have to switch from forward-reasoning to backward-reasoning. Compare Listings 3.6
and 3.7. This is truly unfortunate, since valid bt is a hypothesis in all of the proofs,
i.e. the reasoning principle needs to change in all of the proofs.

27

Lemma btExtendV_fold_comm (bt : BlockTree) (xs ys : seq block) :
valid (foldl btExtend (foldl btExtend bt xs) ys) =
valid (foldl btExtend (foldl btExtend bt ys) xs).

Listing 3.8: We want to prove that, wrt. validity, adding lists of blocks is commutative. If hash collisions
can happen, proving this is non-trivial.

1 valid (foldl btExtend (foldl btExtend bt xs) ys) =
2 valid (foldl btExtend (foldl btExtend bt ys) xs).

Listing 3.9: Induction hypothesis.

1 valid (foldl btExtend (foldl btExtend bt (rcons xs x)) ys) =
2 valid (foldl btExtend (foldl btExtend bt ys) (rcons xs x)).

Listing 3.10: Goal for the inductive step.

The change from the old definition and reasoning principle to the new is, in some
cases, very painful. For example, consider the key property that the block-addition
operation is commutative. A proof that used to be 10 lines long becomes 150 lines long!
Moreover, proving that the addition of lists of blocks is commutative becomes not only
painful, but actually theoretically interesting, i.e. difficult. To see why, let us look at a
related property.

Consider the statement in Listing 3.8, which is the property we want to prove. It
says that if you have two different lists of blocks, it does not matter in which order
you add the lists to your forest — at the end, either both resulting forests will be
valid or neither will be valid. Typically, statements such as this one are proven by
induction. The inductive step gives you an induction hypothesis such as the one shown
in Listing 3.9 and requires you to prove the statement in Listing 3.10. If you are being
attentive, you will notice the issue. It is the issue we have been talking for the last three
paragraphs. We can no longer do forward-reasoning for validity. Listing 3.9 does not
imply Listing 3.10. Nonetheless, the property is true and we do want to prove it.

The problem is that validity is not an inductive property. To see why, consider the
following. Imagine you are the computer and you are executing both lines 1 and 2 in
Listing 3.9 simultaneously. The issue is that, at some point in the execution, line 1 can
encounter a hash collision and become invalid, while line 2 keeps executing and adding
more blocks before it becomes invalid. In other words, the two lines are guaranteed to
have the same validity only at the end of the execution, not “in the middle”. How do
we get around this? We transform validity into an inductive almost-equivalent. This is

28

1 Definition no_collisions (bt : BlockTree) (xs : seq block) :=
2 valid bt ∧ (* You start with a valid bt *)
3 ∀ a, a \in xs →
4 (∀ b, b \in xs → # a = # b → a = b) ∧ (* No collisions within xs *)
5 (∀ b, b ∈ bt → # a = # b → a = b). (* Or between xs and bt *)
6 (* The following statements are true: *)
7 valid (foldl btExtend bt xs) → no_collisions bt xs
8 validH bt → no_collisions bt xs → valid (foldl btExtend bt xs)

Listing 3.11: This property is slightly weaker than validity, but is inductive. The two notions are not
equivalent because of the validH bt hypothesis on line 8, which says that if hash h maps to block b

in bt, then hash(b) = h. In other words, validH bt means that bt is correctly constructed.

the theoretically interesting part.
Listing 3.11 shows our inductive almost-equivalent of validity. Remember, a valid

block forest becomes invalid only if a collision happens during block-addition.
If starting with some block forest bt, you make a list of additions xs and the result

is valid, that means that no collisions were introduced. This is what line 7 says. More
precisely, it says that the original forest was, via the backward-reasoning principle in
Listing 3.7, valid (line 2), that there were no collisions between blocks in xs (line 4),
and that there were no collisions between blocks in xs and the blocks in the original
forest bt (line 5).

Similarly, the fact that no collisions were introduced when adding a list of blocks
xs to some block forest bt implies that the resulting block forest is valid, as long as
the original block forest bt was correctly constructed. This is what line 8 says. To
understand why the extra condition is required, look at line 5. Now suppose bt is
incorrectly constructed, such that it has a mapping from some hash h to some block b,
but with hash(b) ̸= h. This is a valid block forest. Moreover, b /∈ bt, since the ∈ operator
checks for “correct” inclusion. In this situation, if xs contains some block that hashes
to h, adding this block introduces a hash collision that neither line 4 nor line 5 rule out.
It is a very subtle observation. Indeed, if we did not have mechanically-checked proofs,
we would have missed this detail and would have come to the incorrect conclusion that
no_collisions is equivalent to validity.

To prove the lemma in Listing 3.8, we add an extra hypothesis: validH bt. This
hypothesis does support forward-reasoning, i.e. valid bt ∧ validH bt implies validH
(btExtend bt b). With this extra hypothesis, and the almost-equivalence between
no_collisions and validity, we can prove the goal in the inductive case (that Listing 3.9
implies Listing 3.10) and thus prove the overall commutativity lemma. This is great,
but not perfect. We claim that the lemma in Listing 3.8 is true even without the validH
bt hypothesis — but we do not know how to prove it.

29

We conclude this section by showing how removing the hash injectivity assumption
affects the clique invariant, which we recall below.

Original Clique Invariant. At any point in the execution of the protocol, there
exists a logical global block forest b̂f , a chain c, and a “canonical” node n which holds
this chain, such that:

(1) the law of block conservation holds with respect to b̂f

(2) b̂f is a tree and its heaviest chain is c

(3) any node has chain c or a less heavy chain

(4) the canonical node n has chain c

Of course, it is now possible for the global block forest to become invalid. How does
this affect the invariant? It is fairly simple, actually. If there is no hash collision, the
updated invariant has the same clauses as the original. However, if a hash collision has
occurred, then the invariant essentially degenerates into the law of block conservation.
More concretely, the hash-collision resistant invariant is as follows.

Clique Invariant Under Hash Collisions. At any point in the execution of the
protocol, there exists a logical global block forest b̂f , a chain c, and a “canonical” node
n which holds this chain, such that:

(1) the law of block conservation holds with respect to b̂f

(2′) Either b̂f is valid and

(a) b̂f is a tree and its heaviest chain is c

(b) any node has chain c or a less heavy chain

(c) the canonical node n has chain c

(2′′) Or b̂f is invalid

If there is no hash collision, in a quiescent state, the nodes will agree on the largest
chain c. Otherwise, if there is a hash collision, when all block messages are delivered,
everyone’s local block forest will become invalid and the nodes will agree on the trivial
chain consisting only of the genesis block.

30

Axiom VAF_nocycle :
∀ b bc,
VAF b bc → b \notin bc.

Listing 3.12: The VAF_nocycle assumption is
stronger than needed.

Axiom VAF_GB_first :
∀ bc,
VAF GenesisBlock bc → bc = [::].

Listing 3.13: We want to reduce VAF_nocycle
to this weaker version.

1 Lemma hash_chain_uniq_hash_nocycle b bc :
2 hash_chain (b :: bc) → (* Correct hash-links *)
3 uniq (map hashB (b :: bc)) → (* No hash-collisions *)
4 (∀ c, c \in bc → prevBlockHash c != hashB (last b bc)).

Listing 3.14: Correctly-constructed chains have no cycles, except perhaps from the first block.

3.2 Strong Assumptions

Finally, there are two assumptions that we have identified in Chapter 2 as being stronger
than they need to be: FCR-strictness and VAF_nocycle. We remove the latter assump-
tion, but leave removing the former for future work.

In essence, VAF_nocycle (shown in Listing 3.12) makes a claim that is too strong.
Any reasonable VAF implementation does satisfy this claim, but that could be tricky
to prove. Since in Chapter 4 we will, in fact, write a VAF implementation and will
have to show that it satisfies the assumptions that the Toychain model makes about
it, we might as well save ourselves some time and reduce VAF_nocycle to its weakest
precondition∗ (shown in Listing 3.13) right now.

The idea is straightforward, but its proof is interesting. Blockchains, if correctly
constructed, are hash-chains. They are a series of blocks linked by hashes, and each
block has its own hash — there are no hash-collisions within the chain. It follows from
this that there are no cycles within the chain, i.e. the lemma in Listing 3.14 is true.
Looking at line 4 in the listing, you might wonder — is it not too weak? It only says
that there are no cycles to the last block in the chain. What about cycles in the middle
of the chain? Well, the lemma holds for any bc, so if you truncate bc appropriately,
you can apply the lemma to say that there are no cycles anywhere in the chain, i.e.
correctly-constructed blockchains have no cycles, except perhaps from the first block.

With this, the reduction we intended follows. For correctly constructed chains,
VAF_nocycle is equivalent to the weaker version VAF_GB_first, since only the first
block in a chain can have a cycle. With this, we are now ready to proceed to Chapter 4
and create an instance of Toychain that we prove satisfies all the model’s assumptions.

∗Listing 3.13 is a weakest precondition of VAF_nocycle only for correctly-constructed chains. This
is fine for us, since Toychain only calls VAF on chains returned by compute_chain.

31

4
Toychain Made Practical

Talk is cheap. Show me the code.
Linus Torvalds

This chapter covers our effort to extract a proven-correct implementation of Toychain.
We precisely describe the trusted computing base, highlighting which parts of the system
need to be trusted, and explain the limitations of the current implementation.

4.1 From Proof to Program

One of the choices we made early on while designing Toychain was to actually imple-
ment the core parts of the protocol in Gallina, Coq’s specification language. This way,
our proofs both show the correctness of the protocol and give us a proven-correct imple-
mentation of the protocol. Nonetheless, transforming an executable specification into
practical software that you can run on your computer is not straightforward.

Our expectation was that moving from the abstract model to a concrete instance
of Toychain would, more or less, boil down to writing implementations for functions
left unspecified in the model and proving that our implementations satisfy the model’s
assumptions. Indeed, at a high-level, this is what it boiled down to. But we ran into
several difficulties. For example, we found that instantiating some of the unspecified
protocol parameters, e.g. FCR, would break many of our existing proofs. The proofs
expected functions to have opaque, not transparent, definitions. To work around this
opacity issue and parameterise our existing proofs over definitions, we had to refactor
Toychain to use Coq’s confusing module system. We describe this in Section 4.2. Also,
to our surprise, the main challenge in getting runnable code was not instantiating the
functions we left unspecified in the formalisation, but instantiating the types. Since
Coq is dependently-typed, whereas OCaml is not, this is harder than it sounds — most
of the types we used in Coq do not exist in OCaml. In Section 4.3 we explain how
we overcome this issue, instantiate Toychain with a specific implementation of proof-
of-work Nakamoto consensus, and prove it satisfies the model’s assumptions. This gets
us Coq code, but we still have to transform it to OCaml and then into an executable.

32

Section 4.4 discusses the challenge of extracting OCaml code from the instantiated
Toychain — including working around two separate bugs in the extraction mechanism!
Finally, Section 4.5 shows how to take this verified consensus protocol logic and build
an actual implementation out of it, with all the TCP/IP bits and the associated prob-
lems, including differences between how OCaml treats Linux system calls when it is
interpreted, as compared to when it is compiled to native code.

Despite the difficulties, transforming Toychain into runnable software has been tremen-
dously satisfying. The code works. We have computers on a LAN talking to each other,
running a formally verified blockchain consensus protocol and reaching agreement. That
is seriously cool.

Furthermore, having runnable code also allowed us to validate (empirically) the parts
of the protocol which we have not yet verified — crucially, the gossip mechanism. This
is particularly important since, in normal operation of the protocol over the Internet,
blocks propagate through gossip rather than direct messages. Moreover, if a node goes
offline and then comes back at a later time, it has to engage in gossip to catch up.

4.2 Coq Modules and Parametricity

Toychain is, in fact, not a single consensus protocol, but a family of consensus protocols
parametric in terms of the implementation of several security primitives: a hash function,
a fork choice rule, a validator acceptance function, and a notion of a proof object. For an
introduction to these terms, read Section 2.2.1 of Chapter 2. To get a verified executable
instance of Toychain, we have to provide a concrete implementation of these primitives
and prove that they satisfy the assumptions our formal model makes about them.

4.2.1 Mechanised Proofs are Brittle

In the Toychain development, hashb , FCR, and VAF are defined as Parameters. When
Coq encounters these symbols in a proof, it treats them as completely opaque — they
have a type, but no definition. Then, when we instantiate these parameters by giving
them concrete Definitions, they cease to be opaque to Coq. One implication of this
is that Coq’s tactics try to be helpful and unfold definitions whenever they can. This
can be averted somewhat by declaring definitions to be Global Opaque, but this only
affects Coq’s simplification tactics; the behaviour of most tactics is unchanged [App18].

While this may seem harmless, it actually breaks several of Toychain’s current proofs.
As with most mechanised proofs, our proofs are very brittle in the face of changes
in the program being reasoned about — and replacing an opaque definition with a
transparent one is a big change. Because the structure of the proof is very tightly

33

linked with the structure of the program, as the program changes, mismatches break
the proofs. The changes required in the proofs are almost always trivial, but time-
consuming. Overcoming this inherent brittleness is an active area of research.

4.2.2 Modules Preserve Opaqueness

To overcome the issue of definition transparency without making modifications to the
existing proofs, we have to use Coq’s module system, which gives us a way to “param-
eterise proofs over structures” [Let17]. Coq’s module system is similar to, for example,
Java interfaces. You can define a Module Type to specify the module signature∗, i.e.
which types and functions it provides, and then state the proofs in terms of that module
signature. Then, when you want to instantiate the proofs for a particular implemen-
tation, you define a Module which satisfies the Module Type. In this fashion, proofs
work as if they were operating on Parameters, but can be instantiated to particular
Definitions when needed.

A Note about “Modules”

One point of confusion is that Coq overloads the word “module” to refer to two different
concepts: the one we just described (which is used rarely), but also the typical software
engineering practice of breaking down software into separate files that Import from
each other. Coq “modules” in the second sense are not modules in the first sense.
This differs, for example, from OCaml, where, for example, a file called fintype.ml
automatically defines a module in the first sense, with the associated parametricity and
definition-hiding.

Throughout the rest of this chapter, I will refer to definition-hiding modules simply
as modules, whereas modules in the second sense (Coq code within a file) will be written
in quotes: “modules”.

4.2.3 Toychain Made Modular

At a high level, Toychain is made out of several components: type definitions, consensus
parameters, a library to manipulate block forests, protocol logic, network semantics, and
statements and proofs of network invariants.

These components form a hierarchy. The consensus parameters depend on the def-
initions, the block forest library depends on the definitions and consensus parameters,
and so on. As such, the development lends itself well to modularity.

∗When referring to modules, “type”, “signature” and “interface” are used interchangeably.

34

1 Module Type ConsensusProtocol (T : Types) (P : ConsensusParams T)
2 (F : Forest T P) (A : NetAddr).
3 Import T P F A.
4 (* Actual definitions and proofs *)
5 End ConsensusProtocol.

Listing 4.1: Define a module signature that includes actual definitions.

1 Module Protocol (T : Types) (P : ConsensusParams T)
2 (F : Forest T P) (A : NetAddr)
3 <: ConsensusProtocol T P F A.
4 Include (ConsensusProtocol T P F A).
5 End Protocol.

Listing 4.2: Instantiate a module by including (copy/pasting) the module signature.

Only the type definitions, consensus parameters, block forest library, and the protocol
logic actually extract to OCaml code. The network semantics and invariant proofs are
purely logical and do not appear in the extracted version of Toychain.

Turning “Modules” into Modules

Luckily, because Toychain was already split into files, most of the work to make the
development modular consisted only of transforming Coq poor-man’s “modules” into
proper modules by defining a module type and an implementation that is the same as
the module type. This approach, where we provide a full implementation in the module
interface (line 4 in Listing 4.1) and then Include, i.e. copy/paste, that implementation
in the module definition (line 4 in Listing 4.2) is an easy way to modularise the existing
Toychain development, but is bad engineering. It defeats the entire purpose of modules,
which is to hide unnecessary information — we expose everything. Again, we only do
this to work around Coq’s default definition transparency. We make one exception to
this approach, for the block forests module.

As a technical point, in the hierarchy of Toychain components, only the type defini-
tions are a first-order Coq module. The rest of the hierarchy is made out of Coq functors,
i.e. higher-order modules that are defined in terms of other modules. For example, the
Protocol module in Listing 4.2 is a module parametric in terms of some modules with
signatures Types, ConsensusParams T, Forest T P, and NetAddr respectively.

Block Forests Module

For the Forests “module”, the workhorse of our development, we chose to modularise
it properly, i.e. have the module signature only export the symbols that the rest of the

35

Toychain development actually uses. This allows us to identify precisely which facts
about block forests (which indirectly imply facts about the consensus parameters) are
truly needed for protocol correctness and which are extraneous.

This is useful information in anticipation of future work. For example, in the future
we might want to create a more efficient block forest implementation. Knowing exactly
which facts are used in the proofs allows us to concentrate on proving only these facts.

As of now, the Forests module includes proofs of 140 different lemmas. Only 33 of
these are necessary for protocol correctness and thus exposed in the module interface.
The more interesting ones include:

btChain_good btChain only returns chains that start with the genesis block
(i.e. GB-founded chains)

btExtend_comm Adding blocks to the block forest (btExtend) is commutative

btExtend_preserve As long as no hash collisions occur, btExtend does not re-
move items from the block forest it operates on

btExtend_mint Minting a block on top of btChain makes your new btChain
larger than the old one

btExtend_within If you have only a partial view of the global block forest,
(Fl ⊆ FG), and mint a block B on top of the local btChain
in a way that does not give you a chain greater than the
global btChain, adding B to FG does not change the global
chain

With the infrastructure to preserve definition opacity (i.e. modules) in place, our high-
level proofs are now parametric over definitions. As such, we can instantiate Toychain
with a specific implementation without fear of breaking proofs.

4.3 Instantiating Consensus Parameters

As previously mentioned, Toychain is a family of consensus protocols parametric on the
choice of security primitives. To obtain an executable instance of Toychain, it suffices to
instantiate the type definitions (e.g. transactions, hashes) and the consensus parameters
(genProof , VAF , and FCR). Everything else necessary for the protocol is already fully
specified in Gallina.

In the following, we instantiate Toychain with a SHA256-based proof-of-work scheme,
similar to that of Bitcoin. Before we can write the function implementations, however,

36

Parameter Hash : ordType.

Listing 4.3: Hash can be any type with a strict comparison operation.

Parameter Hash : Set.

Axiom Hash_eqMixin : Equality.mixin_of Hash.
Canonical Hash_eqType := Eval hnf in EqType Hash Hash_eqMixin.

Axiom Hash_ordMixin : Ordered.mixin_of Hash_eqType.
Canonical Hash_ordType := Eval hnf in OrdType Hash Hash_ordMixin.

Listing 4.4: The ordType type class “broken apart”. Hash can now be extracted to an OCaml type and the
logical properties can be discarded.

we have to first determine how the types we use in Coq should translate to OCaml
types.

4.3.1 Type Definitions

As mentioned before, instantiating the types we use in Toychain is not trivial. The root
of the issue is that Coq has a much stronger type system than OCaml. Many of the
types we initially used in the Toychain development to represent hashes, transactions
or IP-port pairs simply do not exist in OCaml. For example, we made extensive use of
the types eqType and ordType, i.e. the type of values with decidable boolean equality
and strict comparison, respectively. In the Coq implementation, eqType and ordType
are Structures, similar to Haskell’s type classes. Unfortunately, these do not translate
directly into OCaml.

To allow extraction, we had to “break apart” the type classes such that they can still
be used in Coq as before, but also extract nicely to OCaml. For example, the declaration
in Listing 4.3 becomes the one in Listing 4.4, which says that Hash is a type in the Set
kind† and separately says that Hash can be coerced into eqType and ordType. Later,
when we instantiate Hash to a particular type (i.e. string), we will have to separately
prove that string is eqType and ordType. This is laborious, but not difficult.

Thankfully, Coq treats the broken-up definition in Listing 4.4 as completely equivalent
to the short ordType definition. This means that the changes in our development are
contained at the type definition points — all proofs and function definitions remain
otherwise unchanged.

Next, we describe how we instantiate the type for hashes. Instantiating transactions
and proof objects follows in a similar fashion.

†Set is the type of types without logical content.

37

Inductive ascii : Set := Ascii (_ _ _ _ _ _ _ _ : bool).

Inductive string : Set :=
| EmptyString : string
| String : ascii → string → string.

Listing 4.5: Definition of ASCII characters and strings in the Coq standard library.

Instantiating Hashes

We instantiate hashes as hexadecimal strings. Passing strings from Coq to OCaml and
vice-versa is relatively painless, whereas other data types (notably natural numbers)
can cause serious headaches. Moreover, this allows us to use existing OCaml hash
function implementations, e.g. the ones provided by the cryptokit library, rather than
implement our own.

With this choice, there are two barriers we have to overcome. First, there is a
mismatch between Coq’s representation of strings (Listing 4.5) and OCaml’s. We need
to bridge the two representations. Second, as explained in the previous section, we must
now prove that string is both eqType and ordType.

Firstly, to see why we need to bridge the Coq and OCaml representations of strings,
consider the following. Coq represents strings as lists of ASCII characters. However,
for compatibility reasons, the actual type of strings in Coq is not list ascii, but
rather a type that is isomorphic (i.e. has the same constructors, but differently named)
to list ascii. By contrast, OCaml has native strings. As such, in the extracted code,
OCaml strings must be converted into lists of characters before passing them to Coq
functions, and string outputs from Coq must be converted into OCaml native strings.

For the second issue, while it is “obvious” that strings accept decidable boolean
equality and comparison operators, proving it takes some effort. Thankfully, the Coq
standard library already provides definitions and proofs for boolean equality of ASCII
characters and strings, and we can reuse these to prove that strings inhabit SSReflect’s
eqType. Sadly, though, we have no such luck when it comes to proving strings are
ordType. Standard Coq has no predefined mechanism to compare ASCII characters or
strings — we have to define a comparison function and prove it irreflexive, transitive,
and total on our own. Given how ASCII characters are defined (Listing 4.5), this is
quite awkward.

To ease some of the pain, we reuse Coq’s and SSReflect’s existing functions and
proofs as much as possible. More concretely, Coq already defines a pair of functions,
N_of_ascii and ascii_of_N, for converting characters to and from natural numbers.
Moreover, the standard library does contain a proof that natural numbers are strictly

38

Definition WorkAmnt := N_ordType.

Definition work (b : block) : WorkAmnt :=
count_binary_zeroes (hashB b).

Fixpoint total_work (bc : Blockchain) : N :=
match bc with
| b::bc' ⇒ (work b + total_work bc')%N
| [::] ⇒ N_of_nat 0
end.

Listing 4.6: Define the amount of “work” underlying blocks and blockchains.

ordered and a proof that list ordType is also ordType. We combine these to prove
that string is ordType, by showing the existence of an embedding from string to list
ascii to list N, which we prove is ordType.

This proof, that string is ordType, allows the Coq type system to treat hashes as if
they had the original, generic ordType definition, but crucially also lets us work with
hashes (with standard string operations) from both Coq code and OCaml code, e.g.
when writing the implementation of FCR and, respectively, genProof .

We instantiate the types for transactions and proof objects in a similar way.

4.3.2 Proof of Work

With the types instantiated, we can proceed to define the interesting part of the protocol,
namely the consensus parameters, and prove that our instances of FCR and VAF satisfy
the assumptions that the Toychain model makes about them. We need to define the
following components:

• Genesis block

• Hash functions for transaction and blocks

• Functions to validate transactions and manipulate transaction pools

• Fork choice rule

• Validator acceptance function

Not all of the components need to be defined in Coq. For example, we leave the hash
functions as Parameters and define them in OCaml as cryptokit’s implementation of
SHA-256. This is fine since our model does not make any assumptions about the hash
functions — as long as they have the right type, any functions suffice. By contrast, the

39

Definition VAF (b : Block) (bc : Blockchain) : bool :=
(* GenesisBlock doesn't have work requirements *)
if (b == GenesisBlock) then
if (bc == [::]) then true else false

(* All other blocks do *)
else if (12 <? (work b))%N then true else false.

Lemma VAF_GB_first :
∀ bc, VAF GenesisBlock bc → bc = [::].

Proof. by rewrite/VAF eq_refl⇒bc; case: ifP⇒//=; move/andP; case⇒/eqP. Qed.

Listing 4.7: In a typical implementation, VAF would validate transactions and adjust its difficulty
requirements based on the chain it takes as argument.

fork choice rule and validator acceptance functions have to be defined in Coq if we want
to prove that they are consistent with the assumptions the Toychain model makes, i.e.
that VAF only accepts the genesis block as the first block in a chain, and that FCR

imposes a strict total order and is additive.
With hashes defined as hexadecimal strings, we can define our notion of “work” for

a given block to be the number of leading binary zeroes in that block’s hash — see
Listing 4.6. We use this in VAF to decide whether a given block is valid, and use its
cumulative version, total_work, in FCR to compare between two competing chains.

Using this notion of work, we are able to define the validator acceptance function,
shown in Listing 4.7. From the definition, we immediately see that VAF will only accept
the genesis block as the first block in a chain. We provide a proof of this fact to show
that our instantiation of VAF satisfies Toychain’s assumptions.

The fork choice rule, shown in Listing 4.8, is defined in a peculiar-looking way to make
it easier to prove that it indeed imposes a strict total order on all possible blockchains.
Nonetheless, its behaviour is entirely straightforward. Given two chains, it compares
them based on, in the following order, their total amount of work, their lengths, and the
order that we get from the fact that Blockchain is ordType. In other words, our FCR

compares chains based on their total_work, and uses length and binary comparison as
tie breakers. This FCR is additive, as well as transitive, total, and irreflexive, satisfying
the model’s assumptions.

Extracting Natural Numbers

Besides the odd choice to define FCR in the form of a match statement, rather than a
more familiar series of ifs, note also lines 13 and 14 in Listing 4.8. Two curious things
happen there. Most notably, our implementation of FCR uses two different definitions
of natural numbers!

40

1 Definition FCR bc bc' : bool :=
2 let w := total_work bc in
3 let w' := total_work bc' in
4 let l := (List.length bc) in
5 let l' := (List.length bc') in
6 let eW := w == w' in
7 let eL := l == l' in
8 let eO := bc == bc' in
9

10 match eW, eL, eO with
11 | true, true, true ⇒ false
12 | true, true, false ⇒ ords bc bc'
13 | true, _, _ ⇒ ~~ (Nat.leb l l')
14 | false, _, _ ⇒ ~~ (w <=? w')%N
15 end.

Listing 4.8: Real-world fork choices rules are additive, but not strict.

Extract Inductive nat ⇒ int ["0" "succ"]
"(fun fO fS n → if n=0 then fO () else fS (n-1))".

Listing 4.9: While nat can be coerced to extract as OCaml’s int, all operations defined in Coq operate on
the Peano inductive structure (shown) and remain very slow.

Coq’s usual nat type defines Peano natural numbers‡, which are used throughout the
standard library and, in this case, are the return type of List.length. Peano naturals
have an elegant definition and are well-suited for inductive proofs, but are inefficient to
represent and compute on. For example, the Coq process usually crashes when it tries
to construct nats larger than 70,000 and typical operations take linear or even quadratic
time.

When extracting to OCaml, it is possible to override the definition such that nat
extracts to OCaml’s int — this is what we do for Toychain, as seen in Listing 4.9.
However, this does not magically make operations on nats fast. The boolean comparison
we use in line 13 still runs in O(n) time, which is infeasible even for relatively small
numbers. Because of this performance limitation of nat, Coq also includes a binary
definition of natural numbers, shown in Listing 4.10.

We use this latter, “binary”, definition to represent the amount of work for blocks
and blockchains, respectively. These can also be extracted to OCaml int and have a
more reasonable performance profile: operations (e.g. the boolean comparison on line
14) take logarithmic time. This is still worse than the constant time we expect for
operations on native ints, but is sufficient for most applications.

In the future, as we move towards making Toychain truly practical, all instances of
‡A natural number is either zero or the successor of a natural number.

41

Inductive positive : Set :=
| xI : positive → positive (* 2*P + 1 is positive *)
| xO : positive → positive (* 2*P is positive *)
| xH : positive. (* 1 is a positive number *)

Inductive N : Set := (* A natural number is either 0 or positive *)
| N0 : N
| Npos : positive → N.

Listing 4.10: The Coq standard library includes a binary definition of natural numbers. Operations on
them take logarithmic, rather than linear time.

13 | true, _, _ ⇒ ~~ (Nat.leb l l')
14 | false, _, _ ⇒ ~~ (w <=? w')%N

Listing 4.11: Coq naturals have no boolean “greater” operator defined in the standard library.

Coq’s nat should be replaced with the binary version, N.

Designing Proof Libraries

The second issue with our definition of FCR is rather more trivial. Coq’s standard
library does not define a boolean “greater than” operator. As such, we are forced to use
the convoluted, but equivalent “not less than or equal to”, as seen in Listing 4.11.

The lack of a “greater than” operator might seem unusual, but is actually a reasonable
design choice in a language designed for theorem proving, rather than general-purpose
programming. Generally speaking, it is undesirable to have multiple theorems that are
actually equivalent, e.g. transitivity of “less than or equal to” and transitivity of “greater
than”. Similarly, in a general-purpose programming language, it is considered a code
smell to have multiple functions that do the same thing. Avoiding multiple equivalent
definitions keeps the library easy to maintain.

4.4 Extracting OCaml Code

Coq comes with an extraction mechanism that takes Gallina terms and translates them
to equivalent OCaml code. Having instantiated VAF and FCR and having proven that
they satisfy the model’s assumptions, we are now ready to extract OCaml code and
supply the remaining protocol parameters, namely genProof and the hash functions, in
order to get a full, executable implementation of Toychain instantiated with proof-of-
work.

Note, however, that the extraction mechanism is not formally verified — we have to
trust it to be correct. This trust might be misplaced. Indeed, to extract Toychain, we

42

(** val coq_SimplPred : 'a1 pred → 'a1 simpl_pred **)
let coq_SimplPred p = p
(** val predT : 'a1 simpl_pred **)
let predT = coq_SimplPred (fun _ → true)

Listing 4.12: Before the work-around is applied, OCaml infers predT’s type as '_weak1 -> bool, which is
not included in the expected 'a1 simpl_pred declared in the interface.

(** val predT : 'a1 simpl_pred **)
let predT _ = true

Listing 4.13: After in-lining, OCaml correctly infers predT’s type as bool, which is a subtype of 'a1
simpl_pred. The extracted code now compiles.

had to work around two separate bugs in Coq’s extraction mechanism. As far as we can
tell, these work-arounds do not impact correctness, but this is a value judgement rather
than a proof. Furthermore, the extraction produces OCaml code, which we compile to
x86-64 assembly. As such, we also have to trust the OCaml compiler.

Listing 4.14 shows the entirety of the code that drives the extraction. Instructions
are given to the extraction mechanism in a declarative style, and we only extract 3
high-level objects and their recursive dependencies (lines 44–47):

procInt Handler for protocol internal transitions, i.e. issuing of transactions
and mining attempts

procMsg Handler for protocol messages, i.e. TxMsg, BlockMsg, ConnectMsg,
AddrMsg, InvMsg, and GetDataMsg

State Record data type describing a node’s full local state

The instructions themselves are straightforward, but we run into two separate issues
when extracting parts of Coq’s SSReflect library, used in Toychain.

Firstly, the ssrbool.v file has a type mismatch issue when extracted, i.e. the type
in the OCaml implementation of the predT function in ssrbool.ml does not match the
type declared in the module interface ssrbool.mli. Essentially, the mismatch appears
because the OCaml type inference algorithm infers the wrong type. We can see this in
Listing 4.12, which shows the portion of code that fails to type-check. The expected
type (generated by Coq’s extraction mechanism) is provided as a comment above each
definition. We work around this type inference error in line 15 of our extraction “recipe”
(Listing 4.14) by in-lining the definition of coq_simplPred into the definition of predT,
as seen in Listing 4.13 — this type-checks and the OCaml code extracted from Coq now
compiles. Disel, which is also based on SSReflect, uses the same work-around [WP18].

43

1 Require Extraction.
2 From Toychain
3 Require Import Address Protocol Forests Parameters TypesImpl Impl.
4 Require Import ExtrOcamlBasic ExtrOcamlString ExtrOcamlZInt.
5

6 (* Instantiate modules *)
7 Module ForestImpl := Forests TypesImpl ProofOfWork.
8 Module ProtocolImpl := Protocol TypesImpl ProofOfWork ForestImpl Addr.
9

10 (* Avoid colliding with OCaml standard library names *)
11 Extraction Blacklist String List.
12

13 (* This solves an error where the implementation of ssrbool.ml
14 doesn't match the interface *)
15 Extraction Inline ssrbool.SimplPred.
16

17 (* This works around what seems to be a bug in Coq's extraction
18 mechanism. The normal extraction gives this code, but with "assert
19 false" instead of "assert true". See Coq issue #7348. *)
20 Extract Constant fintype.Finite.base2 ⇒
21 "
22 fun c →
23 { Choice.Countable.base = c.base; Choice.Countable.mixin =
24 (Obj.magic mixin_base (assert true (* Proj Args *)) c.mixin) }
25 ".
26

27 (* ordinals are nat, and we want to extract nat to int *)
28 Extract Inductive nat ⇒ int ["0" "succ"]
29 "(fun fO fS n → if n=0 then fO () else fS (n-1))".
30

31 Extract Constant ProofOfWork.hashT ⇒ "Core.hash_of_tx".
32 Extract Constant ProofOfWork.hashB ⇒ "Core.hash_of_block".
33 Extract Constant ProofOfWork.genProof ⇒
34 "
35 fun bc tp ts →
36 if List.length bc == 0 then None else
37 let template = Core.get_block_template bc in
38 let acc_txs = Core.get_acceptable_txs bc tp in
39 let block = {template with txs = acc_txs} in
40 if coq_VAF block bc then Some (acc_txs, (block.proof)) else None
41 ".
42

43 Cd "Extraction/src/toychain".
44 Separate Extraction
45 ProtocolImpl.procMsg
46 ProtocolImpl.procInt
47 ProtocolImpl.State.
48 Cd "../../..".

Listing 4.14: Full listing of Toychain’s Recipe.v file, which contains the instructions for the
extraction mechanism.

44

let get_block_template (bc : coq_Blockchain) =
let prev = List.nth bc (List.length bc - 1) in
let new_block = {
prevBlockHash = (hash_of_block prev);
txs = [];
proof = Random.int 1073741823 (* 2^30 - 1 *)

} in new_block

Listing 4.15: The OCaml definition of get_block_template for proof-of-work. It gives a new random
nonce each time it is called.

A second, much more serious issue, has to do with how Coq extracts dependent
records into OCaml. In some situations, projections (i.e. field accesses) into dependent
records are extracted as assert false [Amo18]. Interestingly, this issue does not exist
when performing extraction to Haskell, as the two extraction mechanisms (into OCaml
and respectively, Haskell) have separate implementations [Gru18].

Luckily, we rely on a single such dependent-record access in our code, in the SSReflect
fintype library’s base2 function. We work around this extraction fault in lines 20–25 of
our extraction “recipe” (Listing 4.14) by replacing the assert false in the generated
OCaml code with assert true. We claim this is legitimate, since a comment in the
relevant portion of the extraction mechanism source code suggests the assert false is
a “fake arg” that is supposed to be removed before the extracted code is output [Amo18].
Nonetheless, having to do this manual rewriting is worrying and makes it more difficult
to trust that the resulting extracted OCaml code is faithful to the Coq original.

Finally, our extraction “recipe” (Listing 4.14) provides OCaml instantiations for
the hasht , hashb , and genProof functions that we have left undefined in Coq. For
the hash functions, these are wrappers around cryptokit’s implementation of SHA-
256. The genProof function is implemented with the use of two helper functions,
get_block_template (reproduced in Listing 4.15) and get_acceptable_txs.

With this done, we have a full instantiation of proof-of-work Nakamoto consensus.
However, we still have some work to do before we can actually use this consensus
code. We need to write OCaml code to handle TCP/IP connections, serialise/deserialise
network packets, and pass them on to the appropriate protocol message handlers. We
discuss this in the following section.

4.5 Formally-Verified Nakamoto Consensus

In Section 4.3, we instantiated the Toychain protocol family with consensus parameters
for a Nakamoto-style proof-of-work protocol. Then, in Section 4.4, we extracted this Coq
code into OCaml and provided definitions for the functions that were left unspecified.

45

1 let procMsg_wrapper () =
2 (* Listen for incoming TCP/IP packets. *)
3 let () = check_for_new_connections () in
4 let fds = get_all_read_fds () in
5 let (ready_fds, _, _) = retry_until_no_eintr
6 (fun () → Unix.select fds [] [] 0.0) in
7 begin
8 match get_pkt ready_fds with
9 | None → (* nothing available *) None

10 | Some pkt →
11 begin
12 (* For ConnectMsg and AddrMsg, update peer table in Net.the_cfg
13 before processing the message. This ensures the appropriate sockets
14 can be created when send_all is called later, in line 23. *)
15 (match pkt.msg with
16 | ConnectMsg → add_peer_if_new pkt.src;
17 | AddrMsg peers → List.map (fun pr → add_peer_if_new pr) peers; ();
18 | _ → ();
19);
20 (* Pass all messages to the message handler. *)
21 let (st', pkts) = Pr.procMsg !st pkt.src pkt.msg 0 in
22 st := st'; (* Update the local node state. *)
23 send_all pkts; (* Send responses. *)
24 Some (st, pkts)
25 end
26 end

Listing 4.16: The “wrapper” around procMsg has to dynamically (and transparently to the protocol
logic) update the node’s peer table and create the appropriate TCP/IP connections when it hears

gossip — the protocol assumes it can send messages directly, with no notion of connections.

Now, we showcase how to take this consensus protocol code and transform it into a
practical, executable implementation of Nakamoto consensus. Conceptually, all we need
to do is define “wrappers” around the existing consensus code. These wrappers handle
all interactions with the “real world” (e.g. TCP/IP connections, writing log files, etc),
but rely on the message handlers extracted from Coq to carry out the protocol logic.
As such, morally speaking, all our proofs also apply to the “wrapped” code as long as
the “real world” does not contradict our model.

Other formally-verified implementations of distributed protocols, e.g. the Coq imple-
mentations of the protocols verified with Disel, rely on a similar “wrapper” mechanism
[SWT17]. Indeed, we adapt and reuse a large part of the Disel networking code in our
implementation of Toychain.

The core of the wrapper infrastructure is a table of peers that the node maintains
TCP/IP connections with. As far as the protocol logic (i.e. message handling code) is
concerned, these connections might as well not exist. Indeed, the protocol logic has no
notion of a “connection” — it works by passing messages. It is the responsibility of the

46

let rec retry_until_no_eintr f =
try f ()
with Unix.Unix_error (EINTR, _, _) → retry_until_no_eintr f

Listing 4.17: We transform all Linux system calls into interrupt-resistant versions.

wrapper to make sure the messages are sent correctly.
Because of the gossip protocol, the peer table needs to be updated dynamically. There

are several possible ways to implement this. For example, the procMsg_wrapper could
inspect all outbound messages to see whether any of them need to be sent to a node
who is not already in the peer table. If this is the case, the peer table needs to be
updated. This is a valid way to keep the peer table up-to-date, but is not faithful to the
underlying protocol. Instead, we choose to intercept ConnectMsg and AddrMsg protocol
messages — emitted by the gossip mechanism — and dynamically add unknown peers
to the peer table, as needed. We reproduce the full procMsg_wrapper in Listing 4.16.

Compared to the message-handling wrapper, handling internal transitions is much
simpler. There is no need to listen for incoming network connections, since transitions
are produced locally, i.e. when a transaction is issued or when the node attempts to
mine a block. After every transition, the node’s state is updated and the outbound
messages, if any exist, are sent over the network.

Having defined the peer table infrastructure and the wrappers around procMsg and
procInt, we have a complete, executable implementation of proof-of-work Nakamoto
consensus.

4.5.1 Caution: TCP/IP

It is important to note that only the core, unwrapped protocol logic is formally verified.
In a certain sense, there are no formal guarantees about the “wrapped” protocol. Bugs
might exist in the overall system, and, in fact, they probably do exist. In particular,
our networking code might fail to correctly process some packets.

While developing the wrapper infrastructure for Toychain, our process was to compile
OCaml to bytecode and run it through the interpreter. This worked correctly: we had a
cluster of nodes talking to each other and coming into agreement. However, as soon as
we switched to compiling to machine code and executing it natively, our node processes
would sometimes, seemingly randomly, crash.

After some investigation, we discovered that the crashes were caused by system in-
terrupts — if a system call (e.g. read or send over a network socket) is interrupted
in Linux, the call is not automatically restarted. As such, the call would fail, and an
a EINTR exception would be thrown. The exception was never caught, and thus the

47

entire node process crashed. This did not happen when we ran the bytecode — some-
how the runtime caught and handled the EINTR exception. We overcome this issue by
automatically retrying system calls when they are interrupted, as seen in Listing 4.17.

It is entirely possible that similar problems might arise in a different environment,
e.g. when running Toychain under Windows. As such, the “proven-correct” label must
be taken with a grain of salt. Our formal proof does not eliminate the possibility of
bugs. Nonetheless, it is very useful, because it restricts where in the code bugs can
originate, i.e. faults can exist only in the unverified networking code, not in the verified
consensus part. This claim is supported by a recent empirical study on the correctness
of formally verified distributed systems. Looking at systems similar to ours, Fonseca
et al. found bugs in the unverified portions of code, e.g. networking shims, but no faults
in the actual protocol logic, which was formally verified [Fon+17].

4.5.2 Running Toychain

Toychain is open-source and is publically available online, on GitHub:

https://github.com/certichain/toychain

Building Toychain is known to work with Coq 8.9.0 and OCaml 4.06.1. We have tested
Toychain on Ubuntu 16.04 and the Windows Subsystem for Linux (WSL) equivalent.
All other dependencies can be installed using opam, as follows:

opam repo add coq-released https://coq.inria.fr/opam/released
opam install coq-mathcomp-ssreflect coq-fcsl-pcm
opam install cryptokit ipaddr

Then, to build Toychain, run make followed by make node. The first command com-
piles the Coq source files and the second extracts the OCaml code and builds the
node.native executable file. Toychain nodes can be started on the command-line:

./node.native -me IP_ADDR PORT -cluster <CLUSTER>

where <CLUSTER> is a space-separated list of IP_ADDR PORT pairs.

The repository also contains a directory with shell scripts. The most important script,
run.sh, starts a cluster of 3 Toychain nodes, running at 127.0.0.1, ports 9000, 9001,
and 9002 respectively. The nodes all know about each other and save their output in
the respective node-0{0,1,2}.log file.

48

https://github.com/certichain/toychain

Additional nodes can be spawned “manually”, e.g. :

./node.native -me 127.0.0.1 9003 -cluster 127.0.0.1 9001

The command above also shows that you can spawn a node with only partial knowl-
edge of the cluster. As long as the node can connect to one entry-point into the network,
the gossip mechanism will work and the node will eventually learn the full topology of
the cluster.

Seeing the gossip mechanism in action has been one of the highlights of our work.
The gossip mechanism is defined in Coq, in the procMsg message handler, but has no
associated formal proof — it is entirely unverified. Nonetheless, it works in practice, as
you can see in Figure 4.1. Nodes can join the network “late” and correctly come into
agreement with their peers.

49

Figure 4.1: A Toychain cluster with 4 nodes in agreement. Three nodes were started using run.sh and the fourth (PID 7962),
whose output is shown in the lower-left corner, joined “late”, knowing only of node 127.0.0.1:9001.

0 2 4 6 8 10 12 14

100
250

500

1,000

1,500

2,000

2,500

Blocks in forest

Mi
nt

T
tr

an
sit

io
ns

pe
r

se
co

nd

Figure 4.2: Executing a MintT transition, which should take O(1) time, takes O(n4) time.

4.6 Limitations

This section describes the limitations of the Toychain implementation. We discuss the
overall Toychain project in Chapter 5.

4.6.1 Performance

Toychain works. We have formally verified code that you can build and run on your
PC. However, you would not be able to run Toychain as it exists today in a produc-
tion environment. Currently, performance is abysmal. This is not entirely unexpected.
Remember, the Toychain implementation evolved out of what was originally a model,
albeit an executable one. Whenever we had a choice in how to implement a function,
we chose the implementation that would be best suited for verification. Almost always,
this is the slowest possible implementation.

Right now, the main bottleneck is the performance of the block forest library. In a
typical implementation, you would expect the main btChain operation to take amor-
tised O(1) time. In other words, determining what the current chain is should be very
fast, since you need this information for most operations in the protocol. Our imple-
mentation of btChain runs in O(n4) time! This makes it straightforward to prove that
btChain does indeed return the heaviest chain — it compares all possible chains — but
is obviously impractical.

Sadly, since btChain is such a core operation in the protocol, a slow implementation
makes the entire protocol slow to the point of being unusable. Figure 4.2 shows that

51

attempting to mine a block, which should be a constant time operation (i.e. the graph
should be a straight horizontal line), becomes unfeasible with as few as 10 blocks in the
local state. Therefore, before Toychain can become truly practical, rather than simply
executable, it is necessary to replace the current block forest implementation with an
efficient one.

When executing a MintT transition, most of the time is spent executing btChain, but
some of the slowness is due to having to hash blocks. Since in our definition, blocks
include a list of transactions, longer blocks take a longer time to hash. This is not too
much of an issue for Toychain, but would be unacceptable in a real protocol. Normally,
hashes would only be computed over a fixed-size block header which contains the Merkle
root of the block’s transactions.

More performance issues are likely to start to appear in forests with around 10,000
blocks, because of our reliance on Coq Peano natural numbers. We discussed this in
Section 4.3.2.

We leave improving Toychain’s performance for future work.

4.6.2 Storage and Networking

Apart from bad performance, the current Toychain implementation is impractical in
two other ways.

Lack of persistent storage. Toychain currently operates entirely in-memory, i.e.
it does not save its local state to disk. This means that restarting the Toychain exe-
cutable requires a full resynchronisation with the network. A practical implementation
of Nakamoto consensus would save its block forest to disk after each newly-added block
and resume execution from that state when restarted. This is conceptually straightfor-
ward, but has been a major pain point in real implementations, as the local chain state
database would often become corrupted when the node process crashed. In the future,
having a verified implementation that guarantees no corruption would be a significant
win.

No UPNP support. As of now, the unverified networking layer in Toychain is not
well-suited for real-world use on the Internet. The networking code is written with the
assumption that connection establishment is bi-directional, i.e. if party A can establish
a connection to party B, then B can establish a connection to A. Generally speaking,
this is not true on the Internet, since many users reside behind a router that performs
network address translation (NAT). Such users are not directly reachable from the open
Internet — they need to set up port-forwarding in their router interface before they

52

can be reached. Real-world implementations of Nakamoto consensus function without
this bi-directionality assumption and support the Universal Plug and Play (UPNP)
standard to automatically set-up port forwarding when needed. Implementing at least
one of these improvements is necessary before Toychain can be realistically used on the
open Internet.

4.6.3 Trusted Computing Base

As mentioned in Section 4.5.1, only the core protocol logic is formally verified. The
“wrapped” protocol, i.e. the actual implementation, is not. This means that the non-
verified networking part of Toychain is trusted, i.e. we have to assume it is correct. If
that assumption turns out to be false, we have no guarantees about the overall system.

Several other components in our system have to be trusted as well. For instance, we
assume that Coq is sound and the Coq type-checker is correct. Arguably, this is a safe
assumption, but our development relies on some of the less well-tested parts of Coq, e.g.
functors, which might be risky. Furthermore, we assume that the non-trivial extraction
from Coq to OCaml is correct — despite running into bugs in the extraction mechanism!
We also have to trust the OCaml compiler and associated build tools, the cryptokit
library, the operating system kernel, and the CPU we are executing the code on. All of
these could have errors.

Notwithstanding the long list of trusted components, formal verification is still useful,
because it restricts where in the system faults can originate from. A verified implemen-
tation is more trustworthy than a non-verified one [Fon+17]. Moreover, there is ongoing
research, both in industry and academia, into how to reduce the TCB for real systems
even further.

53

5
Conclusion

This is the best thing since sliced bread.
Wonder Bread∗

This chapter offers some concluding remarks, discusses the major limitations of the
current work, and proposes avenues for future work.

5.1 Toychain

In this work, we took the formal model of blockchain-based consensus we defined in
[PS18], simplified it by removing onerous assumptions, and extracted the first proven-
correct implementation of Nakamoto consensus. This is a major milestone towards a
future where real-world implementations of blockchain consensus protocols are formally
verified. We are not there yet, but we have made significant progress.

We hope this work will motivate the developers of existing permissionless systems to
consider formal verification as a way to solve some of their current problems. Firstly, of
course, verification can provide tight correctness guarantees. As the Bitcoin inflation bug
discovered in September 2018 shows, serious flaws exist even in mature implementations
and can remain undetected for years. Formal verification gives us a way to stamp
them out. Moreover, verification provides a second, equally important benefit that is
often forgotten. Making changes in permissionless protocols is risky. Bitcoin’s history
shows this very clearly. Verification gives us a way to eliminate the risk. Changes can
be formally verified to be functionally correct and soft-forks before they are accepted.
This would not remove the politics in the change-approval process, but might make
fundamental protocol changes, e.g. to improve fungibility, easier to accept.

5.2 Limitations

While the future of formally verified implementations of blockchain consensus protocols
is promising, Toychain as it currently stands is limited in several significant ways.

∗Wonder Bread was the first mass-produced brand of pre-wrapped, pre-sliced bread.

54

Unverified Gossip Protocol. Our quiescent consistency proof is written in a com-
pletely unrealistic network model, where packets are never dropped or corrupted. We
argue that this is legitimate, since the gossip mechanism is supposed to provide the
guarantee that all protocol-relevant messages are delivered to all nodes, regardless of
network conditions. However, we have not actually proven that the gossip mechanism
in Toychain is correct. For this reason, our proofs are not fully convincing.

Fork Choice Rule Assumptions. We make the overly-strong assumption that the
fork choice rule imposes a strict total order on all possible blockchains. Real-world
FCRs do not satisfy this assumption. Moreover, we assume that the FCR is additive.
This seems reasonable, and all protocols we know of have additive FCRs, but this might
not be needed for correctness.

Abysmal Performance. Our extracted implementation of Nakamoto consensus
works, but is practically unusable because of bad performance. This is not an issue with
the verification tools. Rather, our formally verified implementation of block forests is
simply inefficient. Replacing the current block forest library with a reasonable imple-
mentation should give good performance, at least with forests up to a few thousand
blocks. With larger forests, the representation of Peano natural numbers will become
the main performance bottleneck.

Security Against Byzantine Adversaries. As of now, we have not proven any
security properties of Toychain. In particular, we have not proven that the protocol
is resilient against Byzantine participants. Indeed, proving such properties requires
introducing probabilistic reasoning, which severely complicates things [GS19].

5.3 Future work

In the long term, we intend to develop Toychain into a principled framework for reason-
ing about the correctness and security properties of blockchain consensus protocols and
their implementations.

We plan to enhance our formal model to support reasoning about probabilistic secu-
rity properties, find an appropriate abstraction for the gossip protocol and prove the
protocol’s correctness wrt. the abstraction, and remove the remaining overly-strong as-
sumptions. On the implementation side, we will have to replace the block forest library
with a verified, efficient implementation and make the networking code better-suited to
operating on the open Internet.

More practically, we foresee that in the next few years it will become feasible to
develop an inter-operable, formally verified implementation of an existing permissionless
Nakamoto consensus system, e.g. Bitcoin.

55

Bibliography

[Amo18] Arthur Azevedo de Amorim. Extraction with dependent records produces
‘assert false‘. Apr. 2018. url: https://github.com/coq/coq/issues/7348
(visited on 03/18/2019).

[And13] Gavin Andresen. Bitcoin Improvement Proposal 50. Mar. 2013. url: htt
ps://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
(visited on 02/04/2019).

[App18] Andrew Appel. Unification blows up, even with ”simple apply” and ”Opaque”.
Mar. 2018. url: https://github.com/coq/coq/issues/6998 (visited on
03/02/2019).

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development. Ed. by Wilfried Brauer, Grzegorz Rozenberg, and Arto Salo-
maa. Texts in Theoretical Computer Science An EATCS Series. Springer,
2004. url: http://link.springer.com/10.1007/978-3-662-07964-5
(visited on 12/20/2017).

[Bee17] Marcel Beemster. C99 for-loop defined variable gets incorrect scope. Dec.
2017. url: https://github.com/AbsInt/CompCert/issues/211 (visited
on 02/28/2019).

[Bit18] Bitcoin. CVE-2018-17144 Full Disclosure. Sept. 2018. url: https://bitc
oincore.org/en/2018/09/20/notice/ (visited on 02/23/2019).

[BSd82] Roy J. Byrd, Stephen E. Smith, and S. Peter deJong. “An Actor-based
Programming System”. In: Proceedings of the SIGOA Conference on Office
Information Systems. ACM, 1982, pp. 67–78. url: http://doi.acm.org/
10.1145/800210.806479.

[Cor18] Matt Corallo. Fix crash bug with duplicate inputs within a transaction. Sept.
2018. url: https://github.com/bitcoin/bitcoin/pull/14247 (visited
on 02/23/2019).

[DHZ16] Cezara Drăgoi, Thomas A. Henzinger, and Damien Zufferey. “PSync: A
Partially Synchronous Language for Fault-tolerant Distributed Algorithms”.
In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’16. ACM, 2016. url: http:
//doi.acm.org/10.1145/2837614.2837650 (visited on 04/16/2019).

56

https://github.com/coq/coq/issues/7348
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://github.com/coq/coq/issues/6998
http://link.springer.com/10.1007/978-3-662-07964-5
https://github.com/AbsInt/CompCert/issues/211
https://bitcoincore.org/en/2018/09/20/notice/
https://bitcoincore.org/en/2018/09/20/notice/
http://doi.acm.org/10.1145/800210.806479
http://doi.acm.org/10.1145/800210.806479
https://github.com/bitcoin/bitcoin/pull/14247
http://doi.acm.org/10.1145/2837614.2837650
http://doi.acm.org/10.1145/2837614.2837650

[DJ94] Scott Dawson and Farnam Jahanian. “Deterministic Fault Injection of Dis-
tributed Systems”. In: in Lecture. Springer-Verlag, 1994, pp. 178–196. doi:
10.1.1.53.4114.

[DJa96] S. Dawson, F. Jahanian, and T. Mitton and. “Testing of fault-tolerant and
real-time distributed systems via protocol fault injection”. In: Proceedings
of Annual Symposium on Fault Tolerant Computing. June 1996, pp. 404–
414.

[Fon+17] Pedro Fonseca et al. “An Empirical Study on the Correctness of Formally
Verified Distributed Systems”. In: Proceedings of the Twelfth European Con-
ference on Computer Systems. ACM Press, 2017, pp. 328–343. url: http:
/ / dl . acm . org / citation . cfm ? doid = 3064176 . 3064183 (visited on
03/01/2019).

[Gar10] Jeff Garzik. Strange block 74638. Aug. 2010. url: https://bitcointalk.
org/index.php?topic=822.0 (visited on 02/04/2019).

[Gar13] Jeff Garzik. Block #225430 chain fork dataset available. Mar. 2013. url:
https://bitcointalk.org/index.php?topic=153170.0 (visited on
02/06/2019).

[Gle+19] Klaus V. Gleissenthall et al. “Pretend synchrony: synchronous verification
of asynchronous distributed programs”. In: Proceedings of the ACM on
Programming Languages POPL (Jan. 2019). url: http://dl.acm.org/
citation.cfm?doid=3302515.3290372 (visited on 04/16/2019).

[Gru18] Samuel Gruetter. Running compiled fib example with haskell extraction
works. May 2018. url: https://github.com/mit-plv/bedrock2/commit/
1ae95056f91a562228b5825ce798b3d4aa1e433e (visited on 04/03/2019).

[GS19] Kiran Gopinathan and Ilya Sergey. “Towards Mechanising Probabilistic
Properties of a Blockchain”. In: CoqPL (2019). url: https://ilyasergey.
net/papers/probchain-coqpl19.pdf.

[Haw+15] Chris Hawblitzel et al. “IronFleet: proving practical distributed systems cor-
rect”. In: Proceedings of the 25th Symposium on Operating Systems Princi-
ples - SOSP ’15. ACM Press, 2015. url: http://dl.acm.org/citation.
cfm?doid=2815400.2815428 (visited on 04/08/2019).

[Kin13] Kyle Kingsbury. Jepsen: A framework for distributed systems verification,
with fault injection. 2013. url: https://github.com/jepsen-io/jepsen
(visited on 04/10/2019).

57

https://doi.org/10.1.1.53.4114
http://dl.acm.org/citation.cfm?doid=3064176.3064183
http://dl.acm.org/citation.cfm?doid=3064176.3064183
https://bitcointalk.org/index.php?topic=822.0
https://bitcointalk.org/index.php?topic=822.0
https://bitcointalk.org/index.php?topic=153170.0
http://dl.acm.org/citation.cfm?doid=3302515.3290372
http://dl.acm.org/citation.cfm?doid=3302515.3290372
https://github.com/mit-plv/bedrock2/commit/1ae95056f91a562228b5825ce798b3d4aa1e433e
https://github.com/mit-plv/bedrock2/commit/1ae95056f91a562228b5825ce798b3d4aa1e433e
https://ilyasergey.net/papers/probchain-coqpl19.pdf
https://ilyasergey.net/papers/probchain-coqpl19.pdf
http://dl.acm.org/citation.cfm?doid=2815400.2815428
http://dl.acm.org/citation.cfm?doid=2815400.2815428
https://github.com/jepsen-io/jepsen

[Laa18] Wladimir van der Laan. It was wrong that the buggy code was merged. Yes,
we screwed up but the ”we” that screwed up is very wide. Tweet. Sept. 2018.
url: https : / / twitter . com / orionwl / status / 1043789573984333825
(visited on 02/23/2019).

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Boston, MA, USA: Addison-Wesley Long-
man Publishing Co., Inc., 2002. isbn: 978-0-321-14306-8.

[LBC16] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. “Chapar: Certified
Causally Consistent Distributed Key-value Stores”. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’16. ACM, 2016, pp. 357–370. url: http :
//doi.acm.org/10.1145/2837614.2837622 (visited on 04/10/2019).

[Lei10] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional
Correctness”. en. In: Logic for Programming, Artificial Intelligence, and
Reasoning. Ed. by Edmund M. Clarke and Andrei Voronkov. Vol. 6355.
Springer, 2010, pp. 348–370. url: http://link.springer.com/10.1007/
978-3-642-17511-4_20 (visited on 04/16/2019).

[Let17] Pierre Letouzey. A Tutorial on Using Modules. Oct. 2017. url: https://git
hub.com/coq/coq/wiki/ModuleSystemTutorial (visited on 03/02/2019).

[Nak10] Satoshi Nakamoto. Fix for block 74638 overflow output transaction. Aug.
2010. url: https://github.com/bitcoin/bitcoin/commit/d4c6b90ca
3f9b47adb1b2724a0c3514f80635c84 (visited on 02/04/2019).

[Pad+16] Oded Padon et al. “Ivy: safety verification by interactive generalization”. In:
Proceedings of the 37th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation - PLDI 2016. ACM Press, 2016, pp. 614–
630. url: http://dl.acm.org/citation.cfm?doid=2908080.2908118
(visited on 04/16/2019).

[PS18] George Pîrlea and Ilya Sergey. “Mechanising Blockchain Consensus”. In:
Proceedings of 7th ACM SIGPLAN International Conference on Certified
Programs and Proofs. 2018. doi: 10.1145/3167086. url: http://pirlea.
net/papers/toychain-cpp18.pdf.

[Rah+18] Vincent Rahli et al. “Velisarios: Byzantine Fault-Tolerant Protocols Pow-
ered by Coq”. In: Programming Languages and Systems. Ed. by Amal
Ahmed. Springer International Publishing, 2018, pp. 619–650. url: http:
//link.springer.com/10.1007/978- 3- 319- 89884- 1_22 (visited on
04/16/2019).

58

https://twitter.com/orionwl/status/1043789573984333825
http://doi.acm.org/10.1145/2837614.2837622
http://doi.acm.org/10.1145/2837614.2837622
http://link.springer.com/10.1007/978-3-642-17511-4_20
http://link.springer.com/10.1007/978-3-642-17511-4_20
https://github.com/coq/coq/wiki/ModuleSystemTutorial
https://github.com/coq/coq/wiki/ModuleSystemTutorial
https://github.com/bitcoin/bitcoin/commit/d4c6b90ca3f9b47adb1b2724a0c3514f80635c84
https://github.com/bitcoin/bitcoin/commit/d4c6b90ca3f9b47adb1b2724a0c3514f80635c84
http://dl.acm.org/citation.cfm?doid=2908080.2908118
https://doi.org/10.1145/3167086
http://pirlea.net/papers/toychain-cpp18.pdf
http://pirlea.net/papers/toychain-cpp18.pdf
http://link.springer.com/10.1007/978-3-319-89884-1_22
http://link.springer.com/10.1007/978-3-319-89884-1_22

[Ser18] Ilya Sergey. What We Talk about When We Talk about Formally Verified
Systems. National University of Singapore, Nov. 2018. url: https://ilya
sergey.net/slides/Sergey-BCSW18.pdf (visited on 03/01/2019).

[Son18] Jimmy Song. Bitcoin Core Bug CVE-2018–17144: An Analysis. Sept. 2018.
url: https://hackernoon.com/bitcoin-core-bug-cve-2018-17144-
an-analysis-f80d9d373362 (visited on 02/23/2019).

[SWT17] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. “Programming and
Proving with Distributed Protocols”. In: Proceedings of the 44th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (Dec. 2017). url: http://doi.acm.org/10.1145/3158116 (visited
on 02/03/2018).

[VIS18] VISA Europe. Visa service disruption. 2018. url: https://www.visaeur
ope.com/newsroom/news/visa-service-disruption?linkId=52484014
(visited on 02/02/2019).

[Wil+15] James R. Wilcox et al. “Verdi: A Framework for Implementing and Formally
Verifying Distributed Systems”. In: Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI
’15. ACM, 2015, pp. 357–368. url: http : / / doi . acm . org / 10 . 1145 /
2737924.2737958 (visited on 04/09/2019).

[Woo+16] Doug Woos et al. “Planning for change in a formal verification of the raft
consensus protocol”. In: Proceedings of the 5th ACM SIGPLAN Conference
on Certified Programs and Proofs - CPP 2016. ACM Press, 2016, pp. 154–
165. url: http://dl.acm.org/citation.cfm?doid=2854065.2854081
(visited on 04/03/2019).

[WP18] James R. Wilcox and Karl Palmskog. DiSeLExtraction.v. Sept. 2018. url:
https://github.com/DistributedComponents/disel/blob/master/
Core/DiSeLExtraction.v (visited on 04/03/2019).

[Yan+09] Junfeng Yang et al. “MODIST: Transparent Model Checking of Unmodi-
fied Distributed Systems”. In: Proceedings of the 6th USENIX Symposium
on Networked Systems Design and Implementation. NSDI’09. USENIX As-
sociation, 2009, pp. 213–228. url: http://dl.acm.org/citation.cfm?
id=1558977.1558992 (visited on 04/10/2019).

59

https://ilyasergey.net/slides/Sergey-BCSW18.pdf
https://ilyasergey.net/slides/Sergey-BCSW18.pdf
https://hackernoon.com/bitcoin-core-bug-cve-2018-17144-an-analysis-f80d9d373362
https://hackernoon.com/bitcoin-core-bug-cve-2018-17144-an-analysis-f80d9d373362
http://doi.acm.org/10.1145/3158116
https://www.visaeurope.com/newsroom/news/visa-service-disruption?linkId=52484014
https://www.visaeurope.com/newsroom/news/visa-service-disruption?linkId=52484014
http://doi.acm.org/10.1145/2737924.2737958
http://doi.acm.org/10.1145/2737924.2737958
http://dl.acm.org/citation.cfm?doid=2854065.2854081
https://github.com/DistributedComponents/disel/blob/master/Core/DiSeLExtraction.v
https://github.com/DistributedComponents/disel/blob/master/Core/DiSeLExtraction.v
http://dl.acm.org/citation.cfm?id=1558977.1558992
http://dl.acm.org/citation.cfm?id=1558977.1558992

	Introduction
	Need for Trustworthy Consensus Protocols
	Failures in Permissionless Systems
	Value Overflow Incident
	Accidental Hard Fork
	Inflation Bug

	Promise of Formal Verification
	Well-suited for Consensus Protocols
	Powerful but not Magical

	Towards Verified Blockchain Consensus

	Overview
	Formal Verification of Distributed Systems
	Verified Implementations

	Toychain
	Nakamoto Consensus
	Toychain by Example
	Modelling in Coq
	Block Forests
	System Invariant
	Dropped Assumptions

	Toychain Made Realistic
	Unrealistic Assumptions
	Genesis Block Hash
	Hash Injectivity

	Strong Assumptions

	Toychain Made Practical
	From Proof to Program
	Coq Modules and Parametricity
	Mechanised Proofs are Brittle
	Modules Preserve Opaqueness
	Toychain Made Modular

	Instantiating Consensus Parameters
	Type Definitions
	Proof of Work

	Extracting OCaml Code
	Formally-Verified Nakamoto Consensus
	Caution: TCP/IP
	Running Toychain

	Limitations
	Performance
	Storage and Networking
	Trusted Computing Base

	Conclusion
	Toychain
	Limitations
	Future work

	Bibliography

