Verification of Imperative Programs
in Hoare Type Theory

llya Sergey
IMDEA Software Institute

ilvasergey.net/pnp-2014

http://ilyasergey.net/pnp-2014

Declarative vs Imperative

Declarative Programming

® The program already “specifies” its result;

® | ogical/Constraint programming: the program is a number
of logical clauses/constraints that specify the requirements

for the result.

® (Pure) functional programming: the program is an
expression whose value, upon evaluation is the result of

the program (if it doesn’t diverge).

® The program can be replaced by its result (referential transparency).

Imperative Programming

® The program describes a sequence of steps that should be
performed in order to obtain the result;

fect:

® The result of the program is its side ef]
® An output to the screen;
® a state of the memory;
® an exception;

® The lack of referential transparency due to side effects.

How to give
a declarative specification
to imperative programs!?

A long time ago...

Floyd-Hoare program logic

[Floyd:SAM’67, Hoare:CACM’69]

® |ndependently discovered by Robert W. Floyd (1967) and
Tony Hoare (1969);

® Sometimes referred to as “axiomatic program semantics’’;
® Specifies a program by means of pre-/postconditions;

® Provides an inference system to infer proofs of
specifications of larger programs from specifications of
smaller ones.

Hoare triples

/{v P} c1Q]}
precondition postcondition

Meaning:

If right before the program c is executed the state of
mutable variables is described by the proposition F,
then, if ¢ terminates, the resulting state satisfies

the proposition Q.

Example specification

{True} x := 3 {x=3}

Hoare logic language

The state is represented by a (supposedly infinite) set of
mutable variables, which can be assigned arbitrary values;

All variables have distinct hames;

No procedures, no heap/pointers;

Simple conditional commands (if-then-else) and
while-loops.

Hoare logic rules

Assignment

{Qle/x]} x:=e {Q} (Assign)

/

substitute x with e

{3=3)1x := 3 {x=3)

Sequential composition

1PrcaiQ} {Q}ca{Rj
{P}cjc {R]

(5eq)

N x:=3;y:=x{x=3Ay=3j}

Sequential composition

1PrcaiQ} {Q}ca{Rj
{P}cjc {R]

(5eq)

Yikes!
3=3A3=3)
X = 3;
{X =3 AX= 3} (Assign)
y 1= X
{X =3 A y = 3} (Assign)

Rule of consequence

P=P (P} c{Q} Q=Q

(Conseq)
{P} c1Q]}

{True} = {3=3 A3 =3}
X:=3;y:=x

{x=3 Ay=3}

Rule of consequence

P=P (P} c{Q} Q=Q

Conse
(P} c {Q) (Fonseq

{True} x:=3;y:=x {x=3 Ay=3}

Function subtyping rule

more “precise”’ type

P <P Q <:Q

/

less “precise” type

Function subtyping rule

P<:PP Q <:Q
P> Q<P Q

Logical variables

Y a, b,

({x=a/\y=b} t:=X; X:=y; y:=t {x=b/\y=a})

Conditionals and loops

{PAe} a {Q} {PA-e}a{Q}
{P} ifethencjelsec; {Q}

(Cond)

{IAne} c{l}
{1} whileedoc {| A e}

(While)

loop invariant (needs to be guessed)

Why Hoare logic doesn’t scale

® The language with mutable variables is too simplistic;

® The lack of procedures means the absence of modularity;

® But the main problem is adding pointers.

A language with pointers

® Heap is a finite partial map from nat to arbitrary values;
® Pointers are natural numbers from the heap domain;

® |n the presence of pointers, we assume all variables to be
immutable.

assign value 3 to a pointer x

'

{x»-Ay»b}x ::= 3 {x»3Ay—~b}

This Spec IS Wmng! if x and y are dliases, the value of y was affected

{xP-Ayrb}

X 2= 3

{ x» 3 A
(x#yAy=b)V (x=y Ay 3)}

What about 3 variables?

...Or an array!

Separation Logic

[Reynolds:LICS02]

® Co-invented in 2002 by John C. Reynolds, Peter O'Hearn,
Samin Ishtiag and Hongseok Yang;

® The key idea is to make heap disjointness explicit;

® Aliasing is no longer a problem.

{x»-Ay~»b} x 2:= 3 {x»3Ayr~b}

Separation Logic

[Reynolds:LICS02]

® Co-invented in 2002 by John C. Reynolds, Peter O'Hearn,
Samin Ishtiag and Hongseok Yang;

® The key idea is to make heap disjointness explicit;

® Aliasing is no longer a problem.

{h|h=x—-eyr»b} x ::= 3 (h|h=x~ 3y b}

\ /

disjoint union of heaps

Revising the language and logic

® Variables are now immutable, single-assigned—changes in
the state are changes in the heap;

® All commands return results, which are pure expressions;

® Non-result returning operations return an element of unit;

® Allocation/deallocation are provided as primitives with
appropriate logical rules specifying them;

® while-loops are expressed using recursive functions.

Writing to a pointer

{h \} X = e {res, h \/\ res = tt}
(Write)

Reading from a pointer

(hih=x+ v} Ix {res,h |h=x v Alres = v]}
(Read)

Frame rule

“small

footprint”
{h | P(h)} c {res,h | Q(res, h)}

th | 3hi, h=hie(h)a P(hi)} ¢ {res,h | 3hi, h=hie(h]a Q(res, hi))

(Frame)
“large
footprint”

“frame” (universally quantified)

Anti-frame rule

h' is taken to be empty

N\

{h | 3hi, h=hee(b’]n P(h)} ¢ {res,h | 3hi, h=hie(h]A Q(res, hi))
{h | P(h)} c {res,h| Q(res, h)} (Anti-Frame)

Allocation/deallocation

{h | h = emp} alloc(e) {res,h | h =res+ e}
(Alloc)

{h|h=xw~ -} dealloc(x) {res,h | h=emp A res = tt}
(Dealloc)

Binding

{h | P(h)} ci {res, h |[Q(res, h)}
th c2 {res, h | R(res, h)}
{h | P(h)} x<-ci; c2 {res,h | R(res, h)}

(Bind)

The result of ¢ is bound within ¢2 under a name x.

“Oblivious™ Binding

{h | P(h)} i {res,h | Q(h)}
{h | Q(h)} c2 {res, h | R(res, h)}

{h | P(h)} ci;; c2 {res,h| R(res, h)}

(BindO)

The result of ¢ is irrelevant for c.

The rule of conjunction

{h | Pi(
{h | Py

)} ¢ {res,

n)} ¢ {res,

N

N

Qi(res, h)}
Qz(res, h)}

{h | Pi(h) A P2(h)} c {res,h | Qi(res,h) A Qz(res, h)}

(Conj)

Working with functions

{h | P(h)} rete {res,h|P(h)A res = e} (Return)

[= vx, {h | P(x, h)} f (x) {res,h | Q(x, res, h)}

k/a context of assumed functions’ specs

[= vx, {h | P(x, h)} f(x) {res,h | Q(x, res, h)}
[{h | P(e, h)} f(e) {res, h | Q(e, res, h)}

vx, {h | P(x, h)} f (x) {res,h | Q(x,res,h)} € T
)(H)’P)

(App)

Representing loops
using recursive functions

Fixed point combinator

fix : (T->T)>T
fix f = f (fix f)

® A way to implement general recursion in pure calculi;

® Cannot be encoded within a primitively-recursive language;

® |ts argument f should be continuous (in Scott’s topology).

Factorial implementation using fix

T = nat = nat
" —
fact = fix (fun (f : nat -» nat) =>

(fun (n : nat) =>
if n = 0 then 1
elsen * £f (n - 1)))
W

T = T = (hat 2 nat) = (nat — nat)

fix : (T—=>T)—>T
fix f = f (fix f)

Refactoring loops to functions

while e do ¢

Refactoring loops to functions

In-loop condition
(fix f (x: bool). if x

then c ;; f(e’)
else ret tt) (e)

/

Initial condition

A rule for recursive functions

Assuming a specification for f... one has to verify its body...

\

[; vx, {h | P(x, h)} f(x) {res, h | Q(x, res, h)}
— {h | P(x,h)} c{res,h | Q(x, res, h)}

[= vy {h | P(y,h)} (fix f(x).c)(y) {res, h | Q(y, res, h)}

(Fix)

which justifies the inference of the spec for fix.

Remark: P and Q here play the role of the loop invariant.

Verifying imperative programs
in Separation Logic

A factorial implementation

fun fact (N : nat): nat = {
n <-- alloc(N);
acc <-- alloc(1l);

res <-—-
(fix loop (: unit).
a <-- lacc;
n' <-- In;
if n' == 0 then ret a’
else acc ::= a' * n';;
n ce=n' - 1;;
loop(tt)
) (Et);

dealloc(n);;
dealloc(acc);;
ret res

A factorial implementation

fun fact (N : nat): nat = {

n <-- alloc(N); f(m &t |fN: N +]
acc <-- alloc(1);
res <-- then N x f(N’)
(fix loop (_ : unit).
a' <-- lacc; else]
n' <-- In;
if n' == 0 then ret a'
else acc ::= a' * n';;
n s:e=n' - 1;; —
loop(tt) {h Lh eNmp}

) (tt) ; act(N)
dealloc(n);; {res,h | h = emp A res = f(N)}
dealloc(acc);;
ret res

Compositional verification

fun fact (N : nat): nat = {
n <-- alloc(N);
acc <-- alloc(1);
res <--
(fix loop (_ : unit).
a' <-- lacc;
n' <-- In;

if n' == 0 then ret a' | qt
= fact loop(tt)

else acc ::= a' * n';;
n s:e=n' - 1;;
loop(tt)
) (Et);
dealloc(n);;
dealloc(acc);;
ret res

Compositional verification

fun fact (N : nat): nat = { fun fact loop (_: unit): nat =
n <-- alloc(N); (fix loop (_ : unit).
acc <-- alloc(1l); a' <-- lacc;
res <-- fact loop(tt); n' <-- !n;
dealloc(n);; if n' == 0 then ret a'
dealloc(acc);; else acc ::= a' * n';;
ret res n se=n' - 1;;

loop(tt))

Compositional verification

Fin(n, acc, N, h) &l fun fact loop (: unit): nat =
(fix loop (_ : unit).
an,a,(h=n~n'ecacc—a) A a' <--— lacc:
(f(n’)xa’zf(N)) n' <-- I!n;

if n' == 0 then ret a'

else acc ::= a' * n';;
n se=n' - 1;;
loop(tt))

{h | Fin/(n, acc, N, h)}
fact loop(tt)
{res, h | Fin(n,acc, N, h) A res = f(N)}

{h | Finv(n, acc, N, h)}

fun fact loop (_: unit): nat =

{h | Fini(n, acc, N, h)} (precondition)
(fix loop (_ : unit).

hlana, (h=nen’*acc)AF(n) x a’ = f(N))} (Finv definition)
a' <-- lacc;

{h|3an,(h=nwn’*acc a)A(f(n") x a’ =f(N))} (Read), (Conj)
n' <-- In;

{h|(h=nwrn"saccH a)Af(n’) x a’ = f(N))} (Read), (Conj)
if n' == 0 then ret a’

{res,h | (h =nw 0 *acc~ f(N))A(res = f(N))} (Cond), (Return)

{res, h | Fin/(n, acc, N, h)A(res = f(N))} (Finy definition)
else acc ::= a' * n';;

{h|(h=nwn’esaccr axn)A(f(n") x a’ = 1f(N))} (Cond), (Write)
n = n' - 1;;
{h|(h=nwen-l cacc~ a x n)Af(n’) x a’ = f(N))} (Write)
(hi(h=nwn-lsaccw axn)A(f(n’- 1) x a’*xn’=1f(N))} (mathematics)
{h | Fini(n, acc, N, h)} (Finv definition)
loop(tt))

{res, h | Fins(n, acc, N, h)A(res = f(N))} (Fix), (Hyp), (App)

{h | Finv(n, acc, N, h)}
fact loop(tt)
{res, h | Fin(n, acc, N, h)A(res = f(N))}

{h | Finv(n, aCcC, N) h)}
fact loop(tt)
{res, h | Fin(n,acc, N, h)A(res = f(N))}

th | h = emp;}
fun fact (N : nat): nat = {
{h| h = emp} (precondition)
n <-- alloc(N);
{h|h=nw— Nj} (Alloc)
acc <-- alloc(1l);
{(h|h=nw N-<eaccr I} (Alloc)
{h | Finv(n, acc, N, h)} (Finv definition)
res <-- fact loop(tt);
{h | Fini(n, acc, N, h) A (res = f(N))} (fact loop spec), (Hyp), (App)

{h|(h=nwm-*accw -) A (res =f(N))} (Finvdefinition)

dealloc(n);;

{h | (h=accr -) A (res = f(N))} (Dealloc)
dealloc(acc);;

{h | (h = emp) A (res = f(N))} (Dealloc)
ret res

{h | (h = emp) A (res = f(N))} (Ret)

{h | h = emp}
fact(N)
{h | (h = emp) A (res = f(N))}

l essons learned

Hoare/separation logic inference rules are reminiscent
to datatype constructors;

Large proofs can be decomposed into small ones;
Hoare triples make reasoning modular;

® also, they are similar to types in many ways;
Paper-and-pencil reasoning is error-prone;

We should be able to use Coqg’s dependent types to
mechanize reasoning in Hoare/separation logic.

Missing ingredient:

mohnads

Expressions and Commands

® FExpressions:
tt
(3 + 2)
fact (42)

pure: referentially-transparent, always evaluate to a result value
® Commands (aka computations, programs):

ret 3

X ¢:= 5

Cc <— IxXx; v s:2= X+ 3;; t <-ly; ret t

effectful: might diverge, write to store, throw exceptions

Eugenio Moggi

Notions of computation and monads, Inf. Comput., 1991

... we 1dentify the type A with the object of values (of type A)
and obtain the object of computations (of type A) by applying

an unary type-constructor 7 to A.
We call T a notion of computation, smce 1t abstracts away

from the type of pure values computations may produce.

Philip VWadler

Comprehending Monads, LFP, 1991

It 1s relatively straightforward to ado o{}‘-_ gi’s
structuring

techm que of
denotational sp ecnﬁcaio into a technique for -
structuring f élol ograms. This paper presents a simplified
version of N Moggi s ideas , framed in a way better suited to
functional programmers than semanticists; in particular, no
knowledge of category theory 1s assumed.

In functional programming, monads are datatypes
that represent effectful computations:

state, 1/0, exceptions, continuations, divergence, ...

A monad datatype defines a strategy
to chain (or bind) several operations together
as well as
to inject (or return) pure expressions into computations.

Monads in Haskell

type of ccyutatlon type of pure value
class Monad m where “///
(>>=) 2 s a->(a->mb) ->mb

return Tt a —->m a

Monadic do-notation

a -> (m c)

/_-----'A------\

(m a) (m b) b -> (m ¢)
P ~ N —

cl >>= (\x => ¢c2 >>= (\y -> c3))

(m c)

Monadic do-notation

do x <- cl
y <- cZ2
c3

Monadic do-notation

:: IO ()

main = do |putStrLn “Enter a character”
c <-|getChar) :: IO Char

putStrLn “This was: ” ++ [cC]

22 10 ()

:: I0 ()

Key Highlights

Imperative programs perform effectful computations;

Hoare triples provide a way to specify their effect;

Computations are composed using bind and return;

In functional programming, effects are specified by monads;

Monads are composed using bind and return.

Hoare triples
+

Monadic types

Hoare lype T heory

Specifying and verifying effectful programs
in Coq with dependent types.

Hoare types

logical variables
appearing in p and ¢ A — heap = Prop

N\ /
C :STSQP(P»Q)

/

heap = Prop

Example: allocator type

{h | h = emp}

alloc : V (A : Type) (v: A), /

STsep (fun h = h = Unit)
(fun (res: ptr) h = h = res :=> v))

/

{res,h|h=res— v}

Structuring the verification
of imperative programs in
Hoare Type Theory

|[demoO]

Deep vs shallow
embedding

Deep embedding

Sometimes is referred to as “external DSLs”:
a new language is implemented from scratch;

® parser, interpreter, name binding, type checking—
all should be implemented;

usually, easier to debug and profile;

one can implement a language with an arbitrary semantics.

Examples: MPS approach, any modern mainstream PL.

Shallow embedding

® Also known as “internal/lembedded DSLs”;
® a new language reuses its host language’s infrastructure;

® implementation amounts to defining the “de-sugaring”
into the host language;

® Any host program is also a DSL program;

® the DSL’s semantics is essentially it host’s semantics.

® Examples: Lisp DSLs, Scala parser combinators/actors,
PLT Redex etc.

R1T is shallow embedding
into Coq

Hoare triples are instances of a particular datatypes;
Higher-order specifications (e.g., iterator) for free;

Coq takes care of the proof verification (i.e., type checking);
Enables verification of real-life examples;

Limitations of the framework are caused by Coqg’s model:

® for instance, effectful functions cannot be stored
into a heap (can be fixed by adding extra axioms).

Soundness of Hoare Type Theory

® |mperative programs are constructed as Coq expressions,
but they cannot be run within Coq
(because of general recursion);

® Extraction into a general-purpose language can be
implemented;

® Soundness is established via denotational semantics:
® Each imperative program is a state transformer;
® Each pre/postcondition is a set of state transformers;

® Soundness is established as an element/set inclusion.

More programming in HT T

[demoO]

