
Paxos Consensus, Deconstructed and Abstracted

Extended Version
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Abstract Lamport’s Paxos algorithm is a classic consensus protocol
for state machine replication in environments that admit crash failures.
Many versions of Paxos exploit the protocol’s intrinsic properties for
the sake of gaining better run-time performance, thus widening the gap
between the original description of the algorithm, which was proven cor-
rect, and its real-world implementations. In this work, we address the
challenge of specifying and verifying complex Paxos-based systems by (a)
devising composable specifications for implementations of Paxos’s single-
decree version, and (b) engineering disciplines to reason about protocol-
aware, semantics-preserving optimisations to single-decree Paxos. In a
nutshell, our approach elaborates on the deconstruction of single-decree
Paxos by Boichat et al. We provide novel non-deterministic specifica-
tions for each module in the deconstruction and prove that the imple-
mentations refine the corresponding specifications, such that the proofs
of the modules that remain unchanged can be reused across different
implementations. We further reuse this result and show how to obtain a
verified implementation of Multi-Paxos from a verified implementation of
single-decree Paxos, by a series of novel protocol-aware transformations
of the network semantics, which we prove to be behaviour-preserving.

1 Introduction

Consensus algorithms are an essential component of the modern fault-tolerant
deterministic services implemented as message-passing distributed systems. In
such systems, each of the distributed nodes contains a replica of the system’s
state (e.g., a database to be accessed by the system’s clients), and certain nodes
may propose values for the next state of the system (e.g., requesting an update
in the database). Since any node can crash at any moment, all the replicas have
to keep copies of the state that are consistent with each other. To achieve this,
at each update to the system, all the non-crashed nodes run an instance of a
consensus protocol, uniformly deciding on its outcome. The safety requirements
for consensus can be thus stated as follows: “only a single value is decided uni-
formly by all non-crashed nodes, it never changes in the future, and the decided
value has been proposed by some node participating in the protocol” [16].
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The Paxos algorithm [15,16] is the classic consensus protocol, and its single-
decree version (SD-Paxos for short) allows a set of distributed nodes to reach an
agreement on the outcome of a single update. Optimisations and modifications
to SD-Paxos are common. For instance, the multi-decree version, often called
Multi-Paxos [15, 27], considers multiple slots (i.e., multiple positioned updates)
and decides upon a result for each slot, by running a slot-specific instance of an
SD-Paxos. Even though it is customary to think of Multi-Paxos as of a series of
independent SD-Paxos instances, in reality the implementation features multiple
protocol-aware optimisations, exploiting intrinsic dependencies between separ-
ate single-decree consensus instances to achieve better throughput. To a great
extent, these and other optimisations to the algorithm are pervasive, and verify-
ing a modified version usually requires to devise a new protocol definition and a
proof from scratch. New versions are constantly springing (cf. Section 5 of [27]
for a comprehensive survey) widening the gap between the description of the
algorithms and their real-world implementations.

We tackle the challenge of specifying and verifying these distributed al-
gorithms by contributing two verification techniques for consensus protocols.

Our first contribution is a family of composable specifications for Paxos’
core subroutines. Our starting point is the deconstruction of SD-Paxos by Boi-
chat et al. [2, 3], allowing one to consider a distributed consensus instance as a
shared-memory concurrent program. We introduce novel specifications for Boi-
chat et al.’s modules, and let them be non-deterministic. This might seem as an
unorthodox design choice, as it weakens the specification. To show that our spe-
cifications are still strong enough, we restore the top-level deterministic abstract
specification of the consensus, which is convenient for client-side reasoning. The
weakness introduced by the non-determinism in the specifications has been im-
pelled by the need to prove that the implementations of Paxos’ components refine
the specifications we have ascribed [9]. We prove the refinements modularly via
the Rely/Guarantee reasoning with prophecy variables and explicit linearisation
points [11, 26]. On the other hand, this weakness becomes a virtue when bet-
ter understanding the volatile nature of Boichat et al.’s abstractions and of the
Paxos algorithm, which may lead to newer modifications and optimisations.

Our second contribution is a methodology for verifying composite consensus
protocols by reusing the proofs of their constituents, targeting specifically Multi-
Paxos. We do so by distilling protocol-aware system optimisations into a separate
semantic layer and showing how to obtain the realistic Multi-Paxos implement-
ation from SD-Paxos by a series of transformations to the network semantics of
the system, as long as these transformations preserve the behaviour observed by
clients. We then provide a family of such transformations along with the formal
conditions allowing one to compose them in a behaviour-preserving way.

We validate our approach for construction of modularly verified consensus
protocols by providing an executable proof-of-concept implementation of Multi-
Paxos with a high-level shared memory-like interface, obtained via a series of
behaviour-preserving network transformations. The full proofs of lemmas and
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Figure 1. A run of SD-Paxos.

theorems from our development, as well as some boilerplate definitions, are given
in the appendices at the end of the paper.

2 The Single-Decree Paxos Algorithm

We start with explaining SD-Paxos through an intuitive scenario. In SD-Paxos,
each node in the system can adopt the roles of proposer or acceptor, or both. A
value is decided when a quorum (i.e., a majority of acceptors) accepts the value
proposed by some proposer. Now consider a system with three nodes N1, N2 and
N3, where N1 and N3 are both proposers and acceptors, and N2 is an acceptor,
and assume N1 and N3 propose values v1 and v3, respectively.

The algorithm works in two phases. In Phase 1, a proposer polls every ac-
ceptor in the system and tries to convince a quorum to promise that they will
later accept its value. If the proposer succeeds in Phase 1 then it moves to
Phase 2, where it requests the acceptors to fulfil their promises in order to get
its value decided. In our example, it would seem in principle possible that N1
and N3 could respectively convince two different quorums—one consisting of N1
and N2, and the other consisting of N2 and N3—to go through both phases
and to respectively accept their values. This would happen if the communica-
tion between N1 and N3 gets lost and if N2 successively grants the promise and
accepts the value of N1, and then does the same with N3. This scenario breaks
the safety requirements for consensus because both v1 and v3—which can be
different—would get decided. However, this cannot happen. Let us explain why.

The way SD-Paxos enforces the safety requirements is by distinguishing each
attempt to decide a value with a unique round, where the rounds are totally
ordered. Each acceptor stores its current round, initially the least one, and only
grants a promise to proposers with a round greater or equal than its current
round, at which moment the acceptor switches to the proposer’s round. Figure 1
depicts a possible run of the algorithm. Assume that rounds are natural numbers,
that the acceptors’ current rounds are initially 0, and that the nodes N1 and
N3 attempt to decide their values with rounds 1 and 3 respectively. In Phase 1,
N1 tries to convince a quorum to switch their current round to 1 (messages
P1A(1)). The message to N3 gets lost and the quorum consisting of N1 and
N2 switches round and promises to only accept values at a round greater or
equal than 1. Each acceptor that switches to the proposer’s round sends back to
the proposer its stored value and the round at which this value was accepted,
or an undefined value if the acceptor never accepted any value yet (messages
P1B(ok,⊥, 0), where ⊥ denotes a default undefined value). After Phase 1, N1
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Paxos

Round-Based Consensus

Round-Based Register

1 val vP := undef;

2 proposeP(val v0) {

3 〈 assume(!(v0 = undef));

4 if (vP = undef) {

5 vP := v0;

6 } return vP; 〉 }

Figure 2. Deconstruction of SD-Paxos (left) and specification of module Paxos (right).

picks as a candidate value the one accepted at the greatest round from those
returned by the acceptors in the quorum, or its proposed value if all acceptors
returned an undefined value. In our case, N1 picks its value v1. In Phase 2,
N1 requests the acceptors to accept the candidate value v1 at round 1 (messages
P2A(v1, 1)). The message to N3 gets lost, and N1 and N2 accept value v1, which
gets decided (messages P2B(ok)).

Now N3 goes through Phase 1 with round 3 (messages P1A(3)). Both N2
and N3 switch to round 3. N2 answers N3 with its stored value v1 and with the
round 1 at which v1 was accepted (message P1B(ok, v1, 1)), and N3 answers
itself with an undefined value, as it has never accepted any value yet (message
P1B(ok,⊥, 0)). This way, if some value has been already decided upon, any
proposer that convinces a quorum to switch to its round would receive the de-
cided value from some of the acceptors in the quorum (recall that two quorums
have a non-empty intersection). That is, N3 picks the v1 returned by N2 as the
candidate value, and in Phase 2 it manages that the quorum N2 and N3 accepts
v1 at round 3 (messages P2A(v1, 3) and P2B(ok)). N3 succeeds in making a
new decision, but the decided value remains the same, and, therefore, the safety
requirements of a consensus protocol are satisfied.

3 The Faithful Deconstruction of SD-Paxos

We now recall the faithfull deconstruction of SD-Paxos in [2, 3], which we take
as the reference architecture for the implementations that we aim to verify. We
later show how each module of the deconstruction can be verified separately.

The deconstruction is depicted on the left of Figure 2, which consists of mod-
ules Paxos, Round-Based Consensus and Round-Based Register. These modules
correspond to the ones in Figure 4 of [2], with the exception of Weak Leader
Election. We assume that a correct process that is trusted by every other correct
process always exists, and omit the details of the leader election. Leaders take
the role of proposers and invoke the interface of Paxos. Each module uses the
interface provided by the module below it.

The entry module Paxos implements SD-Paxos. Its specification (right of
Figure 2) keeps a variable vP that stores the decided value (initially undefined)
and provides the operation proposeP that takes a proposed value v0 and returns
vP if some value was already decided, or otherwise it returns v0. The code of the
operation runs atomically, which we emphasise via angle brackets 〈. . .〉. We define
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this specification so it meets the safety requirements of a consensus, therefore,
any implementation whose entry point refines this specification will have to meet
the same safety requirements.

In this work we present both specifications and implementations in pseudo-
code for an imperative WHILE-like language with basic arithmetic and primitive
types, where val is some user-defined type for the values decided by Paxos, and
undef is a literal that denotes an undefined value. The pseudo-code is self-
explanatory and we restraint ourselves from giving formal semantics to it, which
could be done in standard fashion if so wished [30]. At any rate, the pseudo-code
is ultimately a vehicle for illustration and we stick to this informal presentation.

The implementation of the modules is depicted in Figures 3–5. We describe
the modules following a bottom-up approach, which better fits the purpose of
conveying the connection between the deconstruction and SD-Paxos. We start
with module Round-Based Register, which offers operations read and write

(Figure 3) and implements the replicated processes that adopt the role of ac-
ceptors (Figure 4). We adapt the wait-free, crash-stop implementation of Round-
Based Register in Figure 5 of [2] by adding loops for the explicit reception of
each individual message and by counting acknowledgement messages one by
one. Processes are identified by integers from 1 to n, where n is the number of
processes in the system. Proposers and acceptors exchange read and write re-
quests, and their corresponding acknowledgements and non-acknowledgements.
We assume a type msg for messages and let the message vocabulary to be as
follows. Read requests [RE, k] carry the proposer’s round k. Write requests
[WR, k, v] carry the proposer’s round k and the proposed value v. Read ac-
knowledgements [ackRE, k, v, k’] carry the proposer’s round k, the acceptor’s
value v, and the round k’ at which v was accepted. Read non-acknowledgements
[nackRE, k] carry the proposer’s round k, and so do carry write acknowledge-
ments [ackWR, k] and write non-acknowledgements [nackWR, K].

In the pseudo-code, we use _ for a wildcard that could take any literal value.
In the pattern-matching primitives, the literals specify the pattern against which
an expression is being matched, and operator @ turns a variable into a literal with
the variable’s value. Compare the case [ackRE, @k, v, kW]: in Figure 3, where
the value of k specifies the pattern and v and kW get some values assigned, with
the case [RE, k]: in Figure 4, where k gets some value assigned.

We assume the network ensures that messages are neither created, modified,
deleted, nor duplicated, and that they are always delivered but with an arbit-
rarily large transmission delay.3 Primitive send takes the destination j and the
message m, and its effect is to send m from the current process to the process j.
Primitive receive takes no arguments, and its effect is to receive at the cur-
rent process a message m from origin i, after which it delivers the pair (i, m) of
identifier and message. We assume that send is non-blocking and that receive
blocks and suspends the process until a message is available, in which case the
process awakens and resumes execution.

3 We allow creation and duplication of [RE, k] messages in Section 5, where we obtain
Multi-Paxos from SD-Paxos by a series of transformations of the network semantics.



6 Garćıa-Pérez et al.

1 read(int k) {

2 int j; val v; int kW; val maxV;

3 int maxKW; set of int Q; msg m;

4 for (j := 1, j <= n, j++)

5 { send(j, [RE, k]); }

6 maxKW := 0; maxV := undef; Q := {};

7 do { (j, m) := receive();

8 switch (m) {

9 case [ackRE, @k, v, kW]:

10 Q := Q ∪ {j};

11 if (kW >= maxKW)

12 { maxKW := kW; maxV := v; }

13 case [nackRE, @k]:

14 return (false, _);

15 } if (|Q| = d(n+1)/2e)
16 { return (true, maxV); } }

17 while (true); }

18 write(int k, val vW) {

19 int j; set of int Q; msg m;

20 for (j := 1, j <= n, j++)

21 { send(j, [WR, k, vW]); }

22 Q := {};

23 do { (j, m) := receive();

24 switch (m) {

25 case [ackWR, @k]:

26 Q := Q ∪ {j};

27 case [nackWR, @k]:

28 return false;

29 } if (|Q| = d(n+1)/2e)
30 { return true; } }

31 while (true); }

Figure 3. Implementation of Round-Based Register (read and write).

Each acceptor (Figure 4) keeps a value v, a current round r (called the read
round), and the round w at which the acceptor’s value was last accepted (called
the write round). Initially, v is undef and both r and w are 0.

Phase 1 of SD-Paxos is implemented by operation read on the left of Fig-
ure 3. When a proposer issues a read, the operation requests each acceptor’s
promise to only accept values at a round greater or equal than k by sending
[RE, k] (lines 4–5). When an acceptor receives a [RE, k] (lines 5–7 of Figure 4)
it acknowledges the promise depending on its read round. If k is strictly less
than r then the acceptor has already made a promise to another proposer with
greater round and it sends [nackRE, k] back (line 8). Otherwise, the acceptor
updates r to k and acknowledges by sending [ackRE, k, v, w] (line 9). When the
proposer receives an acknowledgement (lines 8–10 of Figure 3) it counts acknow-
ledgements up (line 10) and calculates the greatest write round at which the
acceptors acknowledging so far accepted a value, and stores this value in maxV

(lines 11–12). If a majority of acceptors acknowledged, the operation succeeds
and returns (true, maxV) (lines 15–16). Otherwise, if the proposer received some
[nackRE, k] the operation fails, returning (false, _) (lines 13–14).

Phase 2 of SD-Paxos is implemented by operation write on the right of
Figure 3. After having collected promises from a majority of acceptors, the pro-
poser picks the candidate value vW and issues a write. The operation requests
each acceptor to accept the candidate value by sending [WR, k, vW] (lines 20–
21). When an acceptor receives [WR, k, vW] (line 10 of Figure 4) it accepts the
value depending on its read round. If k is strictly less than r, then the acceptor
never promised to accept at such round and it sends [nackWR, k] back (line 11).
Otherwise, the acceptor fullfils its promise and updates both w and r to k and
assigns vW to its value v, and acknowledges by sending [ackWR, k] (line 12).
Finally, when the proposer receives an acknowledgement (lines 23–25 of Fig-
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1 process Acceptor(int j) {

2 val v := undef; int r := 0; int w := 0;

3 start() {

4 int i; msg m; int k;

5 do { (i, m) := receive();

6 switch (m) {

7 case [RE, k]:

8 if (k < r) { send(i, [nackRE, k]); }

9 else { 〈 r := k; send(i, [ackRE, k, v, w]); 〉 }

10 case [WR, k, vW]:

11 if (k < r) { send(i, [nackWR, k]); }

12 else { 〈 r := k; w := k; v := vW; send(i, [ackWR, k]); 〉 }

13 } }

14 while (true); } }

Figure 4. Implementation of Round-Based Register (acceptor).

1 proposeRC(int k, val v0) {

2 bool res; val v;

3 (res, v) := read(k);

4 if (res) {

5 if (v = undef) { v := v0; }

6 res := write(k, v);

7 if (res) { return (true, v); } }

8 return (false, _); }

1 proposeP(val v0) {

2 int k; bool res; val v;

3 k := pid();

4 do { (res, v) :=

5 proposeRC(k, v0);

6 k := k + n;
7 } while (!res);

8 return v; }

Figure 5. Implementation of Round-Based Consensus (left) and Paxos (right)

ure 3) it counts acknowledgements up (line 26) and checks whether a majority
of acceptors acknowledged, in which case vW is decided and the operation suc-
ceeds and returns true (lines 29–30). Otherwise, if the proposer received some
[nackWR, k] the operation fails and returns false (lines 27–28).4

Next, we describe module Round-Based Consensus on the left of Figure 5.
The module offers an operation proposeRC that takes a round k and a proposed
value v0, and returns a pair (res, v) of Boolean and value, where res informs
of the success of the operation and v is the decided value in case res is true. We
have taken the implementation from Figure 6 in [2] but adapted to our pseudo-
code conventions. Round-Based Consensus carries out Phase 1 and Phase 2 of
SD-Paxos as explained in Section 2. The operation proposeRC calls read (line 3)
and if it succeeds then chooses a candidate value between the proposed value
v0 or the value v returned by read (line 5). Then, the operation calls write

with the candidate value and returns (true, v) if write succeeds, or fails and
returns (false, _) (line 8) if either the read or the write fails.

4 For the implementation to be correct with our shared-memory-concurrency ap-
proach, the update of the data in acceptors must happen atomically with the sending
of acknowledgements in lines 9 and 12 of Figure 4.
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v1read(3)

⊥

write(3,v3)

write(1,v1)

write(2,v1)

N1:

N2:

N3:

read(1)

⊥

write(1,v1)

read(2)

v1 read(3)

⊥

write(3,v3)
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Figure 6. Two histories in which a failing write contaminates some acceptor.

Finally, the entry module Paxos on the right of Figure 5 offers an operation
proposeP that takes a proposed value v0 and returns the decided value. We
assume that the system primitive pid() returns the process identifier of the
current process. We have come up with this straightforward implementation of
operation proposeP, which calls proposeRC with increasing round until the call
succeeds, starting at a round equal to the process identifier pid() and increasing
it by the number of processes n in each iteration. This guarantees that the round
used in each invocation to proposeRC is unique.

The Challenge of Verifying the Deconstruction of Paxos. Verifying each
module of the deconstruction separately is cumbersome because of the distrib-
uted character of the algorithm and the nature of a linearisation proof. A process
may not be aware of the information that will flow from itself to other processes,
but this future information flow may dictate whether some operation has to be
linearised at the present. Figure 6 illustrates this challenge.

Let N1, N2 and N3 adopt both the roles of acceptors and proposers, which
propose values v1, v2 and v3 with rounds 1, 2 and 3 respectively. Consider the
history on the top of the figure. N2 issues a read with round 2 and gets acknow-
ledgements from all but one acceptors in a quorum. (Let us call this one acceptor
A.) None of these acceptors have accepted anything yet and they all return ⊥
as the last accepted value at round 0. In parallel, N3 issues a read with round 3
(third line in the figure) and gets acknowledgements from a quorum in which A
does not occur. This read succeeds as well and returns (true, undef). Then N3
issues a write with round 3 and value v3. Again, it gets acknowledgements from
a quorum in which A does not occur, and the write succeeds deciding value v3
and returns true. Later on, and in real time order with the write by N3 but in
parallel with the read by N2, node N1 issues a write with round 1 and value v1
(first line in the figure). This write is to fail because the value v3 was already
decided with round 3. However, the write manages to “contaminate” acceptor A
with value v1, which now acknowledges N2 and sends v1 as its last accepted value
at round 1. Now N2 has gotten acknowledgements from a quorum, and since the
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other acceptors in the quorum returned 0 as the round of their last accepted
value, the read will catch value v1 accepted at round 1, and the operation suc-
ceeds and returns (true, v1). This history linearises by moving N2’s read after
N1’s write, and by respecting the real time order for the rest of the operations.
(The linearisation ought to respect the information flow order between N1 and
N2 as well, i.e., N1 contaminates A with value v1, which is read by N2.)

In the figure, a segment ending in an × indicates that the operation fails. The
value returned by a successful read operation is depicted below the end of the
segment. The linearisation points are depicted with a thick vertical line, and the
dashed arrow indicates that two operations are in the information flow order.

The variation of this scenario on the bottom of Figure 6 is also possible,
where N1’s write and N2’s read happen concurrently, but where N2’s read is
shifted backwards to happen before in real time order with N3’s read and write.
Since N1’s write happens before N2’s read in the information flow order, then
N1’s write has to inexorably linearise before N3’s operations, which are the ones
that will “steal” N1’s valid round.

These examples give us three important hints for designing the specifications
of the modules. First, after a decision is committed it is not enough to store only
the decided value, since a posterior write may contaminate some acceptor with a
value different from the decided one. Second, a read operation may succeed with
some round even if by that time other operation has already succeeded with a
higher round. And third, a write with a valid round may fail if its round will be
“stolen” by a concurrent operation. The non-deterministic specifications that we
introduce next allow one to model execution histories as the ones in Figure 6.

4 Modularly Verifying SD-Paxos

In this section, we provide non-deterministic specifications for Round-Based Con-
sensus and Round-Based Register and show that each implementation refines its
specification [9]. To do so, we instrument the implementations of all the modules
with linearisation-point annotations and use Rely/Guarantee reasoning [26].

This time we follow a top-down order and start with the entry module Paxos.

Module Paxos. In order to prove that the implementation on the right of
Figure 5 refines its specification on the right of Figure 2, we introduce the
instrumented implementation in Figure 7, which uses the helping mechanism
for external linearisation points of [18]. We assume that each proposer invokes
proposeP with a unique proposed value. The auxiliary pending thread pool
ptp[n] is an array of pairs of Booleans and values of length n, where n is the
number of processes in the system. A cell ptp[i] containing a pair (true, v)
signals that the process i proposed value v and the invocation proposeP(v)
by process i awaits to be linearised. Once this invocation is linearised, the cell
ptp[i] is updated to the pair (false, v). A cell ptp[i] containing undef sig-
nals that the process i never proposed any value yet. The array abs_resP[n] of
Boolean single-assignment variables stores the abstract result of each proposer’s
invocation. A linearisation-point annotation lin(i) takes a process identifier
i and performs atomically the abstract operation invoked by proposer i and
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1 (bool × val) ptp[1..n] := undef;

2 val abs_vP := undef; single bool abs_resP[1..n] := undef;

3 proposeP(val v0) {

4 int k; bool res; val v; assume(!(v0 = undef));

5 k := pid(); ptp[pid()] := (true, v0);

6 do { 〈 (res, v) := proposeRC(k, v0);

7 if (res) {

8 for (i := 1, i <= n, i++) {

9 if (ptp[i] = (true, v)) { lin(i); ptp[i] := (false, v); } }

10 if (!(v = v0)) { lin(pid()); ptp[pid()] := (false, v0); } } 〉
11 k := k + n; }

12 while (!res); return v; }

Figure 7. Instrumented implementation of Paxos.

assigns its result to abs_resP[i]. The abstract state is modelled by variable
abs_vP, which corresponds to variable vP in the specification on the right of
Figure 2. One invocation of proposeP may help linearise other invocations as
follows. The linearisation point is together with the invocation to proposeRC

(line 6). If proposeRC committed with some value v, the instrumented imple-
mentation traverses ptp and linearises all the proposers which were proposing
value v (the proposer may linearise itself in this traversal) (lines 8–9). Then,
the current proposer linearises itself if its proposed value v0 is different from v

(line 10), and the operation returns v (line 12). All the annotations and code in
lines 6–10 are executed inside an atomic block, together with the invocation to
proposeRC(k, v0).

Theorem 1. The implementation of Paxos on the right of Figure 5 linearises
with respect to its specification on the right of Figure 2.

Module Round-Based Consensus. The top of Figure 8 shows the non-
deterministic module’s specification. Global variable vRC is the decided value,
initially undef. Global variable roundRC is the highest round at which some
value was decided, initially 0; a global set of values valsRC (initially empty)
contains values that may have been proposed by proposers. The specification is
non-deterministic in that local value vD and Boolean b are unspecified, which
we model by assigning random values to them. We assume that the current pro-
cess identifier is ((k − 1) mod n) + 1, which is consistent with how rounds are
assigned to each process and incremented in the code of proposeP on the right
of Figure 5. If the unspecified value vD is neither in the set valsRC nor equal
to v0 then the operation returns (false, _) (line 11). This models that the
operation fails without contaminating any acceptor. Otherwise, the operation
may contaminate some acceptor and the value vD is added to the set valsRC

(line 6). Now, if the unspecified Boolean b is false, then the operation returns
(false, _) (lines 7 and 10), which models that the round will be stolen by a
posterior operation. Finally, the operation succeeds if k is greater or equal than
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1 val vRC := undef; int roundRC := 0; set of val valsRC := {};

2 proposeRC(int k, val v0) {

3 〈 val vD := random(); bool b := random();

4 assume(!(v0 = undef)); assume(pid() = ((k - 1) mod n) + 1);

5 if (vD ∈ (valsRC ∪ {v0})) {

6 valsRC := valsRC ∪ {vD};

7 if (b && (k >= roundRC)) { roundRC := k;

8 if (vRC = undef) { vRC := vD; }

9 return (true, vRC); }

10 else { return (false, _); } }

11 else { return (false, _); } 〉 }

1 val abs_vRC := undef; int abs_roundRC := 0;

2 set of val abs_valsRC := {};

3 proposeRC(int k, val v0) {

4 single (bool × val) abs_resRC := undef; bool res; val v;

5 assume(!(v0 = undef)); assume(pid() = ((k - 1) mod n) + 1);

6 〈 (res, v) := read(k); if (res = false) { linRC(undef, _); } 〉
7 if (res) { if (v = undef) { v := v0; }

8 〈 res := write(k, v); if (res) { linRC(v, true); }

9 else { linRC(v, false); } 〉
10 if (res) { return (true, v); } }

11 return (false, _); }

Figure 8. Specification (top) and instrumented implementation (bottom) of Round-
Based Consensus.

roundRC (line 7), and roundRC and vRC are updated and the operation returns
(true, vRC) (lines 7–9).

In order to prove that the implementation in Figure 5 linearises with respect
to the specification on the top of Figure 8, we use the instrumented implement-
ation on the bottom of the same figure, where the abstract state is modelled by
variables abs_vRC, abs_roundRC and abs_valsRC in lines 1–2, the local single-
assignment variable abs_resRC stores the result of the abstract operation, and
the linearisation-point annotations linRC(vD, b) take a value and a Boolean
parameters and invoke the non-deterministic abstract operation and disambigu-
ate it by assigning the parameters to the unspecified vD and b of the specification.
There are two linearisation points together with the invocations of read (line 6)
and write (line 8). If read fails, then we linearise forcing the unspecified vD

to be undef (line 6), which ensures that the abstract operation fails without
adding any value to abs_valsRC nor updating the round abs_roundRC. Other-
wise, if write succeeds with value v, then we linearise forcing the unspecified
value vD and Boolean b to be v and true respectively (line 8). This ensures that
the abstract operation succeeds and updates the round abs_roundRC to k and
assigns v to the decided value abs_vRC. If write fails then we linearise forcing
the unspecified vD and b to be v and false respectively (line 9). This ensures
that the abstract operation fails.
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1 read(int k) {

2 〈 val vD := random();

3 bool b := random(); val v;

4 assume(vD ∈ valsRR);

5 assume(pid() =

6 ((k - 1) mod n) + 1);

7 if (b) {

8 if (k >= roundRR) {

9 roundRR := k;

10 if (!(vRR = undef)) {

11 v := vRR; }

12 else { v := vD; } }

13 else { v := vD; }

14 return (true, v); }

15 else { return (false, _); } 〉 }

16 val vRR := undef;

17 int roundRR := 0;

18 set of val valsRR := {undef};

19
20 write(int k, val vW) {

21 〈 bool b := random();

22 assume(!(vW = undef));

23 assume(pid() =

24 ((k - 1) mod n) + 1);

25 valsRR := valsRR ∪ {vW};

26 if (b && (k >= roundRR)) {

27 roundRR := k;

28 vRR := vW;

29 return true; }

30 else { return false; } 〉 }

Figure 9. Specification of Round-Based Register.

Theorem 2. The implementation of Round-Based Consensus in Figure 5 lin-
earises with respect to its specification on the top of Figure 8.

Module Round-Based Register. Figure 9 shows the module’s non-deterministic
specification. Global variable vRR represents the decided value, initially undef.
Global variable roundRR represents the current round, initially 0, and global
set of values valsRR, initially containing undef, stores values that may have
been proposed by some proposer. The specification is non-deterministic in that
method read has unspecified local Boolean b and local value vD (we assume that
vD is valsRR), and method write has unspecified local Boolean b. We assume
the current process identifier is ((k− 1) mod n) + 1.

Let us explain the specification of the read operation. The operation can
succeed regardless of the proposer’s round k, depending on the value of the
unspecified Boolean b. If b is true and the proposer’s round k is valid (line 8),
then the read round is updated to k (line 9) and the operation returns (true, v)
(line 14), where v is the read value, which coincides with the decided value if some
decision was committed already or with vD otherwise. Now to the specification of
operation write. The value vW is always added to the set valsRR (line 25). If the
unspecified Boolean b is false (the round will be stolen by a posterior operation)
or if the round k is non-valid, then the operation returns false (lines 26 and
30). Otherwise, the current round is updated to k, and the decided value vRR is
updated to vW and the operation returns true (lines 27–29).

In order to prove that the implementation in Figures 3 and 4 linearises with
respect to the specification in Figure 9, we use the instrumented implementation
in Figures 10 and 11, which uses prophecy variables [1,26] that “guess” whether
the execution of the method will reach a particular program location or not. The
instrumented implementation also uses external linearisation points. In partic-
ular, the code of the acceptors may help to linearise some of the invocations to
read and write, based on the prophecies and on auxiliary variables that count
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the number of acknowledgements sent by acceptors after each invocation of a
read or a write. The next paragraphs elaborate on our use of prophecy variables
and on our helping mechanism.

Variables abs_vRR, abs_roundRR and abs_valsRR in Figure 10 model the
abstract state. They are initially set to undef, 0 and the set containing undef

respectively. Variable abs_res_r[k] is an infinite array of single-assignment
pairs of Boolean and value that model the abstract results of the invocations
to read. (Think of an infinite array as a map from integers to some type; we
use the array notation for convenience.) Similarly, variable abs_res_w[k] is an
infinite array of single-assignment Booleans that models the abstract results of
the invocations to write. All the cells in both arrays are initially undef (e.g.
the initial maps are empty). Variables count_r[k] and count_w[k] are infinite
arrays of integers that model the number of acknowledgements sent (but not
necessarily received yet) from acceptors in response to respectively read or write
requests. All cells in both arrays are initially 0. The variable proph_r[k] is an
infinite array of single-assignment pairs bool× val, modelling the prophecy for
the invocations of read, and variable proph_w[k] is an infinite array of single-
assignment Booleans modelling the prophecy for the invocations of write.

The linearisation-point annotations linRE(k, vD, b) for read take the pro-
poser’s round k, a value vD and a Boolean b, and they invoke the abstract
operation and disambiguate it by assigning the parameters to the unspecified vD

and b of the specification on the left of Figure 9. At the beginning of a read(k)

(lines 11–14 of Figure 10), the prophecy proph_r[k] is set to (true, v) if the
invocation reaches PL: RE_SUCC in line 26. The v is defined to coincide with maxV

at the time when that location is reached. That is, v is the value accepted at
the greatest round by the acceptors acknowledging so far, or undefined if no ac-
ceptor ever accepted any value. If the operation reaches PL: RE_FAIL in line 24
instead, the prophecy is set to (false, _). (If the method never returns, the
prophecy is left undef since it will never linearise.) A successful read(k) linear-
ises in the code of the acceptor in Figure 11, when the d(n + 1)/2eth acceptor
sends [ackRE, k, v, w], and only if the prophecy is (true, v) and the operation
was not linearised before (lines 10–14). We force the unspecified vD and b to
be v and true respectively, which ensures that the abstract operation succeeds
and returns (true, v). A failing read(k) linearises at the return in the code
of read (lines 23–24 of Figure 10), after the reception of [nackRE, k] from one
acceptor. We force the unspecified vD and b to be undef and false respectively,
which ensures that the abstract operation fails.

The linearisation-point annotations linWR(k, vW, b) for write take the pro-
poser’s round k and value vW, and a Boolean b, and they invoke the abstract
operation and disambiguate it by assigning the parameter to the unspecified b

of the specification on the right of Figure 9. At the beginning of a write(k, vW)

(lines 31–33 of Figure 10), the prophecy proph_r[k] is set to true if the in-
vocation reaches PL: WR_SUCC in line 45, or to false if it reaches PL: WR_FAIL

in line 43 (or it is left undef if the method never returns). A successfully
write(k, vW) linearises in the code of the acceptor in Figure 11, when the
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1 val abs_vRR := undef; int abs_roundRR := 0;

2 set of val abs_valsRR := {undef};

3 single val abs_res_r[1..∞] := undef;

4 single val abs_res_w[1..∞] := undef;

5 int count_r[1..∞] := 0; int count_w[1..∞] := 0;

6 single (bool × val) proph_r[1..∞] := undef;

7 single bool proph_w[i..∞] := undef;

8 read(int k) {

9 int j; val v; set of int Q; int maxKW; val maxV; msg m;

10 assume(pid() = ((k - 1) mod n) + 1);

11 〈 if (operation reaches PL: RE_SUCC and define v = maxV at that time) {

12 proph_r[k] := (true, v); }

13 else { if (operation reaches PL: RE_FAIL) {

14 proph_r[k] := (false, _); } } 〉
15 for (j := 1, j <= n, j++) { send(j, [RE, k]); }

16 maxKW := 0; maxV := undef; Q := {};

17 do { (j, m) := receive();

18 switch (m) {

19 case [ackRE, @k, v, kW]:

20 Q := Q ∪ {j};

21 if (kW >= maxKW) { maxKW := kW; maxV := v; }

22 case [nackRE, @k]:

23 〈 linRE(k, undef, false); proph_r[k] := undef;

24 return (false, _); 〉 // PL: RE_FAIL

25 } if (|Q| = d(n+1)/2e) {

26 return (true, maxV); } } // PL: RE_SUCC

27 while (true); }

28 write(int k, val vW) {

29 int j; set of int Q; msg m;

30 assume(!(vW = undef)); assume(pid() = ((k - 1) mod n) + 1);

31 〈 if (operation reaches PL: WR_SUCC) { proph_w[k] := true; }

32 else { if (operation reaches PL: WR_FAIL) {

33 proph_w[k] := false; } } 〉
34 for (j := 1, j <= n, j++) { send(j, [WR, k, vW]); }

35 Q := {};

36 do { (j, m) := receive();

37 switch (m) {

38 case [ackWR, @k]:

39 Q := Q ∪ {j};

40 case [nackWR, @k]:

41 〈 if (count_w[k] = 0) {

42 linWR(k, vW, false); proph_w[k] := undef; }

43 return false; 〉 // PL: WR_FAIL

44 } if (|Q| = d(n+1)/2e) {

45 return true; } } // PL: WR_SUCC

46 while (true); }

Figure 10. Instrumented implementation of read and write methods.
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1 process Acceptor(int j) {

2 val v := undef; int r := 0; int w := 0;

3 start() {

4 int i; msg m; int k;

5 do { (i, m) := receive();

6 switch (m) {

7 case [RE, k]:

8 if (k < r) { send(i, [nackRE, k]); }

9 else { 〈 r := k;

10 if (abs_res_r[k] = undef) {

11 if (proph_r[k] = (true, v)) {

12 if (count_r[k] = d(n+1)/2e - 1) {

13 linRE(k, v, true); } } }

14 count_r[k]++; send(i, [ackRE, k, v, w]); 〉 }

15 case [WR, k, vW]:

16 if (k < r) { send(j, i, [nackWR, k]); }

17 else { 〈 r := k; w := k; v := vW;

18 if (abs_res_w[k] = undef) {

19 if (!(proph_w[k] = undef)) {

20 if (proph_w[k]) {

21 if (count_w[k] = d(n+1)/2e - 1) {

22 linWR(k, vW, true); } }

23 else { linWR(k, vW, false); } } }

24 count_w[k]++; send(j, i, [ackWR, k]); 〉 }

25 } }

26 while (true); } }

Figure 11. Instrumented implementation of acceptor processes.

d(n+ 1)/2eth acceptor sends [ackWR, k], and only if the prophecy is true and
the operation was not linearised before (lines 17–24). We force the unspecified
b to be true, which ensures that the abstract operation succeeds deciding value
vW and updates roundRR to k. A failing write(k, vW) may linearise either at
the return in its own code (lines 41–43 of Figure 10) if the proposer received
one [nackWR, k] and no acceptor sent any [ackWR, k] yet, or at the code of the
acceptor, when the first acceptor sends [ackWR, k], and only if the prophecy is
false and the operation was not linearised before. In both cases, we force the
unspecified b to be false, which ensures that the abstract operation fails.

Theorem 3. The implementation of Round-Based Register in Figures 10 and
11 linearises with respect to its specification in Figure 9.

5 Multi-Paxos via Network Transformations
We now turn to more complicated distributed protocols that build upon the
idea of Paxos consensus. Our ultimate goal is to reuse the verification result
from the Sections 3–4, as well as the high-level round-based register interface.
In this section, we will demonstrate how to reason about an implementation
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of Multi-Paxos as of an array of independent instances of the Paxos module
defined previously, despite the subtle dependencies between its sub-components,
as present in Multi-Paxos’s “canonical” implementations [5, 15, 27]. While an
abstraction of Multi-Paxos to an array of independent shared “single-shot” re-
gisters is almost folklore, what appears to be inherently difficult is to verify a
Multi-Paxos-based consensus (wrt. to the array-based abstraction) by means of
reusing the proof of a SD-Paxos. All proofs of Multi-Paxos we are aware of are,
thus, non-modular with respect to underlying SD-Paxos instances [5,22,24], i.e.,
they require one to redesign the invariants of the entire consensus protocol.

This proof modularity challenge stems from the optimised nature of a classical
Multi-Paxos protocol, as well as its real-world implementations [6]. In this part
of our work is to distil such protocol-aware optimisations into a separate network
semantics layer, and show that each of them refines the semantics of a Cartesian
product-based view, i.e., exhibits the very same client-observable behaviours. To
do so, we will establishing the refinement between the optimised implementations
of Multi-Paxos and a simple Cartesian product abstraction, which will allow to
extend the register-based abstraction, explored before in this paper, to what is
considered to be a canonical amortised Multi-Paxos implementation.

5.1 Abstract Distributed Protocols

We start by presenting the formal definitions of encoding distributed proto-
cols (including Paxos), their message vocabularies, protocol-based network se-
mantics, and the notion of an observable behaviours.

Protocols P 3 p , 〈∆,M,S〉
Configurations Σ 3 σ , Nodes⇀ ∆
Internal steps Sint ∈ ∆×∆
Receive-steps Srcv ∈ ∆×M×∆
Send-steps Ssnd ∈ ∆×∆× ℘(M)

Figure 12. States and transitions.

Protocols and messages. Figure 12
provides basic definitions of the dis-
tributed protocols and their compon-
ents. Each protocol p is a tuple
〈∆,M,Sint,Srcv,Ssnd〉. ∆ is a set of
local states, which can be assigned to
each of the participating nodes, also
determining the node’s role via an ad-
ditional tag,5 if necessary (e.g., an acceptor and a proposer states in Paxos are
different). M is a “message vocabulary”, determining the set of messages that
can be used for communication between the nodes.

Messages can be thought of as JavaScript-like dictionaries, pairing unique
fields (isomorphic to strings) with their values. For the sake of a uniform treat-
ment, we assume that each message m ∈M has at least two fields, from and to
that point to the source and the destination node of a message, correspondingly.
In addition to that, for simplicity we will assume that each message carries a
Boolean field active, which is set to True when the message is sent and is set to
False when the message is received by its destination node. This flag is required
to keep history information about messages sent in the past, which is customary
in frameworks for reasoning about distributed protocols [10, 23, 28]. We assume
that a “message soup” M is a multiset of messages (i.e. a set with zero or more

5 We leave out implicit the consistency laws for the state, that are protocol-specific.
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StepInt
n ∈ dom(σ) δ = σ(n)

〈δ, δ′〉 ∈ p.Sint σ′ = σ[n 7→ δ′]

〈σ,M〉 p
==⇒
int
〈σ′,M〉

StepSend
n ∈ dom(σ) δ = σ(n) 〈δ, δ′,ms〉 ∈ p.Ssnd

σ′ = σ[n 7→ δ′] M ′ = M ∪ms

〈σ,M〉 p
===⇒
snd

〈σ′,M ′〉

StepReceive
m ∈M m.active m.to ∈ dom(σ) δ = σ(m.to) 〈δ,m, δ′〉 ∈ p.Srcv

m′ = m[active 7→ False] σ′ = σ[n 7→ δ′] M ′ = M \ {m} ∪
{
m′
}

〈σ,M〉 p
===⇒
rcv
〈σ′,M ′〉

Figure 13. Transition rules of the simple protocol-aware network semantics

copies of each message) and we consider that each copy of the same message in
the multiset has its own “identity”, and we write m 6= m′ to represent that m
and m′ are not the same copy of a particular message.

Finally, S{int,rcv,snd} are step-relations that correspond to the internal changes
in the local state of a node (Sint), as well as changes associated with sending
(Ssnd) and receiving (Srcv) messages by a node, as allowed by the protocol.
Specifically, Sint relates a local node state before and after the allowed internal
change; Srcv relates the initial state and an incoming message m ∈ M with the
resulting state; Ssnd relates the internal state, the output state and the set of
atomically sent messages. For simplicity we will assume that id ⊆ Sint.

In addition, we consider ∆0 ⊆ ∆—the set of the allowed initial states, in
which the system can be present at the very beginning of its execution. The
global state of the network σ ∈ Σ is a map from node identifiers (n ∈ Nodes) to
local states from the set of states ∆, defined by the protocol.

Simple network semantics. The simple initial operational semantics of the

network (
p

=⇒ ⊆ (Σ×℘(M))× (Σ×℘(M))) is parametrised by a protocol p and

relates the initial configuration (i.e., the global state and the set of messages)
with the resulting configuration. It is defined via as a reflexive closure of the

union of three relations
p

==⇒
int
∪ p

===⇒
rcv
∪ p

===⇒
snd

, their rules are given in Figure 13.

The rule StepInt corresponds to a node n picked non-deterministically from
the domain of a global state σ, executing an internal transition, thus changing
its local state from δ to δ′. The rule StepReceive non-deterministically picks
a m message from a message soup M ⊆ M, changes the state using the pro-
tocol’s receive-step relation p.Srcv at the corresponding host node to, and up-
dates its local state accordingly in the common mapping (σ[to 7→ δ′]). Finally,
the rule StepSend, non-deterministically picks a node n, executes a send-step,
which results in updating its local state emission of a set of messages ms, which
is added to the resulting soup. In order to “bootstrap” the execution, the initial
states from the set ∆0 ⊆ ∆ are assigned to the nodes.

We next define the observable protocol behaviours wrt. the simple network
semantics as the prefix-closed set of all system’s configuration traces.
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Definition 1 (Protocol behaviours).

Bp =
⋃
m∈N

{
〈〈σ0,M0〉, . . . , 〈σm,Mm〉〉

∣∣∣∣∣∃δ
n∈N
0 ∈ ∆0, σ0 =

⊎
n∈N [n 7→ δn0 ] ∧

〈σ0,M0〉
p

=⇒ . . .
p

=⇒ 〈σm,Mm〉

}

That is, the set of behaviours captures all possible configurations of initial states
for a fixed set of nodes N ⊆ Nodes. In this case, the set of nodes N is an implicit
parameter of the definition, which we fix in the remainder of this section.

Example 1 (Encoding SD-Paxos). An abstract distributed protocol for SD-Paxos
can be extracted from the pseudo-code of Section 3 by providing a suitable
small-step operational semantics à la Winskel [30]. We restraint ourselves from
giving such formal semantics, but in Appendix D we outline how the distributed
protocol would be obtained from the given operational semantics and from the
code in Figures 3, 4 and 5.

5.2 Out-of-Thin-Air Semantics.

We now introduce an intermediate version of a simple protocol-aware semantics
that generates messages “out of thin air” according to a certain predicate P ⊆
∆ × M, which determines whether the network generates a certain message
without exercising the corresponding send-transition. The rule is as follows:

OTASend
n ∈ dom(σ) δ = σ(n) P(δ,m) M ′ = M ∪ {m}

〈σ,M〉 p,P
===⇒
ota
〈σ,M ′〉

That is, a random message m can be sent at any moment in the semantics

described by
p

=⇒ ∪ p,P
===⇒
ota

, given that the node n, “on behalf of which” the

message is sent is in a state δ, such that P(δ,m) holds.

Example 2. In the context of Single-Decree Paxos, we can define P as follows:

P(δ,m) , m.content = [RE, k] ∧ δ.pid = n ∧ δ.role = Proposer ∧ k ≤ δ.kP

In other words, if a node n is a Proposer currently operating with a round
δ.kP, the network semantics can always send another request “on its behalf”,
thus generating the message “out-of-thin-air”. Importantly, the last conjunct in
the definition of P is in terms of ≤, rather than equality. This means that the
predicate is intentionally loose, allowing for sending even “stale” messages, with
expired rounds that are smaller than what n currently holds (no harm in that!).

By definition of single-decree Paxos protocol, the following lemma holds:

Lemma 1 (OTA refinement). B p
=⇒∪ p,P

===⇒
ota

⊆ Bp, where p is an instance of

the module Paxos, as defined in Section 3 and in Example 1.
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SRStepInt
i ∈ I n ∈ dom(σ)

δ = σ(n)[i] 〈δ, δ′〉 ∈ p.Sint
σ′ = σ[n[i] 7→ δ′]

〈σ,M〉 ×
==⇒
int
〈σ′,M〉

SRStepSend
i ∈ I n ∈ dom(σ)

δ = σ(n)[i] 〈δ, δ′,ms〉 ∈ p.Ssnd
σ′ = σ[n[i] 7→ δ′] M ′ = M ∪ms[slot 7→ i]

〈σ,M〉 ×
===⇒
snd

〈σ′,M ′〉

SRStepReceive
m ∈M m.active m.to ∈ dom(σ) δ = σ(m.to)[m.slot ] 〈δ,m, δ′〉 ∈ p.Srcv
m′ = m[active 7→ False] σ′ = σ(n)[m.slot 7→ δ′] M ′ = M \ {m} ∪

{
m′
}

〈σ,M〉 ×
===⇒
rcv
〈σ′,M ′〉

Figure 14. Transition rules of the slot-replicating network semantics.

5.3 Slot-Replicating Network Semantics.

With the basic definitions at hand, we now proceed to describing alternative net-
work behaviours that make use of a specific protocol p = 〈∆,M,Sint,Srcv,Ssnd〉,
which we will consider to be fixed for the remainder of this section, so we will
be at times referring to its components (e.g., Sint, Srcv, etc) without a qualifier.

Figure 14 describes a semantics of a slot-replicating (SR) network that exer-
cises multiple copies of the same protocol instance pi for i ∈ I, some, possibly
infinite, set of indices, to which we will be also referring as slots. Multiple copies
of the protocol are incorporated by enhancing the messages from p’s vocabulary
M with the corresponding indices, and implementing the on-site dispatch of the
indexed messages to corresponding protocol instances at each node. The local
protocol state of each node is, thus, no longer a single element being updated,
but rather an array, mapping i ∈ I into δi—the corresponding local state com-

ponent. The small-step relation for SR semantics is denoted by
×

=⇒. The rule

SRStepInt is similar to StepInt of the simple semantics, with the difference
that it picks not only a node but also an index i, thus referring to a specific
component σ(n)[i] as δ and updating it correspondingly (σ(n)[i] 7→ δ′). For the
remaining transitions, we postulate that the messages from p’s vocabulary p.M
are enhanced to have a dedicated field slot , which indicates a protocol copy at
a node, to which the message is directed. The receive-rule SRStepReceive is
similar to StepReceive but takes into the account the value of m.slot in the
received message m, thus redirecting it to the corresponding protocol instance
and updating the local state appropriately. Finally, the rule SRStepSend can
be now executed for any slot i ∈ I, reusing most of the logic of the initial protocol
and otherwise mimicking its simple network semantic counterpart StepSend.

Importantly, in this semantics, for two different slots i, j, such that i 6= j,
the corresponding “projections” of the state behave independently from each
other. Therefore, transitions and messages in the protocol instances indexed by
i at different nodes do not interfere with those indexed by j. This observation
can be stated formally. In order to do so we first defined the behaviours of
slot-replicating networks and their projections as follows:



20 Garćıa-Pérez et al.

Definition 2 (Slot-replicating protocol behaviours).

B× =
⋃
m∈N

〈〈σ0,M0〉, . . . , 〈σm,Mm〉〉

∣∣∣∣∣∣∣
∃δn∈N0 ∈ ∆0,
σ0 =

⊎
n∈N [n 7→ {i 7→ δn0 | i ∈ I}] ∧

〈σ0,M0〉
p

=⇒ . . .
p

=⇒ 〈σm,Mm〉


That is, the slot-replicated behaviours are merely behaviours with respect to
networks, whose nodes hold multiple instances of the same protocol, indexed by
slots i ∈ I. For a slot i ∈ I, we define projection B×|i as a set of global state
traces, where each node’s local states is restricted only to its ith component.
The following simulation lemma holds naturally, connecting the state-replicating
network semantics and simple network semantics.

Lemma 2 (Slot-replicating simulation). For all I, i ∈ I, B×|i = Bp.

Example 3 (Slot-replicating semantics and Paxos). Given our representation of
Paxos using roles (acceptors/proposers) encoded via the corresponding parts of
the local state δ, we can construct a “näıve” version of Multi-Paxos by using
the SR semantics for the protocol. In such, every slot will correspond to a SD
Paxos instance, not interacting with any other slots. From the practical per-
spective, such an implementation is rather non-optimal, as it does not exploit
dependencies between rounds accepted at different slots.

5.4 Widening Network Semantics.

We next consider a version of the SR semantics, extended with a new rule for
handling received messages. In the new semantics, dubbed widening, a node,
upon receiving a message m ∈ T , where T ⊆ p.M, for a slot i, replicates it for
all slots from the index set I, for the very same node. The new rule is as follows:

WStepReceiveT
m ∈M m.active m.to ∈ dom(σ) δ = σ(m.to)[m.slot ]

〈δ,m, δ′〉 ∈ p.Srcv m′ = m[active 7→ False] σ′ = σ(n)[m.slot 7→ δ′]
ms = if (m ∈ T ) then

{
m′ | m′ = m[slot 7→ j], j ∈ I

}
else ∅

〈σ,M〉 ∇
===⇒
rcv
〈σ′, (M \ {m}) ∪

{
m′
}
∪ms〉

At first, this semantics seems rather unreasonable: it might create more messages
than the system can “consume”. However, it is possible to prove that, under
certain conditions on the protocol p, the set of behaviours observed under this
semantics (i.e., with SRStepReceive replaced by WStepReceiveT) is not
larger than B× as given by Definition 2. To state this formally we first relate the
set of “triggering” messages T from WStepReceiveT to a specific predicate P.

Definition 3 (OTA-compliant message sets). The set of messages T ⊆
p.M is OTA-compliant with the predicate P iff for any b ∈ Bp and 〈σ,M〉 ∈ b,
if m ∈M , then P(σ(m.from),m).

In other words, the protocol p is relaxed enough to “justify” the presence of m in
the soup at any execution, by providing the predicate P, relating the message to
the corresponding sender’s state. Next, we use this definition to slot-replicating
and widening semantics via the following definition.
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Definition 4 (P-monotone protocols). A protocol p is P-monotone iff for
any, b ∈ B×, 〈σ,M〉 ∈ b, m, i = m.slot, and j 6= i, if P(σ(m.from)[i], \m) then
we have that P(σ(m.from)[j], \m), where \m “removes” the slot field from m.

Less formally, Definition 4 ensures that in a slot-replicated product × of a pro-
tocol p, different components cannot perform “out of sync” wrt. P. Specifically,
if a node in ith projection is related to a certain message \m via P, then any
other projection j of the same node will be P-related to this message, as well.

Example 4. This is a “non-example”. A version of slot-replicated SD-Paxos,
where we allow for arbitrary increments of the round per-slot at a same pro-
poser node (i.e., out of sync), would not be monotone wrt. P from Example 2.
In contrast, a slot-replicated product of SD-Paxos instances with fixed rounds is
monotone wrt. the same P.

Lemma 3. If T from WStepReceiveT is OTA-compliant with predicate P,
such that B p

=⇒∪ p,P
===⇒

ota

⊆ B p
=⇒ and p is P-monotone, then B ∇

=⇒ ⊆ B ×
=⇒.

Example 5 (Widening semantics and Paxos). The SD-Paxos instance as de-
scribed in Section 3 satisfies the refinement condition from Lemma 3. By taking
T = {m | m = {content = [RE, k]; . . .}} and using Lemma 3, we obtain the
refinement between widened semantics and SR semantics of Paxos.

5.5 Optimised Widening Semantics.

Our next step towards a realistic implementation of Multi-Paxos out of SD-
Paxos instances is enabled by an observation that in the widening semantics,
the replicated messages are always targeting the same node, to which the initial
message m ∈ T was addressed. This means that we can optimise the receive-step,
making it possible to execute multiple receive-transitions of the core protocol in
batch. The following rule OWStepReceiveT captures this intuition formally:

OWStepReceiveT
m ∈M m.active m.to ∈ dom(σ) 〈σ′,ms〉 = receiveAndAct(σ, n,m)

〈σ,M〉 ∇
∗

===⇒
rcv
〈σ′,M \ {m} ∪ {m[active 7→ False]} ∪ms〉

where receiveAndAct(σ, n,m) , 〈σ′,ms〉, such that ms =
⋃

j {m[slot 7→ j] | m ∈ msj} ,
∀j ∈ I, δ = σ(m.to)[j] ∧ 〈δj , \m, δ1j 〉 ∈ p.Srcv ∧ 〈δ1j , δ2j 〉 ∈ p.S∗int ∧ 〈δ2j , δ3j ,msj〉 ∈ p.Ssnd,
∀j ∈ I, σ′(m.to)[j] = δ3j .

In essence, the rule OWStepReceiveT blends several steps of the widening
semantics together for a single message: (a) it first receives the message and
replicates it for all slots at a destination node; (b) performs receive-steps for
the message’s replicas at each slot; (c) takes a number of internal steps, allowed
by the protocol’s Sint; and (d) takes a send-transition, eventually sending all
emitted message, instrumented with the corresponding slots.
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BStepRecvB
m ∈M m.active m.to ∈ dom(σ)
〈σ′,ms〉 = receiveAndAct(σ, n,m)

M ′ = M \ {m} ∪ {m[active 7→ False]}
m′ = bunch(ms,m.to,m.from)

〈σ,M〉 B
===⇒
rcv
〈σ′,M ′ ∪

{
m′
}
〉

BStepRecvU
m ∈M m.active m.to ∈ dom(σ)
m.msgs = ms M ′ = M \ {m} ∪ms

〈σ,M〉 B
===⇒
rcv
〈σ,M ′〉

where bunch(ms, n1, n2) = {msgs = ms; from = n1; to = n2; active = True} .

Figure 15. Added rules of the Bunching Semantics

Example 6. Continuing Example 5, with the same parameters, the optimising
semantics will execute the transitions of an acceptor, for all slots, triggered by
receiving a single [RE, k] message for a particular slot, sending back all the
results for all the slots, which might either agree to accept the value or reject it.

The following lemma relates the optimising and the widening semantics.

Lemma 4 (Refinement for OW semantics). For any b ∈ B ∇∗
=⇒ there exists

b′ ∈ B ∇
=⇒, such that b can be obtained from b′ by replacing sequences of con-

figurations [〈σk,Mk〉, . . . , 〈σk+m,Mk+m〉] that have just a single node n, whose
local state is affected in σk, . . . , σk+m, by [〈σk,Mk〉, 〈σk+m,Mk+m〉].

That is, behaviours in the optimised semantics are the same as in the widening
semantics, modulo some sequences of locally taken steps that are being “com-
pressed” to just the initial and the final configurations.

5.6 Bunching Semantics.

As the last step towards Multi-Paxos, we introduce the final network semantics

that optimises executions according to
∇∗
=⇒ described in previous section even fur-

ther by making a simple addition to the message vocabulary of a slot-replicated
SD Paxos—bunched messages. A bunched message simply packages together sev-
eral messages, obtained typically as a result of a “compressed” execution via the
optimised semantics from Section 5.5. We define two new rules for packaging and
“unpackaging” certain messages in Figure 15. The two new rules can be added to
enhance either of the versions of the slot-replicating semantics shown before. In
essence, the only effect they have is to combine the messages resulting in the exe-
cution of the corresponding steps of an optimised widening (via BStepRecvB),
and to unpackage the messages ms from a bunching message, adding them back
to the soup (BStepRecvU). The following natural refinement result holds:

Lemma 5. For any b ∈ B B
=⇒ there exists b′ ∈ B ∇∗

=⇒, such that b′ can be obtained

from b by replacing all bunched messages in b by their msgs-component.
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(
B

=⇒) (
p

===⇒
ota

) via Lm 1 refines (
p

=⇒)

via Lm 5 refines sim. via Lm 2 sim. via Lm 2

(
∇∗
==⇒) via Lm 4 refines (

∇
=⇒) via Lm 3 refines (

×
=⇒)

Figure 16. Refinement between different network semantics.

1 proposeM(val^ v, val v0) {

2 〈 assume(!(v0 = undef));

3 if (*v = undef) { *v := v0; }

4 return *v; 〉 }

5 val vM[1..∞] := undef;

6 getR(int s) { return &(vM[s]); }

7 proposeM(getR(1), v);

8 proposeM(getR(2), v);

Figure 17. Specification of Multi-Paxos and interaction via a register provider.

The rule BStepRecvU enables effective local caching of the bunched messages,
so they are processed on demand on the recipient side (i.e., by the per-slot
proposers), allowing the implementation to skip an entire round of Phase 1.

5.7 The Big Picture.

What exactly have we achieved by introducing the described above family of
semantics? As illustrated in Figure 16, all behaviours of the leftmost-topmost,
bunching semantics, which corresponds precisely to an implementation of Multi-
Paxos with an “amortised” Phase 1, can be transitively related to the corres-
ponding behaviours in the rightmost, vanilla slot-replicated version of a simple
semantics (via the correspondence from Lemma 1) by constructing the corres-
ponding refinement mappings [1], delivered by the proofs of Lemmas 3–5.

From the perspective of Rely/Guarantee reasoning, which was employed in
Section 4, the refinement result from Figure 16 justifies the replacement of a
semantics on the right of the diagram by one to the left of it, as all program-level
assertions will remain substantiated by the corresponding system configurations,
as long as they are stable (i.e., resilient wrt. transitions taken by nodes different
from the one being verified), which they are in our case.

6 Putting It All Together

We culminate our story of faithfully deconstructing and abstracting Paxos via
a round-based register, as well as recasting Multi-Paxos via a series of network
transformations, by showing how to implement the register-based abstraction
from Section 3 in tandem with the network semantics from Section 5 in order to
deliver provably correct, yet efficient, implementation of Multi-Paxos.

The crux of the composition of the two results—a register-based abstraction
of SD Paxos and a family of semantics-preserving network transformations—is
a convenient interface for the end client, so she could interact with a consensus
instance via the proposeM method in lines 1–4 of Figure 17, no matter with
which particular slot of a Multi-Paxos implementation she is interacting. To do
so, we propose to introduce a register provider—a service that would give a client
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a “reference” to the consensus object to interact with. Lines 6–7 of Figure 17
illustrate the interaction with the service provider, where the client requests two
specific slots, 1 and 2, of Multi-Paxos by invoking getR and providing a slot
parameter. In both cases the client proposes the very same value v in the two
instances that run the same machinery. (Notice that, except for the reference
to the consensus object, proposeM is identical to the proposeP on the right of
Figure 2, which we have verified wrt. linearisability in Section 3.)

The implementation of Multi-Paxos that we have in mind resembles the one
in Figures 3, 4 and 5 of Section 3, but where all the global data is provided by the
register provider and passed by reference. What differs in this implementation
with respect to the one in Section 3 and is hidden from the client is the semantics
of the network layer used by the bottom layer (cf. left part of Figure 2) of the
register-based implementation. The Multi-Paxos instances run (without chan-
ging the register’s code) over this network layer, which “overloads” the meaning
of the send/receive primitives from Figures 3 and 4 to follow the bunching
network semantics, described in Section 5.6.

Theorem 4. The implementation of Multi-Paxos that uses a register provider
and bunching network semantics refines the specification in Figure 17.

We implemented the register/network semantics in a proof-of-concept proto-
type written in Scala/Akka.6 We relied on the abstraction mechanisms of Scala,
allowing us to implement the register logic, verified in Section 4, separately from
the network middle-ware, which has provided a family of Semantics from Sec-
tion 5. Together, they provide a family of provably correct, modularly verified
distributed implementations, coming with a simple shared memory-like interface.

7 Related Work

Proofs of Linearisability via Rely/Guarantee. Our work builds on the
results of Boichat et al. [3], who were first to propose to a systematic decon-
struction of Paxos into read/write operations of a round-based register abstrac-
tion. We extend and harness those abstractions, by intentionally introducing
more non-determinism into them, which allows us to provide the first modular
(i.e., mutually independent) proofs of Proposer and Acceptor using Rely/Guar-
antee with linearisation points and prophecies. While several logics have been
proposed recently to prove linearisability of concurrent implementations using
Rely/Guarantee reasoning [14,18,19,26], none of them considers message-passing
distributed systems or consensus protocols.

Verification of Paxos-family Algorithms. Formal verification of different
versions of Paxos-family protocols wrt. inductive invariants and liveness has been
a focus of multiple verification efforts in the past fifteen years. To name just a
few, Lamport has specified and verified Fast Paxos [17] using TLA+ and its
accompanying model checker [32]. Chand et al. used TLA+ to specify and verify
Multi-Paxos implementation, similar to the one we considered in this work [5].

6 The code is available at https://github.com/certichain/protocol-combinators.

https://github.com/certichain/protocol-combinators


Paxos Consensus, Deconstructed and Abstracted 25

A version of SD-Paxos has been verified by Kellomaki using the PVS theorem
prover [13]. Jaskelioff and Merz have verified Disk Paxos in Isabelle/HOL [12].
More recently, Rahli et al. formalised an executable version of Multi-Paxos in
EventML [24], a dialect of NuPRL. Dragoi et al. [8] implemented and verified
SD-Paxos in the PSync framework, which implements a partially synchronised
model [7], supporting automated proofs of system invariants. Padon et al. have
proved the system invariants and the consensus property of both simple Paxos
and Multi-Paxos using the verification tool Ivy [22, 23].

Unlike all those verification efforts that consider (Multi-/Disk/Fast/. . .)Paxos
as a single monolithic protocol, our approach provides the first modular verifica-
tion of single-decree Paxos using Rely/Guarantee framework, as well as the first
verification of Multi-Paxos that directly reuses the proof of SD-Paxos.

Compositional Reasoning about Distributed Systems. Several recent
works have partially addressed modular formal verification of distributed sys-
tems. The IronFleet framework by Hawblitzel et al. has been used to verify both
safety and liveness of a real-world implementation of a Paxos-based replicated
state machine library and a lease-based shared key-value store [10]. While the
proof is structured in a modular way by composing specifications in a way similar
to our decomposition in Sections 3–4, that work does not address the linearisab-
ility and does not provide composition of proofs about complex protocols (e.g.,
Multi-Paxos) from proofs about its subparts

The Verdi framework for deductive verification of distributed systems [29,31]
suggests the idea of Verified System Transformers (VSTs), as a way to provide
vertical composition of distributed system implementation. While Verdi’s VSTs
are similar in its purpose and idea to our network transformations, they do not
exploit the properties of the protocol, which was crucial for us to verify Multi-
Paxos’s implementation.

The Disel framework [25,28] addresses the problem of horizontal composition
of distributed protocols and their client applications. While we do not compose
Paxos with any clients in this work, we believe its register-based specification
could be directly employed for verifying applications that use Paxos as its sub-
component, which is what is demonstrated by our prototype implementation.

8 Conclusion and Future Work

We have proposed and explored two complementary mechanisms for modu-
lar verification of Paxos-family consensus protocols [15]: (a) non-deterministic
register-based specifications in the style of Boichat et al. [3], which allow one to
decompose the proof of protocol’s linearisability into separate independent “lay-
ers”, and (b) a family of protocol-aware transformations of network semantics,
making it possible to reuse the verification efforts. We believe that the applic-
ability of these mechanisms spreads beyond reasoning about Paxos and its vari-
ants and that they can be used for verifying other consensus protocols, such as
Raft [21] and PBFT [4]. We are also going to employ network transformations to
verify implementations of Mencius [20], and accommodate more protocol-specific
optimisations, such as implementation of master leases and epoch numbering [6].
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A Proof Outline of Module Paxos

Proof (Theorem 1). By the following proof of linearisation. The following pre-
dicates state the relation that connects the concrete with the abstract state and
the invariant of Paxos:

AbsP ≡ abs_vP = vRC ∧ (abs_vP = undef ∨ abs_vP ∈ valsRC)
InvP ≡ valsRC ⊆ {v | ∃(i, b). ptp[i] = (b, v)}.

We consider actions (ProposeP1)

abs_vP = vP = undef ∧ v 6= undef ∧ v ∈ valsRC = V ∧
I = {i | ptp[i] = (true, v)} ∧ (

∧
i∈I abs_resP[i] = undef)

;

abs_vP = vP = v ∧ valsRC = V ∧
(
∧

i∈I(ptp[i] = (false, v) ∧ abs_resP[i] = v)),
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(ProposeP2)

abs_vP = vP = v ∧ v 6= undef ∧ I = {i | ptp[i] = (true, v)} ∧
(
∧

i∈I abs_resP[i] = undef)
;

abs_vP = vP = v ∧ (
∧

i∈I(ptp[i] = (false, v) ∧ abs_resP[i] = v)),

(ProposeP3)i

abs_vP = vP = undef ∧ v 6= undef ∧ v = ptp[i] ∧
I = {i | ptp[i] = (true, v)} ∧ (

∧
i∈I abs_resP[i] = undef)

;

abs_vP = vP = v ∧ (
∧

i∈I(ptp[i] = (false, v) ∧ abs_resP[i] = v)),

and (ProposeP4)i

abs_vP = vP = v ∧ v 6= undef ∧ I = {i | ptp[i] = (true, v)} ∧
(
∧

i∈I abs_resP[i] = undef) ∧ v′ 6= v ∧ v′ 6= undef ∧
ptp[i] = v′ ∧ abs_resP[i] = undef

;

abs_vP = vP = v ∧ (
∧

i∈I(ptp[i] = (false, v) ∧ abs_resP[i] = v)) ∧
ptp[i] = undef ∧ abs_resP[i] = v.

The guarantee relation for proposeP(v0) is

(ProposeP1) ∪ (ProposeP2) ∪ (ProposeP3)pid() ∪ (ProposeP4)pid(),

where pid() is the process identifier of the proposer, and the rely relation is

(ProposeP1) ∪ (ProposeP2) ∪
⋃

i 6=pid()((ProposeP3)i ∪ (ProposeP4)i).

1 val abs_vP := undef;

2 (bool × val) ptp[1..n] := undef;

3 single bool abs_resP[1..n] := undef;

4 proposeP(val v0) {

5 int k; bool res; val v;

6 assume(!(v0 = undef));

7
{
ptp[pid()] = undef ∧AbsP ∧ InvP

}
8 k := pid(); ptp[pid()] := (true, v0);

9
{
pid() = k ∧AbsP ∧ InvP

}
10 do {

11
{
pid() = ((k− 1) mod n) + 1 ∧AbsP ∧ InvP

}
12 〈 (res, v) := proposeRC(k, v0);

13 if (res) {

14 for (i := 1, i <= n, i++) {

15 if (ptp[i] = (true, v)) { lin(i); ptp[i] := (false, v); } }

16 if (!(v = v0)) { lin(pid()); ptp[pid()] := (false, v0); } }

17

{
( (res = true ∧ abs_vP = abs_resP[pid()] = v) ∨ res = false) ∧
ptp[pid()] = (false, v) ∧ pid() = k mod n ∧AbsP ∧ InvP

}
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18 〉

19

{
( (res = true ∧ abs_vP = abs_resP[pid()] = v) ∨ res = false) ∧
ptp[pid()] = (false, v) ∧ pid() = k mod n ∧AbsP ∧ InvP

}
20 k := k + n;

21

{
( (res = true ∧ abs_vP = abs_resP[pid()] = v) ∨ res = false) ∧
ptp[pid()] = (false, v) ∧ pid() = k mod n ∧AbsP ∧ InvP

}
22 } while (!res);

23

{
abs_vP = abs_resP[pid()] = v ∧
ptp[pid()] = (false, v) ∧ pid() = k mod n ∧AbsP ∧ InvP

}
24 return v; }

ut

B Proof Outline of Module Round-Based Con-
sensus

Proof (Theorem 2). By the following proof of linearisation. The following pre-
dicates state the abstract relation AbsRC between the concrete and the abstract
state in the instrumented implementation of Figure 8.

AbsRC ≡ abs_vRC = vRR ∧ abs_roundRC ≤ roundRR ∧
abs_valsRC = valsRR \ {undef}.

Variables vRR, roundRR and valsRR are respectively the decided value, the round
and the set of values from the module Round-Based Register. Predicate AbsRC
ensures that the abstract abs_vRC and concrete vRR coincide, that the abstract
round abs_roundRC is less or equal than the concrete roundRR, and that the
abstract abs_valsRC corresponds to the concrete valsRR minus undef.

The following predicate states the invariant InvRC of Round-Based Con-
sensus.

InvRC ≡ (abs_vRC = undef ∨ (v 6= undef ∧ abs_vRC = v ∧ v ∈ abs_valsRC)).

The invariant ensures that either no value has been decided yet (i.e. abs_vRC =
undef), or otherwise a value v 6= undef has been decided (i.e. abs_vRC = v) and
the abstract abs_valsRC contains v.

Now we define the rely and guarantee relations. We consider the actions
(ProposeRC1)k

abs_roundRC ≤ k = roundRR ∧ abs_vRC = undef ∧ abs_valsRC = V
;

abs_roundRC = roundRR = k ∧ abs_vRC = v ∧ v 6= undef ∧
abs_valsRC = V ∪ {v} ∧ abs_resRC = (true, v),

(ProposeRC2)k

abs_roundRC ≤ k = roundRR ∧ abs_vRC = v ∧ v 6= undef ∧
v ∈ abs_valsRC = V
;

abs_roundRC = roundRR = k ∧ abs_vRC = v ∧ v 6= undef ∧ abs_valsRC = V,
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(ProposeRC3)k

abs_roundRC = k ∧ roundRR = k′ ∧ k ≤ k′ ∧ abs_vRC = undef ∧
abs_valsRC = V
;

abs_roundRC = k ∧ roundRR = k′ ∧ abs_vRC = undef ∧ v 6= undef ∧
abs_valsRC = V ∪ {v},

and (ReadRC)k
roundRR ≤ k ; roundRR = k.

The guarantee relation for proposeRC(k, v0) is

(ProposeRC1)k ∪ (ProposeRC2)k ∪ (ProposeRC3)k ∪ (ReadRC)k,

and the rely relation is⋃
(kmodn)6=(kmodn)

((ProposeRC1)k ∪ (ProposeRC2)k ∪ (ProposeRC3)k ∪ (Read)k).

The proof outline below helps to show that if AbsRel∧Inv holds at the begin-
ning of the method invocation of the annotated program, then it also holds at the
end of the method invocation after the abstract operation has been performed
at the linearisation point, and that the abstract result abs_resRC coincides with
the result of the concrete method. It also helps to show that the method ensures
the guarantee relation, that is, the states between each atomic operation are
related by the guarantee condition.

1 val abs_vRC := undef;

2 int abs_roundRC := 0;

3 set of val abs_valsRC := {};

4 proposeRC(int k, val v0) {

5 single (bool × val) abs_resRC := undef;

6 bool res; val v;

7 assume(!(v0 = undef));

8 assume(pid() = ((k - 1) mod n) + 1;

9

{
pid() = ((k− 1) mod n) + 1 ∧ v0 6= undef ∧ abs_resRC = undef ∧
AbsRC ∧ InvRC

}
10 〈 (res, v) := read(k);

11 if (res = false) { linRC(undef, _); }

12


((res = true ∧ v = vRR ∧ vRR 6= undef ∧ k = roundRR)
∨ (resR = true ∧ v ∈ valsRR)
∨ (res = false ∧ abs_resRC = (false, _))) ∧

pid() = ((k− 1) mod n) + 1 ∧ v0 6= undef ∧AbsRC ∧ InvRC


13 〉

14


((res = true ∧ v = vRR ∧ vRR 6= undef ∧ k ≤ roundRR)
∨ (res = true ∧ v ∈ valsRR)
∨ (res = false ∧ abs_resRC = (false, _))) ∧

pid() = ((k− 1) mod n) + 1 ∧ v0 6= undef ∧AbsRC ∧ InvRC
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15 if (res) {

16

{
((v = vRR ∧ vRR 6= undef ∧ k ≤ roundRR) ∨ (v ∈ valsRR)) ∧
pid() = ((k− 1) mod n) + 1 ∧ v0 6= undef ∧AbsRC ∧ InvRC

}
17 if (v = undef) {

18

{
v = undef ∧ v ∈ valsRR ∧
pid() = ((k− 1) mod n) + 1 ∧ v0 6= undef ∧AbsRC ∧ InvRC

}
19 v := v0;

20

{
v = v0 ∧
pid() = ((k− 1) mod n) + 1 ∧ v0 6= undef ∧AbsRC ∧ InvRC

}
21 }

22

{
((v = vRR ∧ k ≤ roundRR) ∨ v ∈ valsRR ∨ v = v0) ∧
pid() = ((k− 1) mod n) + 1 ∧ v 6= undef ∧AbsRC ∧ InvRC

}
23 〈 res := write(k, v);

24 if (res) { linRC(v, true); }

25 else { linRC(v, false); }

26


((res = true ∧ vRR = v ∧ k = abs_roundRC = roundRR ∧
abs_resRC = (true, v))
∨ (res = false ∧ abs_resRC = false)) ∧

v ∈ valsRC ∧ pid() = ((k− 1) mod n) + 1 ∧AbsRC ∧ InvRC


27 〉

28


((res = true ∧ vRR = v ∧ k ≤ roundRR ∧ abs_resRC = (true, v))
∨ (res = false ∧ abs_resRC = (false, _))) ∧

v ∈ valsRC ∧ pid() = ((k− 1) mod n) + 1 ∧AbsRC ∧ InvRC


29 if (res) {

30

{
vRR = v ∧ k ≤ roundRR ∧ abs_resRC = (true, v) ∧
v ∈ valsRC ∧ pid() = ((k− 1) mod n) + 1 ∧AbsRC ∧ InvRC

}
31 return (true, v); } }

32
{
abs_resRC = (false, _) ∧ pid() = ((k− 1) mod n) + 1 ∧AbsRC ∧ InvRC

}
33 return (false, _); }

ut

C Proof Outline of Module Round-Based Re-
gister

Proof (Theorem 3). We use the predicates sent and received to represent the
state of the network. The predicate sent(i, j,m) is true iff process i sent message
m to process j. The predicate received(j, i,m) is true iff, in turn, process j
received message m from i.
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We introduce the following abbreviations for the state of the network:

sent(i, j,msg ,m) ≡ m ∈M ∧m.from = i ∧m.to = j ∧
m.content = msg

received(j, i,msg ,m) ≡ m ∈M ∧m.from = i ∧m.to = j ∧
m.content = msg ∧m.active = False

reqRE (i, j, k,m) ≡ sent(i, j, [RE, k],m) ∧
¬(∃(k′, v). sent(j, i, [ackRE, k, v, k′],m))

ackRE (j, i, k, v, k′,m) ≡ received(j, i, [RE, k],m) ∧
sent(j, i, [ackRE, k, v, k′],m)

reqWR(i, j, k, v,m) ≡ sent(i, j, [WR, k, v]),m) ∧
¬sent(j, i, [ackWR, k],m)

ackWR(j, i, k, v) ≡ received(j, i, [WR, k, v],m) ∧
sent(j, i, [ackWR, k],m)

In our proofs of linearisation we consider the following proof rules

{¬(∃m′. m′ = m ∧ sent(pid(), j,msg ,m′)) ∧ p}
send(j, msg)

{sent(pid(), j,msg ,m) ∧ p}

{¬(∃m′. m′ = m ∧ received(pid(), i,msg ,m′)) ∧ p}
(i, msg) := receive()

{sent(i, pid(),msg ,m) ∧ received(pid(), i,msg ,m) ∧ i = i ∧ msg = msg ∧ p}

,

which are sound under the network semantics of Section 5 and under the oper-
ational semantics of our pseudo-code that we outline in Appendix D.

The following abbreviations express the invariant that connects the auxili-
ary variables count_r and count_w with the cardinality of the corresponding
quorums.

CountR(k) ≡ count_r[k] =
|{j | ∃(k′, v.m). ackRE (j, ((k − 1) mod n) + 1, k, v, k′,m)}|

CountW (k) ≡ count_w[k] =
|{j | ∃(v,m). ackWR(j, ((k − 1) mod n) + 1, k, v,m)}|

Count(k) ≡ CountR(k) ∧ CountW (k)

The following predicates state the abstract relation AbsRR between the con-
crete and the abstract state in the instrumented implementation of Figures 10
and 11.
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AbsV (v, k) ≡ (abs_vRR = v 6= undef ∧ k = abs_roundRR)
=⇒ ∃Q. (|Q| ≥ d(n+ 1)/2e ∧

∀j ∈ Q. ∃m. ackWR(j, ((k − 1) mod n) + 1, k, v,m))
AbsVals(v) ≡ v ∈ abs_valsRR

=⇒ (v = undef

∨ ∃(j, k,m). reqWR(((k − 1) mod n) + 1, j, k, v,m))
AbsRound(k) ≡ abs_roundRR = k = 0

∨ (abs_roundRR = max{k | count_w[k] ≥ d(n+ 1)/2e
∨ count_r[k] ≥ d(n+ 1)/2e})

AbsRR ≡ ∀(v, k). (AbsV (v, k) ∧AbsVals(v) ∧AbsRound(k))

The following predicates state the invariant InvRR of Round-Based Register.

Read(j, k) ≡ j.r = k > 0
=⇒ (∃(v,m). ackWR(j, ((k − 1) mod n) + 1, k, v,m)

∨ ∃(k′,m). ackRE (j, ((k − 1) mod n) + 1, k, v, k′,m))
Val(j, v) ≡ j.v = v 6= undef

⇐⇒ ∃(k,m). ackWR(j, ((k − 1) mod n) + 1, k, v,m)
ProphR1 (k) ≡ (proph_r[k] = (k′, v) ∧ count_r[k] ≥ d(n+ 1)/2e)

=⇒ abs_res_r[k] = (true, v)
ProphR2 (k) ≡ proph_r[k] = (false, _) =⇒ abs_res_r[k] = undef

ProphW1 (k) ≡ (proph_w[k] = true ∧ count_w[k] ≥ d(n+ 1)/2e)
=⇒ abs_res_w[k] = true

ProphW2 (k) ≡ (proph_w[k] = false ∧ count_w[k] > 0)
=⇒ abs_res_w[k] = false

ProphW3 (k) ≡ (proph_w[k] = false ∧ count_w[k] = 0)
=⇒ abs_res_w[k] = undef

Proph(k) ≡ ProphR1 (k) ∧ ProphR2 (k) ∧
ProphW1 (k) ∧ ProphW2 (k) ∧ ProphW3 (k)

InvRR ≡ ∀(j, k, v). (j.r ≥ j.w ∧ Read(j, k) ∧
Val(j, v) ∧ Count(k) ∧ Proph(k)).

The proof of Theorem 3 involves two proofs of linearisation for read and
write respectively, and one proof proving that the code of acceptors meets the
invariant AbsRR ∧ InvRR.

Now we define the rely and guarantee relations. We consider three kinds of
actors in the system corresponding to each of the proofs: reader, writer, and
acceptor. We define first the guarantee relations for each of the actors, and then
we express the rely relation for each actor as a combination of the guarantee
relations of the other actors. Consider the actions (Send)(i,j,msg)

m.from = i ∧m.to = j ∧m.content = msg ; sent(i, j,msg ,m),

and (Receive)(j,i,msg)

m.from = i ∧m.to = j ∧m.content = msg ∧ ¬(received(j, i,msg ,m))
; sent(i, j,msg ,m) ∧ received(j, i,msg ,m),
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which model sending and receiving a message.

A reader can also perform actions (ReadFails1)k

received(i, j, [nackRE’, k]),m) ∧ i = ((k − 1) mod n) + 1 ∧
proph_r[k] = (false, _) ∧ abs_res_r[k] = undef ∧ k ≥ abs_roundRR

;

received(i, j, [nackRE’, k],m) ∧ proph_r[k] = undef ∧
abs_res_r[k] = (false, _) ∧ abs_roundRR = k

and (ReadFails2)k

received(i, j, [nackRE, k],m) ∧ i = ((k − 1) mod n) + 1 ∧
proph_r[k] = (false, _) ∧ abs_res_r[k] = undef ∧ k < abs_roundRR = k′

;

received(i, j, [nackRE, k],m) ∧ proph_r[k] = undef ∧
abs_res_r[k] = (false, _) ∧ abs_roundRR = k′.

The guarantee relation of read(k) is the one induced by the union of these
actions as follows:

(Reader)k ≡
⋃

j(Send)((kmodn)+1,j,[RE,k]) ∪⋃
j,v,k′( (Receive)((kmodn)+1,j,[ackRE,k,v,k′]) ∪

(Receive)((kmodn)+1,j,[nackRE,k])) ∪
(ReadFails1)k ∪ (ReadFails2)k.

Now we focus on a writer, which, additionally to sending reads and receiving
acknowledgements, can perform action (WriteFails1)(k,v)

received(i, j, [nackWR, k],m) ∧ i = ((k − 1) mod n) + 1 ∧ v 6= undef ∧
proph_w[k] = false ∧ abs_valsRR = V ∧ count_w[k] = 0 ∧
abs_res_w[k] = undef

;

received(i, j, [nackWR, k],m) ∧ i = (k mod n) + 1 ∧
proph_w[k] = undef ∧ abs_valsRR = V ∪ {v} ∧ count_w[k] = 0 ∧
abs_res_w[k] = false.

The guarantee relation of write(k, v) is the one induced by the union of
these actions as follows:

(Writer)(k,v) ≡
⋃

j(Send)(((k−1)modn)+1,j,[WR,k,v]) ∪⋃
j( (Receive)(((k−1)modn)+1,j,[ackWR,k]) ∪

(Receive)(((k−1)modn)+1,j,[nackWR,k])) ∪
(WriteFails1)(k,v).
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Now to the acceptors, which can receive read and write requests and send non-
acknowledgements to them. They can also perform actions (ReadSucceeds1)j

reqRE (i, j, k,m) ∧ i = ((k − 1) mod n) + 1 ∧ k ≥ j.r ∧
abs_res_r[k] = undef ∧ proph_r[k] = (true, v) ∧ v ∈ abs_valsRR = V ∧
count_r[k] = c = d(n+ 1)/2e − 1 ∧ k ≥ abs_roundRR

;

ackRE (j, i, k, j.v, j.w,m) ∧ j.r = k ∧ count_r[k] = c+ 1 ∧
proph_r[k] = (true, v) ∧ abs_roundRR = k ∧ abs_valsRR = V ∧
abs_res_r[k] = (true, v),

(ReadSucceeds2)j

reqRE (i, j, k,m) ∧ i = ((k − 1) mod n) + 1 ∧ k ≥ j.r ∧
abs_res_r[k] = undef ∧ proph_r[k] = (true, v) ∧ v ∈ abs_valsRR = V ∧
count_r[k] = c = d(n+ 1)/2e − 1 ∧ k < abs_roundRR = r
;

ackRE (j, i, k, j.v, j.w,m) ∧ j.r = k ∧ count_r[k] = c+ 1 ∧
proph_r[k] = (true, v) ∧ abs_roundRR = r ∧ abs_valsRR = V ∧
abs_res_r[k] = (true, v),

(AckRead1)j

reqRE (i, j, k,m) ∧ i = ((k − 1) mod n) + 1 ∧ k ≥ j.r ∧
count_r[k] = c 6= d(n+ 1)/2e − 1
;

ackRE (j, i, k, j.v, j.w,m) ∧ j.r = k ∧ count_r[k] = c+ 1,

(AckRead2)j

reqRE (i, j, k,m) ∧ i = ((k − 1) mod n) + 1 ∧ k ≥ j.r ∧
count_r[k] = c ∧ proph_r[k] = p 6= (true, v)
;

ackRE (j, i, k, j.v, j.w,m) ∧ j.r = k ∧ count_r[k] = c+ 1 ∧
proph_r[k] = p,

(AckRead3)j

reqRE (i, j, k,m) ∧ i = ((k − 1) mod n) + 1 ∧ k ≥ j.r ∧
count_r[k] = c ∧ abs_res_r[k] = ar 6= undef

;

ackRE (j, i, k, j.v, j.w,m) ∧ j.r = k ∧ count_r[k] = c+ 1 ∧
abs_res_r[k] = ar ,



36 Garćıa-Pérez et al.

(WriteSucceeds)j

reqWR(i, j, k, v,m) ∧ i = ((k − 1) mod n) + 1 ∧ v 6= undef ∧ k ≥ j.r ∧
abs_valsRR = V ∧ abs_res_w[k] = undef ∧ proph_w[k] = true ∧
count_w[k] = c = d(n+ 1)/2e − 1 ∧ k ≥ abs_roundRR

;

ackWR(j, i, k, v,m) ∧ j.r = k ∧ j.w = k ∧ j.v = v ∧
count_w[k] = c+ 1 ∧ proph_w[k] = true ∧ abs_valsRR = V ∪ {v} ∧
abs_roundRR = k ∧ abs_vRR = v ∧ abs_res_w[k] = true,

(AckWrite1)j

reqWR(i, j, k, v,m) ∧ i = ((k − 1) mod n) + 1 ∧ v 6= undef ∧ k ≥ j.r = r ∧
abs_res_w[k] = undef ∧ proph_w[k] = true ∧
count_w[k] = c 6= d(n+ 1)/2e − 1
;

ackWR(j, i, k, v,m) ∧ j.r = k ∧ j.w = k ∧ j.v = v ∧
count_w[k] = c+ 1 ∧ proph_w[k] = true ∧ abs_res_w[k] = undef,

(WriteFails2)j

reqWR(i, j, k, v,m) ∧ i = ((k − 1) mod n) + 1 ∧ v 6= undef ∧ k ≥ j.r = r ∧
abs_res_w[k] = undef ∧ proph_w[k] = false ∧ v ∈ abs_valsRR = V ∧
count_w[k] = c
;

ackWR(j, i, k, v,m) ∧ j.r = k ∧ j.w = k ∧ j.v = v ∧ abs_valsRR = V ∪ {v} ∧
count_w[k] = c+ 1 ∧ proph_w[k] = false ∧ abs_res_w[k] = false,

(AckWrite2)j

reqWR(i, j, k, v,m) ∧ i = ((k − 1) mod n) + 1 ∧ v 6= undef ∧ k ≥ j.r = r ∧
abs_res_w[k] = ar ∧ proph_w[k] = undef ∧ count_w[k] = c
;

ackWR(j, i, k, v,m) ∧ j.r = k ∧ j.w = k ∧ j.v = v ∧
count_w[k] = c+ 1 ∧ proph_w[k] = undef ∧ abs_res_w[k] = ar ,

and (AckWrite3)j

reqWR(i, j, k, v,m) ∧ i = ((k − 1) mod n) + 1 ∧ v 6= undef ∧ k ≥ j.r = r ∧
abs_res_w[k] = ar 6= undef ∧ proph_w[k] = p ∧ count_w[k] = c
;

ackWR(j, i, k, v,m) ∧ j.r = k ∧ j.w = k ∧ j.v = v ∧
count_w[k] = c+ 1 ∧ proph_w[k] = p ∧ abs_res_w[k] = ar .
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The guarantee relation for the code of acceptor j is the one induced by the
union of these actions as follows:

(Acceptor)j ≡
⋃

k( (Receive)(j,((k−1)modn)+1,[RE,k]) ∪
(Send)(((k−1)modn)+1,j,[nackRE,k])) ∪
(Send)(((k−1)modn)+1,j,[nackWR,k])) ∪⋃

k,v 6=undef((Receive)(j,((k−1)modn)+1,[WR,k,v])) ∪
(ReadSucceeds2)j ∪ (AckRead1)j ∪ (AckRead2)j ∪
(AckRead3)j∪
(WriteSucceeds)j ∪ (AckWrite1)j ∪ (WriteFails2)j ∪
(AckWrite2)j ∪ (AckWrite3)j .

The rely relation for both read(k) and write(k, vW) is⋃
j(Acceptor)j ∪

⋃
k 6=k(Reader)k ∪

⋃
k 6=k,v 6=undef(Writer)(k,v),

and rely relation for the code of acceptor j is⋃
j 6=j(Acceptor)j ∪

⋃
k(Reader)k ∪

⋃
k,v 6=undef(Writer)(k,v).

The proof outline below helps to show that if AbsRR ∧ InvRR holds at the
beginning of a method invocation, for both read(k) and write(k, vW), then
it also holds and the end of the method invocation after the abstract opera-
tion has been performed at the linearisation point, and that the abstract result
(abs_res_r[k] and abs_res_w[k] respectively) coincide with the result of the
concrete method. It also helps to show that each method ensures the corres-
ponding guarantee relation, this is, the states between any atomic operation are
in the guarantee relation.

1 val abs_vRR := undef;

2 int abs_round := 0;

3 set of val abs_valsRR := {undef};

4 val abs_res_r[1..∞] := undef;

5 val abs_res_w[1..∞] := undef;

6 int count_r[1..∞] := 0;

7 int count_w[1..∞] := 0;

8 (bool × val) proph_r[1..∞] := undef;

9 bool proph_w[i..∞] := undef;

10
11 read(int k) {

12 int j; val v; int kW; val maxV; int maxKW; set of int Q; msg m;

13 assume(pid() = ((k - 1) mod n) + 1);

14 {pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR}
15 〈 if (operation reaches PL: RE_SUCC and define v = maxV at that time) {

16 proph_r[k] := (true, v); }

17 else { if (operation reaches PL: RE_FAIL) {

18 proph_r[k] := (false, _); } } 〉
19 {pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR}
20 for (j := 1, j <= n, j++) { send(j, [RE, k]); }

21 {pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR}
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22 maxKW := 0; maxV := undef; Q := {};

23

{
maxKW = 0 ∧ maxV = undef ∧
count_r[k] ≥ |Q| ∧ pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR

}
24 do {

25


maxKW = max({k′ | ∃(j, v,m). j ∈ Q ∧ ackRE(j, i, k, v, k′,m)} ∪ {0}) ∧
(maxKW = 0 ∨ (∃(j,m). j ∈ Q ∧ ackRE(j, i, k, maxV, maxKW,m)) ∧
count_r[k] ≥ |Q| ∧ i = pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR


26 (j, m) := receive();

27


sent(j, i, m,m) ∧ received(i, j, m,m) ∧
maxKW = max({k′ | ∃(j, v,m). j ∈ Q ∧ ackRE(j, i, k, v, k′,m)} ∪ {0}) ∧
(maxKW = 0 ∨ (∃(j,m). j ∈ Q ∧ ackRE(j, i, k, maxV, maxKW,m)) ∧
count_r[k] > |Q| ∧ i = pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR


28 switch (m) {

29 case [ackRE, @k, v, kW]:

30


ackRE(j, i, k, v, kW,m) ∧
maxKW = max({k′ | ∃(j, v,m). j ∈ Q ∧ ackRE(j, i, k, v, k′,m)} ∪ {0}) ∧
(maxKW = 0 ∨ (∃(j,m). j ∈ Q ∧ ackRE(j, i, k, maxV, maxKW,m)) ∧
count_r[k] > |Q| ∧ i = pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR


31 Q := Q ∪ {j};

32


j ∈ Q ∧ ackRE(j, i, k, v, kW,m) ∧
maxKW = max({k′ | ∃(j, v,m). j ∈ Q ∧ ackRE(j, i, k, v, k′,m)} ∪ {0}) ∧
(maxKW = 0 ∨ (∃(j,m). j ∈ Q ∧ ackRE(j, i, k, maxV, maxKW,m)) ∧
count_r[k] ≥ |Q| ∧ i = pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR


33 if (kW >= maxKW) {

34


kW ≥ maxKW ∧ j ∈ Q ∧ ackRE(j, i, k, v, kW,m) ∧
maxKW = max({k′ | ∃(j, v,m). j ∈ Q ∧ ackRE(j, i, k, v, k′,m)} ∪ {0}) ∧
(maxKW = 0 ∨ (∃(j,m). j ∈ Q ∧ ackRE(j, i, k, maxV, maxKW,m)) ∧
count_r[k] ≥ |Q| ∧ i = pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR


35 maxKW := kW; maxV := v;

36


maxKW = kW ∧ maxV = v ∧ j ∈ Q ∧ ackRE(j, i, k, v, kW,m) ∧
maxKW = max({k′ | ∃(j, v,m). j ∈ Q ∧ ackRE(j, i, k, v, k′,m)} ∪ {0}) ∧
(maxKW = 0 ∨ (∃(j,m). j ∈ Q ∧ ackRE(j, i, k, maxV, maxKW,m)) ∧
count_r[k] ≥ |Q| ∧ i = pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR


37 }

38


j ∈ Q ∧ ackRE(j, i, k, v, kW,m) ∧
maxKW = max({k′ | ∃(j, v,m). j ∈ Q ∧ ackRE(j, i, k, v, k′,m)} ∪ {0}) ∧
(maxKW = 0 ∨ (∃(j,m). j ∈ Q ∧ ackRE(j, i, k, maxV, maxKW,m)) ∧
count_r[k] ≥ |Q| ∧ i = pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR


39 case [nackRE, @k]:

40


proph_r[k] = (false, _) ∧ abs_res_r[k] = undef ∧
maxKW = max({k′ | ∃(j, v,m). j ∈ Q ∧ ackRE(j, i, k, v, k′,m)} ∪ {0}) ∧
(maxKW = 0 ∨ (∃(j,m). j ∈ Q ∧ ackRE(j, i, k, maxV, maxKW,m)) ∧
count_r[k] ≥ |Q| ∧ i = pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR


41 〈 linRE(k, undef, false); proph_r[k] := undef;

42 return (false, _); 〉 // PL: RE_FAIL

43 }



Paxos Consensus, Deconstructed and Abstracted 39

44


j ∈ Q ∧ ackRE(j, i, k, v, kW,m) ∧
maxKW = max({k′ | ∃(j, v,m). j ∈ Q ∧ ackRE(j, i, k, v, k′,m)} ∪ {0}) ∧
(maxKW = 0 ∨ (∃(j,m). j ∈ Q ∧ ackRE(j, i, k, maxV, maxKW,m)) ∧
count_r[k] ≥ |Q| ∧ i = pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR


45 if (|Q| = d(n+1)/2e) {

46


proph_r[k] = (true, maxV) ∧ j ∈ Q ∧ ackRE(j, i, k, v, kW,m) ∧
maxKW = max({k′ | ∃(j, v,m). j ∈ Q ∧ ackRE(j, i, k, v, k′,m)} ∪ {0}) ∧
(maxKW = 0 ∨ (∃(j,m). j ∈ Q ∧ ackRE(j, i, k, maxV, maxKW,m)) ∧
count_r[k] ≥ |Q| ∧ i = pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR


47 return (true, maxV); // PL: RE_SUCC

48 }

49


maxKW = max({k′ | ∃(j, v,m). j ∈ Q ∧ ackRE(j, i, k, v, k′,m)} ∪ {0}) ∧
(maxKW = 0 ∨ (∃(j,m). j ∈ Q ∧ ackRE(j, i, k, maxV, maxKW,m)) ∧
count_r[k] ≥ |Q| ∧ i = pid() = ((k− 1) mod n) + 1 ∧AbsRR ∧ InvRR


50 } while (true); }

51
52 write(int k, val vW) {

53 int j; set of int Q; msg m;

54 assume(!(vW = undef));

55 assume(pid() = ((k - 1) mod n) + 1);

56 {pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR}
57 〈 if (operation reaches PL: WR_SUCC) { proph_w[k] := true; }

58 else { if (operation reaches PL: WR_FAIL) {

59 proph_w[k] := false; } } 〉
60 {pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR}
61 for (j := 1, j <= n, j++) { send(j, [WR, k, vW]); }

62 {pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR}
63 Q := {};

64 {count_w[k] ≥ |Q| ∧ pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR}
65 do {

66 {count_w[k] ≥ |Q| ∧ pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR}
67 (j, m) := receive();

68

{
sent(j, i, m) ∧ received(i, j, m) ∧ count_w[k] ≥ |Q| ∧
i = pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR

}
69 switch (m) {

70 case [ackWR, @k]:

71

{
ackWR(j, i, k, vW) ∧ count_w[k] > |Q| ∧
i = pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR

}
72 Q := Q ∪ {j};

73

{
ackWR(j, i, k, vW) ∧ count_w[k] ≥ |Q| ∧
i = pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR

}
74 case [nackWR, @k]:

75

{
proph_r[k] = fail ∧ count_w[k] ≥ |Q| ∧
pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR

}
76 〈 if (count_w[k] = 0) {

77 linWR(k, vW, false); proph_w[k] := undef; }

78 return false; 〉 // PL: WR_FAIL

79 }

80 {count_w[k] ≥ |Q| ∧ pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR}
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81 if (|Q| = d(n+1)/2e) {

82

{
proph_r[k] = true ∧ count_w[k] ≥ d(n+ 1)/2e ∧
pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR

}
83 return true; // PL: WR_SUCC

84 }

85 {count_w[k] ≥ |Q| ∧ pid() = ((k− 1) mod n) + 1 ∧ vW 6= undef ∧AbsRR ∧ InvRR}
86 } while (true); }

The proof outline below helps to show that the code of each process acceptor
meets the invariant AbsRR∧InvRR and also ensures the guarantee relation, this
is, the states between any atomic operation are in the corresponding guarantee
relation.

1 process Acceptor(int j) {

2 val v := undef; int r := 0; int w := 0;

3 start() {

4 int i; msg m; int k;

5 do {

6 {pid() = j ∧AbsRR ∧ InvRR}
7 (i, m) := receive();

8

{
sent(i, j, m,m) ∧ received(j, i, m,m) ∧
i = ((k− 1) mod n) + 1 ∧ pid() = j ∧AbsRR ∧ InvRR

}
9 switch (m) {

10 case [RE, k]:

11 {reqRE(i, j, k,m) ∧ i = ((k− 1) mod n) + 1 ∧ pid() = j ∧AbsRR ∧ InvRR}
12 if (k < r) {

13

{
k < r ∧ reqRE(i, j, k,m) ∧
i = ((k− 1) mod n) + 1 ∧ pid() = j ∧AbsRR ∧ InvRR

}
14 send(i, [nackRE, k]);

15

{
sent(j, i, (‘nackRE’, k, _, _),m) ∧ k < r ∧ reqRE(i, j, k,m) ∧
i = ((k− 1) mod n) + 1 ∧ pid() = j ∧AbsRR ∧ InvRR

}
16 }

17 else {

18

{
k ≥ r ∧ reqRE(i, j, k,m) ∧
i = ((k− 1) mod n) + 1 ∧ pid() = j ∧AbsRR ∧ InvRR

}
19 〈 r := k;

20 if (abs_res_r[k] = undef) {

21 if (proph_r[k] = (true, v)) {

22 if (count_r[k] = d(n+1)/2e - 1) {

23 linRE(k, v, true); } } }

24 count_r[k]++; send(i, [ackRE, k, v, w]);

25



((count_r[k] = d(n+ 1)/2e ∧ proph_r[k] = (true, v) ∧
abs_roundRR ≤ k ∧ abs_vRR = v ∧ abs_res_r[k] = (true, v))
∨ ((count_r[k] 6= d(n+ 1)/2e ∨ proph_r[k] 6= (true, _)) ∧

abs_res_r[k] = undef))
∨ abs_res_r[k] 6= undef) ∧
count_r[k] > 0 ∧ r = k ∧ ackRE(j, i, k, v, w,m) ∧
i = ((k− 1) mod n) + 1 ∧ pid() = j ∧AbsRR ∧ InvRR


26 〉
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27 }

28 {pid() = j ∧AbsRR ∧ InvRR}
29 case [WR, k, vW]:

30

{
reqWR(i, j, k, vW,m) ∧ vW 6= undef ∧
i = ((k− 1) mod n) + 1 ∧ pid() = j ∧AbsRR ∧ InvRR

}
31 if (k < r) {

32

{
k < r ∧ reqWR(i, j, k, vW,m) ∧ vW 6= undef ∧
i = ((k− 1) mod n) + 1 ∧ pid() = j ∧AbsRR ∧ InvRR

}
33 send(j, i, [nackWR, k]);

34

{
sent(j, i, [nackWR, k],m) ∧ k < r ∧ reqWR(i, j, k, vW,m) ∧
vW 6= undef ∧ i = ((k− 1) mod n) + 1 ∧ pid() = j ∧AbsRR ∧ InvRR

}
35 }

36 else {

37

{
k ≥ r ∧ reqWR(i, j, k, vW,m) ∧ vW 6= undef ∧
i = ((k− 1) mod n) + 1 ∧ pid() = j ∧AbsRR ∧ InvRR

}
38 〈 r := k; w := k; v := vW;

39 if (abs_res_w[k] = undef) {

40 if (!(proph_w[k] = undef)) {

41 if (proph_w[k]) {

42 if (count_w[k] = d(n+1)/2e - 1) {

43 linWR(k, vW, true); } }

44 else { linWR(k, vW, false); } } }

45 count_w[k]++; send(j, i, [ackWR, k]);

46



((count_w[k] = d(n+ 1)/2e ∧ proph_w[k] = true ∧
abs_roundRR ≥ k ∧ abs_vRR = vW ∧ abs_res_w[k] = true)
∨ (count_w[k] 6= d(n+ 1)/2e ∧ proph_w[k] = true ∧

abs_res_w[k] = undef)
∨ (proph_w[k] = false ∧ abs_res_w[k] = false)
∨ proph_w[k] = undef ∨ abs_res_w[k] 6= undef) ∧

count_w[k] > 0 ∧ r = w = k ∧ v = vW ∧ ackWR(j, i, k, vW,m) ∧
vW 6= undef ∧ i = ((k− 1) mod n) + 1 ∧ pid() = j ∧AbsRR ∧ InvRR


47 〉
48 }

49 {pid() = j ∧AbsRR ∧ InvRR}
50 }

51 {pid() = j ∧AbsRR ∧ InvRR}
52 } while (true); }

53 }

ut

D Encoding SD-Paxos as an Abstract Protocol
Let Prog be the set of programs of a language that subsumes the imperative
while language for our pseudo-code in Sections 3 and 4, and which adds a parallel
composition operator ‖, which is commutative and associative, and a null process
0, which is the neutral element of ‖. The semantics of the parallel composition
operator that we need here is very simplistic and it does not pose any issue
regarding the interaction of the components within the parallel composition.
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(The interaction will be implemented on top of this operational semantics by the
network semantics of the abstract distributed protocols introduced in Section 5.)
The only purpose of ‖ here is to have processes that adopt both the roles of
acceptor and proposer, and to allow any of these two roles to make a move. The
language Prog is morally a sequential programming language.

We let Nodes = N be the set of natural numbers, and M.content be the
set of contents of the messages in the message vocabulary M, which contains
requests for read and write, and their corresponding acknowledgements and non-
acknowledgements as described in Section 3.

Now we assume a small-step operational semantics à la Winskel [30] for the

programs in Prog. We let the relation
i

==⇒
int

: (Prog×∆nod)×(Prog×∆nod) be given

by the operational semantics of a program run by node i whose current program
line is not any of the network operations send or receive and where ∆nod is the

set of local states. We fix relations
i

===⇒
snd

: (Prog×∆nod)× (Prog×∆nod×M) and

i
===⇒
rcv

: (Prog ×∆nod ×M)× (Prog ×∆nod) to be the ones induced by the rules:

Send
P = (send(J,C);P1) ‖ P2

P ′ = P1 ‖ P2

m.to = J m.content = C
m.from = i

〈P, δ〉 i
===⇒
snd

〈P ′, δ,m〉

Receive
P = ((J,C) := receive();P1) ‖ P2

P ′ = P1 ‖ P2

m.content = c m.from = j
m.to = i δ′ = δ[J 7→ j, C 7→ c]

〈P, δ,m〉 i
===⇒
rcv
〈P ′, δ′〉

The J and the C in rule Send above are meta-variables for some expressions
of Prog with types Nodes and M.content respectively. In rule Receive, there
is an assignment and the J and the C this time are meta-variables for names of
some fields in the local state δ ∈ ∆nod, which we assume have types Nodes and
M.content respectively (e.g., in our implementation of SD-Paxos in Figure 3, J
and C are respectively substituted by j and [RE, k] in line 5, and by j and m

in line 8).
Next, we will fix a particular set of local states ∆nod that matches with

our implementation of SD-Paxos in Section 3, and we will derive an abstract
distributed protocol for SD-Paxos from the relations defined in the previous
paragraph. We write B = {True,False} for the set of Booleans and V for the set
of values that are decided by Paxos. We distinguish two sets of local state, ∆acc

and ∆pro, for acceptors and proposers respectively:

∆acc = {j : Nodes; v : V; r : N; w : N; i : Nodes; m :M.content ; k : N}
∆pro = {v0 : V; kP : N; resP : B; vP : V; resRC : B; vRC : V;

jRR : Nodes; QRR : {Nodes}; mRR :M.content ; vRE : V; kW : N;
maxV : V; maxKW : N}

A local state for an acceptor δ ∈ ∆acc contains a copy of the parameters
and fields of process Acceptor and the local variables of its task start() in
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Figure 4 of Section 3. A local state for a proposer δ ∈ ∆pro contains a copy
of the parameters and the local variables of the client code in Figures 3 and
5 of Section 3. For simplicity, we flatten the code of proposeP on the right of
Figure 5 by inlining the codes of proposeRC, read and write. To avoid clashing
names, we have appended one of the suffixes P, RC, RR or RE to the names of some
of the variables, and we have used top-most variables instead of parameters of
inlined methods when possible. For instance, fields vP, vRC and vRE correspond
respectively to the variable v in each of the methods proposeP, proposeRC and
read, field v0 is used in place of the variable with the same name in both
proposeP and proposeRC, field kP is used in place of the variable k in every
method, and field vRC is used in place of the variable vW in write. We have also
reused fields jRR, QRR and mRR in place of variables j, Q and m in both read and
write, since these two methods are invoked sequentially and do not interfere
with each other.

For each acceptor i with local state δ ∈ ∆acc, we tag the node by letting
δ.role = Acceptor and we let the implicit filed δ.pid coincide with i and with
the field δ.j. Customarily, all the nodes are acceptors. If, besides, i is a proposer
that proposes value v, then its local state δ is in ∆acc×∆pro and we tag the node
δ.role = Proposer and additionally we let δ.v0 = v. The set of local states for
the operational semantics of our implementation of SD-Paxos is

∆nod = (∆acc + (∆acc ×∆pro))

Now we can fix the start configurations for the operational semantics. For
each acceptor i that is not a proposer, the initial local state is

δiacc[j 7→ i, v 7→ ⊥, r 7→ 0, w 7→ 0] ∈ ∆acc

and the relation
i

==⇒
int

starts at the configuration 〈start() ‖ 0, δiacc〉, where

start() is the code of an acceptor in Figure 4 and 0 is the null process.
For each proposer i that proposes value v, the initial local state is

δipro[j 7→ i, v 7→ ⊥, r 7→ 0, w 7→ 0, v0 7→ v] ∈ ∆acc ×∆pro

and the relation
i

==⇒
int

starts at the configuration 〈start() ‖ proposeP, δipro〉,
where proposeP is the client code obtained by flattening the codes in Figures 3
and 5 by inlining proposeRC, read and write, as explained in the previous
paragraphs.

Now we can define an SD-Paxos sequence of a node i as a sequence of con-
figurations 〈P0, δ0〉, 〈P1, δ1〉, . . . in Prog ×∆nod such that

– 〈P0, δ0〉 = 〈start() ‖ 0, δiacc〉 if the node i is an acceptor that is not a
proposer, or otherwise 〈P0, δ0〉 = 〈start() ‖ proposeP, δipro〉 if node i is a
proposer, and

– for every n then either 〈Pn, δn〉
i

==⇒
int
〈Pn+1, δn+1〉, or there exists a message

m such that 〈Pn, δn,m〉
i

===⇒
snd

〈Pn+1, δn+1〉 or 〈Pn, δn〉
i

===⇒
rcv
〈Pn+1, δn+1,m〉.
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The encoding of SD-Paxos as an abstract distributed protocol is code-aware,
this is, the text of the program that a particular process is running is included in
the local state. The text of the program provides information about the program
flow, and saves us from using auxiliary machinery to represent control-related
aspects. The local state for the abstract distributed protocol is

∆ = Prog ×∆nod

We let σ : Nodes ⇀ ∆ be such that for each process identifier i in the range of
1 to n, the local state of node i is δ = σ(i). Notice that the implicit field δ.pid
coincides with the origin i of the mapping [i 7→ δ] ∈ σ.

Now we can define the relations Sint, Ssnd and Srcv in terms of an SD-Paxos
sequence of a node.

A pair 〈δ, δ′〉 is in Sint iff either δ = δ′, or otherwise there exist i such that δ

and δ′ are consecutive steps in some SD-Paxos sequence of node i and δ
i

==⇒
int

δ′.

A triple 〈δ, δ′, {m}〉 is in Ssnd iff there exist i such that δ and δ′ are consecutive

steps in some SD-Paxos sequence of node i and 〈δ,m〉 i
===⇒
snd

δ′.

A triple 〈δ,m, δ′〉 is in Srcv iff there exist i such that δ and δ′ are consecutive

steps in some SD-Paxos sequence of node i and δ
i

===⇒
rcv
〈δ′,m〉.

E Proofs of Lemmas and Theorems in Section 5

Lemma 1 (OTA refinement). B p
=⇒∪ p,P

===⇒
ota

⊆ Bp, where p is an instance of

the module Paxos, as defined in Section 3 and in Example 1.

Proof. By definition of the protocol in Example 1 a read request does not change
a proposer’s local state and does not have a non-trivial precondition. ut

Lemma 2 (Slot-replicating simulation). For all I, i ∈ I, B×|i = Bp.

Proof. Both ways: by induction on the length of the target behaviour, taking
into the account that we can always add “stuttering” states. ut

Lemma 3. If T from WStepReceiveT is OTA-compliant with predicate P,
such that B p

=⇒∪ p,P
===⇒

ota

⊆ B p
=⇒ and p is P-monotone, then B ∇

=⇒ ⊆ B ×
=⇒.

Proof. The proof is by induction on the length of the trace. The rule WStepRe-
ceiveT can replicate a message m ∈ T for multiple slots j ∈ I. To match adding
a replica of m for each j with the corresponding per-slot executions of the simple
semantics, we use Definitions 3 and 4 to show that for any j ∈ I we can relate its
replica of m to the current local state (due to p’s P-monotonicity). This allows
us to emulate this step by a per-slot execution of the OTASend. The result
then follows from the refinement assumption. ut

Theorem 4. The implementation of Multi-Paxos that uses a register provider
and bunching network semantics refines the specification in Figure 17.
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Proof. The theorem is a straightforward consequence of the linearisation result
stated by Theorem 1 and of the the results about the transformations of the
network semantics stated by Lemmas 1 to 5. ut
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