Automatic refactorings for Scala programs

Taming multi-paradigm code

Dave Clarke

DistriNet, Katholieke Universiteit Leuven
{ilya.sergey, dave.clarke}@cs.kuleuven.be

Ilya Sergey

Abstract

Scala is a programming language that combines the object-oriented
and functional programming paradigms. Dependent types, higher-
order functions and implicit conversions bring new ideas and chal-
lenges when implementing code refactoring. In this paper, we give
an overview of the automatic refactorings for Scala programs of-
fered by the IntelliJ] IDEA programming environment. We consider
the main differences between well-known automatic refactorings
implemented for Scala with their Java analogues, and give short
descriptions of the pitfalls encountered and underlying techniques.
Finally, we provide a short survey of refactorings that have not yet
been implemented, but might be useful for practical software de-
velopment in Scala.

Keywords Scala, refactoring, IDE

1. Introduction

In software engineering, refactoring source code means improv-
ing it without changing its overall behavior; it is sometimes in-
formally referred to as cleaning up the code. Refactoring neither
fixes bugs nor adds new functionality, although it might precede ei-
ther activity. Rather, it improves the understandability of the code,
changes its internal structure and design, and removes dead code.
The canonical reference on code refactoring is Martin Fowler’s
book [1]. A lot of classifications of refactorings exist. Depending
on their effect, techniques are distinguished as being for better code
abstraction, modularization, or naming and location improvement.
Advances in integrated development environments (IDE) enable
“automated refactoring”, i.e. automatic code transformations per-
formed by an intelligent tool in accordance with the programmer’s
intention. As the object-oriented paradigm is the most popular in
modern industrial programming, it is hard to imagine an IDE for
an object-oriented language without automated refactorings such
as automatic renaming of methods, fields and variables, extract-
ing/inlining methods etc. The domain of automatic refactoring in
object-oriented frameworks was pioneered by Opdyke [9] in his
thesis work, where he gave the main ideas on implementing refac-
torings and on the basic notion of the correctness of a refactoring
as a behaviour-preserving program transformation.

[Copyright notice will appear here once ’preprint’ option is removed.]

Alexander Podkhalyuzin

JetBrains Inc.
alexander.podkhalyuzin@jetbrains.com

In this paper we discuss different code refactorings for programs
written in Scala. Scala is a fusion of object-oriented and functional
programming paradigms. Thus classical code transformations for
Java programs must be reconsidered and reformulated in appropri-
ate terms before they can be implemented as automatic refactor-
ings for Scala. Even seemingly well-known ones such as introduce
variable or extract method become much more challenging to im-
plement in the presence of closures and implicit conversions.

The remainder of this paper is structured as follows. Sections 2,
3 and 4 describe some automatic refactorings that have already im-
plemented in the Scala plugin for the IntelliJ IDEA programming
environment [3]. Section 2 describes issues related to automatically
maintaining import statements in Scala files. In Section 3 we dis-
cuss the introduction and inlining of local variables. Section 4 gives
details about the implementation of the extract method refactoring.
Section 5 offers a short list of refactorings that have not yet been
implemented in IntelliJ IDEA, but might be nonetheless interesting
for Scala practitioners. Section 6 discusses related work on refac-
torings for functional programs and Section 7 concludes.

2. Automatic class import optimizer

Even simple functionality such as the automatic addition or re-
moval of import statement into a file may lead to different design
solutions.

2.1 Adding missing imports

Goal: Add missing import for an unresolved type identifier

Challenge: Import statements are context-sensitive

The simplest logic for automatic import statement addition in
Java works as follows. First choose the right qualified class name
from the set of possible variants. The IDE inserts it to the list
of import statements at the beginning of the file, sorting the list
just after the new import statement has been added. Unfortunately,
this approach does not work for Scala, since it has flow dependen-
cies between imports. We illustrate this with the following exam-
ple. The code fragment in the Figure 1 gives an example of an
unresolved reference name BitSet. Different actual implementa-
tion of the BitSet class may be imported. Assume we decide to
use the default one from the scala.collection package. There
are at least two possible places to add the statement import
scala.collections.BitSet. The site marked with the place 1
comment results in the expected semantics, but if the import state-
ment is put at place 2, the name BitSet will refer not to the default
implementation but to the one from the TestCollection object.

One possible solution to this problem is to always use the
imported name with the most specific qualifier prefix. On the other
hand this approach does not work well if one needs to import
an identifier from a field or local final variable. The currently
implemented algorithm for adding new imports works as follows:

2010/3/28

// place 1
object TestCollections {
object scala {
object collection ({
trait BitSet [K]
}

}

import TestCollections._
// place 2

val set = new BitSet[Int]

Figure 1. Different places to put a missing import statement

class A
class B
object MyConversions {
implicit def a2b(a: A): B = new B
}
def testB(b: B): Any = {/# some code #*/}

import MyConversions.

val a = testB(new A)

Figure 2. Meaningful import of an implicit conversion function

1. Starting from the unresolved identifier, go bottom-up, collecting
all possible providers of type definitions: immutable variables,
objects or packages;

2. Chose a scope to add the import statement into: the closest code
block or the most general code block, according to user settings;
and

3. Inspect the context of the chosen place to resolve possible
naming conflicts (as in the Figure 1) and adjust the prefix of
names if necessary.

2.2 Optimize imports

Goal: Remove unused import statements
Challenge: Implicit conversions demand additional checks
Another popular refactoring is to removing unused import state-
ments. In Java the corresponding algorithm is straightforward:

1. Resolve all references in the file using a bottom-up traversal;

2. For every resolved reference keep the set of import statements
used during its resolution; and

3. Remove imports that do not appear in the set of previously
registered ones.

In Scala the procedure of unused imports removal is more com-
plicated due to the presence of implicit conversions. In the example
in the Figure 2 the import statement import MyConversions._
does not participate directly in the reference resolution process,
so it would be removed according to the above algorithm. How-
ever, after its removal the code becomes incorrect, since the re-
moved statement was “responsible” for the implicit conversion of
the grayed expression new A into the instance of type B, but the
code to perform this conversion would no longer be available.

The Scala version of the algorithm not only checks that there
is a definition for every identifier in a file, but also performs type
checking for all expressions and tracks imports used for implicit
conversions and parameters. For instance, the import statement
import MyConversions._ in Figure 2 will be marked as used as
it brings the necessary implicit function a2b into the context. These
import statements are marked as used and will not be removed by
the optimizer.

3. Introduce and inline variable refactorings

The introduce variable refactoring gives rise to a new coding style:
write-introduce. Normally, Java programmers working in an IDE
do not declare a variable with a common tedious preamble such as
final Map<String, Object> map = new Instead, they
write something like new HashMap<String, Object> and press
a predefined keystroke to create a new variable with this expression
as an initializer. Finding a new name for a variable is also not a big
problem: it is automatically suggested by the IDE based on the type
of the expression and the current bound names in context to prevent
any conflicts.

The dual operation of introduce variable is the so-called inline
variable refactoring.

3.1 Introduce variable refactoring

Goal: Extract an expression to a new variable or parameter
Challenge: It may have different types depending of the context

The Figure 3 shows an example of the introduce variable dia-
log in IntelliJ IDEA. Many options are available for the selected
expression. For example, it is possible to switch between mutable
and immutable variable creation: the val or var modifier will be
added to the beginning of the declaration, respectively. The replace
all occurrences checkbox is available if identical expressions, mod-
ulo white spaces and comments, are found in the context. !

The most interesting part of this dialog is the checkbox specify
type explicitly and its corresponding drop-down list. Since the Scala
compiler is powerful enough to infer the type of any expression
lacking explicit returns and recursive function calls, there is almost
no need to use this option for local variables. But it is essential for
function parameters which must be annotated with explicit types.

It is logical to assume that the type which the newly introduced
parameter should be annotated with the most specific type of the se-
lected expression. But sometimes it is more reasonable to introduce
a parameter with more general type. This is why the IDE uses the
variable of type drop-down to suggest the most precise type as well
as any of its supertypes. This is not all, as the Scala language spec-
ification [8, Section 6.25] describes multiple implicit conversions,
as well as user-defined implicit conversions, and those imported
from the scala.Predef object, all of which need to be considered.

On the other hand, it is also not such a good idea to suggest all
the possible supertypes and codomains of implicit conversions as
possible parameter types. When selecting types to suggest, the IDE
must take into account the context in which the selected expression
is used. Figure 4 gives an example of some code with an expression
of type St ring to be introduced. Since it is used as the parameter of
type java.lang.Serializable, the set of suggested types must
be bound by it. Thus the final set of variants should consist of types
String, Serializable and the codomains of implicit conversions
which conform to them.

The mentioned context of the expression is defined by its posi-
tion: passing an expression as a parameter or using it as a method
call receiver brings additional restrictions on the possible types of

! The duplicate detection algorithm is being improved to find identical code
fragments modulo bound closure parameters

2010/3/28

lijobject Test {
I}j def maln:argS' Array[strlng]} {

N8N &)

Introduce variable

™ Specify type explicitly

Variable of type: Mapl[Int, String] e]

Mame: M j

[] Declare variable Replace all occurrences

@ F—ok—3

Cancel

A

Figure 3. IntelliJ IDEA’s introduce variable refactoring dialog

def operate(s: Serializable) = {...}

def test = {
operate (["Hello, " + "World!")

Figure 4. Introducing a string expression as a parameter

a parameter. In other words, all the supertypes and implicit con-
versions’ codomains must conform to the context’s type bounds. If
we replace all the duplicates by the introduced parameter, all the
restrictions must be collected from all contexts and applied to the
set of variants.

3.2 Inline variable refactoring

Goal: Inline all occurrences of a variable
Challenge: Computing reaching definitions of local variables

As most local variables in Scala are immutable, it is relatively
easy to inline them. The IDE just replaces all the occurrences of the
immutable variable with its value. Nevertheless, mutable variables
cause some problems as they can be captured by closures. In fact,
the problem of inlining local variables is also reduced to the prob-
lem of computing reaching definitions. Figure 5 gives an example
of code for which it is hard to reason about reaching definitions of
the variable a, especially if there is nothing concrete known about
the behaviour of the function foo. Thus in this example there is
more than one possible reaching definition for the grayed occur-
rence of the variable a and the IDE conservatively refuses to inline
it with some value.

var a = 1

val cl = {(); {(x: Int) => a = x}}
foo(cl)

println('a)

Figure 5. Local mutable variable is modified within the closure

4. Extract method refactoring

Goal: Extract a piece of code into a separate function
Challenge:

The extract method refactoring is one of the most useful and
widely used code transformations. Many Java-oriented IDEs pro-
vide its semi-automated implementation with a variety of options.
The extract method refactoring is well-studied in recent research
papers, and correctness proofs have been provided [12, 15]. Adding
closures to the language, however, brings new challenges to the
implementation of this refactoring, especially when closures are al-
lowed to reassign captured local variables.

One key aspect of the extract method refactoring is that it
is almost exclusively about putting side-effects into the specific
method. In Java all the side effects to the original method’s local
variables are arranged as an output values. All former local vari-
ables, which are input values of the analyzed piece of code, in turn
become parameters of the newly introduced method. If the piece of
code under consideration does not reassign any local variables and
its resulting expression is not used, it is treated as a method with
void return type. In other words, it deals only with side effects.

4.1 Scoping extracted functions

A piece of code that is going to be put into a separate method
normally accesses two types of references: global and local. Both
types of references are defined with respect to some scope. For
example, in Java methods parameters and local variables are locals,
whereas class fields are (relatively) globals. In Scala it is slightly
different as functions may be nested and extracting a piece of
code into a separate function requires that a scope for the newly
introduced function be determined.

In the code below, we want to extract the grayed piece of code
into a new function called fun. Before doing so, we need to decide
where to put the new definition.

class A {
def foo(i: Int) = {
val j = i * 2
def bar (k: Int)
val r =k + 1 + j

println(r)
}

println (bar (42))
}
}

If the class A is the container of fun, then the function knows
nothing about variables i and j, so they should be put into its
signature as parameters. Conversely, if the new function is put
inside of the body of function foo, these variables will already be in
its scope, so the new function takes only one parameter, namely k.
Finally, if it is put inside bar’s body, the new function does not need
any parameters and it may be treated simply as a lazily evaluated
expression.

4.2 Closures with state

In Scala local variables may be either immutable or mutable. There
are no problems with the first type, but mutable variables in associ-
ation with closures may give some interesting effects that must be
treated correctly by the refactoring. For instance, the Scala code in
the Figure 6 describes a function foo that returns a closure c1. This
closure captures the outer mutable variable a, which is incremented
every time the closure is called.

2010/3/28

Computing input and output values of the code fragment

def foo = {
var a = 239
val cl = (i: Int) => {

a =1+ a
println (a)
}
println (a)
cl

Figure 6. Closure with state variable a

def myMethod (_a:
var a = _a
(i: Int) => {
a =1+ a
println (a)
}

Int) = {

Figure 7. Extracted method returns closure with state

def foo {
var a = 42
val cl = (i: Int) => {
a=a+i
}
doSomething (cl)

print (a)
}

Figure 8. Closure mutating local variable

The result is a closure with a strange side-effect, which might be
useful for such techniques as memoization [2]. If one wants to ex-
tract the closure c1 as a new method, the variable a must be treated
as its input value but not as an output one. The point is that the
closure cl does not affect the value of a inside foo: its effect is
delayed. However, we cannot make a just a parameter of the new
method: it will be immutable and its reassignment will be impos-
sible. So, the correct solution is to extract the following method
myMethod as shown in the Figure 7. The parameter _a serves as an
initialization value for the inner “memoization variable” a of the
returned closure.

Going further, consider Figure 8, which describes the definition
of a closure inside of a method, followed by its subsequent usage.
To perform the analysis for output variables of the selected frag-
ment one must determine whether the closure c1 is invoked by the
function doSomething. Moreover, it may be invoked in the same
execution thread immediately or asynchronously in another one. In
the second case, the actual value of a may no longer matter to foo.

If nevertheless the value of a does matter, we should wrap it
somehow to be able to refer to it after doSomething has been
invoked on cl. One possible solution is to introduce an auxiliary
class, assign a to its field and mutate these fields afterwards.” Using
this implementation technique we do not care about the relative
order of execution of c1’s body and the print (a) statement. The

2 This is actually what the Scala compiler does while processing closures.

code on Figure 9 shows the result of applying the extract method
refactoring to the code from Figure 8.

class MyMethodEnv (var a: Int)

def myMethodl (env: MyMethodEnv) =
(i: Int) => {
env.a = env.a t 1

}

def foo = {
val env = new MyMethodEnv (a = 42)
val cl = myMethodl (env)
doSomething (cl)
println (env.a)

Figure 9. Refactored closure with an environment

The technique of using an auxiliary environment object is ap-
plied if the selected fragment has more than one output parameter.
The necessary return values are packaged up into a wrapper object,
which is returned and unwrapped again in the calling method.

5. More refactorings

In this section we give a short survey of other useful Scala-specific
refactorings.

5.1 Splitting function parameters

In the Haskell programming language every function with more
than one parameter may be partially applied or curried. To do the
same with Scala functions, one should divide the list of parameters
to several clauses. This is a modification of the well-known change
function signature refactoring, which may be done automatically as
shown in the listing below.

def sum(i: Int, j: Int) =1 + jJ
println (sum(i, j))

4
def sum(i: Int) (j: Int) =1 + J

println(sum(i) (j))

A benefit of such a transformation is that one can now apply the
introduce variable refactoring to the grayed code fragment to get a
partially applied function of one parameter.

5.2 Monadify code refactoring

When moving to Scala from Java, programmers habitually write
their code in an imperative style even in cases when it is not
actually necessary. For example, computations with nullable results
or breakable iterations through a list may be replaced by more
concise and expressive for-comprehensions, using the appropriate
monads from the standard Scala library. Figure 10 gives an example
of this code transformation.

The key idea in detecting such patterns is a control-flow analysis
that reveals exit conditions and default values (in the example such
a default value is null).

5.3 Structurize refactoring

Structural subtyping is very helpful in object-oriented programs,
as it makes them more generic and, as a consequence, more
reusable [6]. For example, it helps to generalize the types of param-
eters of a function that cares only about the parameters’ structure

2010/3/28

def readValuePrice (fileName: String) =
open(fileName) match {
case Some (f) => readLine (f) match {

case Some (key) =>
ourDatabase.get (key) match {
case Some (value) => getPrice(value)

case None => null
}
case None => null

}

case _ => null

¢

def readValuePrice (fileName: String) =
for {f <- open(fileName)
key <- readLine (f)
value <- ourDatabase.get (key)}
yield getPrice (value)

Figure 10. Monadify code refactoring

not their actual nominal types. It might be useful to automatically
extract only those parts of a parameter’s interface that matter for
the given function, and replace the nominal type by a structural
one. Figure 11 shows an example of this refactoring.

def getTailIfLong[T](i: Int, s: Seql[T]) =
if (i > 0 && s. length >= i) s. tail
else Nil

¢

def getTailIfLong[T](i: Int,
s: {def length: Int; def tail: Seq[T]}) =
if (i > 0 && s.length >= i) s.tail
else Nil

Figure 11. Structurize parameter type refactoring

Notice that we reified the abstract return type of the tail func-
tion with the exact type Seq[T].> A subsequent step may extract
the resulting structural parameter type as a type alias or as a sepa-
rate trait.

6. Related work

Thompson et al. have worked on refactoring for functional lan-
guages for Haskell and Erlang in the HaRe and Wrangler program-
ming tools, respectively [4]. Mechanical verification of refactorings
for Haskell programs are outlined by Sultana and Thompson [14],
who introduce the notion of type-based refactorings. For example,
the enlarge definition type refactoring is a type-based refactoring
that transforms a definition of a certain type into a coproduct with
the original term as a left injection. The necessary pre- and post-
conditions for this refactoring are stated and checked for correct-
ness. Tidier is another tool for refactoring Erlang projects. It finds
predefined code patterns and transform them automatically or in-
teractively into more Erlang-specific constructs [10].

Schifer et al. provide an extensible framework based on at-
tribute grammars to implement sound rename refactoring for Java

3See the scala.collection.TraversableLike trait for its implementa-
tion.

[1'1]. The implementation of rename refactoring in Scala in the In-
telliJ plugin is not covered here, but its main idea is the same: all
references are resolved beforehand and the mapping from decla-
rations to usages is cached. There are some specific issues of re-
naming in Scala. For example, we should take into account the se-
mantics of “special” methods, such as unapply () for extractors or
foreach () for monad-like classes.

Code duplication detection is another domain closely related to
program refactoring. The most common technique to find dupli-
cates is a token-level approach that relies on suffix tree analysis.
Many tools work also with annotates abstract syntactic trees (AST)
to find clones up to a-conversion. The work [5] gives a detailed sur-
vey of different approaches for clone detection. It would be inter-
esting to find high-order code duplicates, say, structurally recursive
functions that are isomorphic up to the structure of generalized al-
gebraic data types, which may be represented in Scala using sealed
case classes.

Despite the fact that many classical patterns from object-
oriented programming may be easer and much more concisely
expressed in terms of functional programming, to the best of our
knowledge, there is no work describing a unified approach to this
kind of equivalence. For example, usages of the Iterator pat-
tern without side effects may be expressed in terms of higher-order
functions map or reduce over collections.

k-CFA, logic- and type-based control-flow analyses look like
very promising techniques to extract different properties from func-
tional code. They were successfully applied to analyze Scheme pro-
grams [7, 13], and we hope that they may be applied also to detect
higher-order duplicates.

7. Conclusion and Future Work

In this paper we presented a survey of Scala-aware refactorings
implemented in the IntelliJ IDEA programming environment. We
described some issues typical for refactorings in Scala programs
resulting from language features such as implicit conversions, de-
pendent types and closures.

Some ideas of possible refactorings for Scala program were
discussed. We hope that this will inspire the community to give
more feedback about typical procedures used to improve Scala
code and to make it more generic and functional.

Acknowledgments

We would like to thank the anonymous reviewers for providing
valuable comments.

References

[1] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

[2] Richard A. Frost and Barbara Szydlowski. Memoizing purely func-
tional top-down backtracking language processors. Sci. Comput. Pro-
gram., 27(3):263-288, 1996.

[3] JetBrains Inc., http://www.jetbrains.com/idea/. IntelliJ IDEA, 2001.

[4] Huiqing Li and Simon Thompson. Tool Support for Refactoring Func-
tional Programs. In Danny Dig, Robert Fuhrer, and Ralph Johnson, ed-
itors, Proceedings of the Second ACM SIGPLAN Workshop on Refac-
toring Tools, page 4pp, Nashville, Tennessee, USA, October 2008.

[5] Huiqing Li and Simon Thompson. Clone Detection and Removal
for Erlang/OTP within a Refactoring Environment. In ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM’09), Savannah, Georgia, USA, January 2009.

[6] Donna Malayeri and Jonathan Aldrich. Is structural subtyping useful?
An empirical study. In ESOP ’09: Proceedings of the 18th European
Symposium on Programming Languages and Systems, pages 95-111,
Berlin, Heidelberg, 2009. Springer-Verlag.

2010/3/28

[7] Matthew Might. Environment Analysis of Higher-Order Languages.
PhD thesis, Georgia Institute of Technology, June 2007.

[8] Martin Odersky. The Scala Language Specification. Available from
http://www.scala-lang.org/, 2009.

[9] William F. Opdyke. Refactoring object-oriented frameworks. PhD
thesis, Champaign, IL, USA, 1992.

[10] Konstantinos Sagonas and Thanassis Avgerinos. Automatic refactor-
ing of Erlang programs. In PPDP ’09: Proceedings of the 11th ACM
SIGPLAN conference on Principles and practice of declarative pro-
gramming, pages 13-24, New York, NY, USA, 2009. ACM.

[11] Max Schifer, Torbjorn Ekman, and Oege de Moor. Sound and extensi-
ble renaming for Java. In OOPSLA ’08: Proceedings of the 23rd ACM
SIGPLAN conference on Object-oriented programming systems lan-
guages and applications, pages 277-294, New York, NY, USA, 2008.
ACM.

[12] Max Schifer, Mathieu Verbaere, Torbjorn Ekman, and Oege de Moor.
Stepping stones over the refactoring rubicon. In Sophia Drossopoulou,
editor, ECOOP 2009 — Object-Oriented Programming, volume 5653
of Lecture Notes in Computer Science, pages 369-393. Springer, 2009.

[13] Olin Grigsby Shivers. Control-flow analysis of higher-order lan-
guages of taming lambda. PhD thesis, Pittsburgh, PA, USA, 1991.

[14] Nik Sultana and Simon Thompson. Mechanical verification of refac-
torings. In PEPM '08: Proceedings of the 2008 ACM SIGPLAN sym-
posium on Partial evaluation and semantics-based program manipu-
lation, pages 51-60, New York, NY, USA, 2008. ACM.

[15] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. Jungl: a scripting
language for refactoring. In Dieter Rombach and Mary Lou Soffa,
editors, ICSE’06: Proceedings of the 28th International Conference
on Software Engineering, pages 172-181, New York, NY, USA, 2006.
ACM Press.

2010/3/28

	Introduction
	Automatic class import optimizer
	Adding missing imports
	Optimize imports

	Introduce and inline variable refactorings
	Introduce variable refactoring
	Inline variable refactoring

	Extract method refactoring
	Scoping extracted functions
	Closures with state

	More refactorings
	Splitting function parameters
	Monadify code refactoring
	Structurize refactoring

	Related work
	Conclusion and Future Work

