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Declarative vs Imperative



Declarative Programming

• The program already “specifies” its result;	



• Logical/Constraint programming: the program is a number 
of logical clauses/constraints that specify the requirements 
for the result.	



• (Pure) functional programming: the program is an 
expression whose value, upon evaluation is the result of 
the program (if it doesn’t diverge).	



• The program can be replaced by its result (referential transparency).



Imperative Programming

• The program describes a sequence of steps that should be 
performed in order to obtain the result;	



• The result of the program is its side effect:	



• An output to the screen;	



• a state of the memory;	



• an exception;	



• The lack of referential transparency due to side effects.



How to give  
a declarative specification 	


to imperative programs?



Use the types, Luke!



A long time ago…



Floyd-Hoare program logic
[Floyd:SAM’67, Hoare:CACM’69]

• Independently discovered by Robert W. Floyd (1967) and 
Tony Hoare (1969);	



• Sometimes referred to as “axiomatic program semantics”;	



• Specifies a program by means of pre-/postconditions;	



• Provides an inference system to infer proofs of 
specifications of larger programs from specifications of 
smaller ones.



Meaning:  
 
If right before the program c is executed the state of 
mutable variables is described by the proposition P, 
then, if c terminates, the resulting state satisfies  
the proposition Q.

Hoare triples
{ P }  c { Q }

precondition postcondition



Example specification

x := 3{ True } { x = 3 }



Hoare logic language

• The state is represented by a (supposedly infinite) set of 
mutable variables, which can be assigned arbitrary values; 	



• All variables have distinct names;	



• No procedures, no heap/pointers;	



• Simple conditional commands (if-then-else) and  
while-loops.



Hoare logic rules



Assignment

{ Q[e/x] }  x := e { Q }     (Assign)

{ 3 = 3 }  x := 3 { x = 3 }

substitute x with e



Sequential composition

x := 3; {x = 3 ⋀ y = 3}y := x{???}

{ P }  c1 { Q }	

     { Q }  c2 { R }	


         —————————————  (Seq)	



{ P }  c1; c2 { R }



Sequential composition
{ P }  c1 { Q }	

     { Q }  c2 { R }	



         —————————————  (Seq)	


{ P }  c1; c2 { R }

x := 3;
{3 = 3 ⋀ 3 = 3}

{x = 3 ⋀ x = 3}

{x = 3 ⋀ y = 3}
y := x

(Assign)

(Assign)

Yikes!



Rule of consequence

x := 3; y := x
{x = 3 ⋀ y = 3}

{3 = 3 ⋀ 3 = 3}{ True } ⇒

P ⇒ P’     { P’ }  c { Q’ }	

   Q’ ⇒ Q	


             ———————————————  (Conseq)

{ P }  c { Q } 



Rule of consequence

P ⇒ P’     { P’ }  c { Q’ }	

   Q’ ⇒ Q	


             ———————————————  (Conseq)

{ P }  c { Q } 

x := 3; y := x {x = 3 ⋀ y = 3}{ True }



P <: P’        c : P’ → Q’ 	

   Q’ <: Q  
 ——————————————— 	



c : P → Q           

Function subtyping rule
more “precise” type

less “precise” type



P <: P’    Q’ <: Q  
———————— 	


P’ → Q’ <:  P → Q       

Function subtyping rule



Logical variables

t := x;  x := y;  y := t {x = b ⋀ y = a}{x = a ⋀ y = b}

∀ a, b,

( )



Conditionals and loops
{ P ⋀ e }  c1 { Q }	

     { P ⋀ ¬e }  c2 { Q }	



            ———————————————  (Cond)	


{ P }  if e then c1 else c2 { Q }

{ I ⋀ e }  c { I }	

 	


             ———————————  (While)	



{ I }  while e do c { I ⋀ ¬e }

loop invariant (needs to be guessed)



Why Hoare logic doesn’t scale

• The language with mutable variables is too simplistic;	



• The lack of procedures means the absence of modularity;	



• But the main problem is adding pointers.



A language with pointers
• Heap is a finite partial map from nat to arbitrary values;	



• Pointers are natural numbers from the heap domain;	



• In the presence of pointers, we assume all variables to be 
immutable.

 x ::= 3

assign value 3 to a pointer x

This spec is wrong! if x and y are aliases, the value of y was affected

{ x ↦ - ⋀ y ↦ b } { x ↦ 3 ⋀ y ↦ b }



{ x ↦ - ⋀ y ↦ b }  	


  x ::= 3 !
{  x ↦ 3 ⋀ 	


  (x ≠ y ⋀ y ↦ b) ⋁ (x = y ⋀ y ↦ 3)}

What about 3 variables?

…or an array?



Separation Logic

{ x ↦ - ⋀ y ↦ b }  x ::= 3 { x ↦ 3 ⋀ y ↦ b }

[Reynolds:LICS02]

• Co-invented in 2002 by John C. Reynolds, Peter O'Hearn,  
Samin Ishtiaq and Hongseok Yang;	



• The key idea is to make heap disjointness explicit;	



• Aliasing is no longer a problem.



Separation Logic
[Reynolds:LICS02]

{h | h = x ↦ - • y ↦ b}  x ::= 3 {h | h = x ↦ 3 • y ↦ b}

• Co-invented in 2002 by John C. Reynolds, Peter O'Hearn,  
Samin Ishtiaq and Hongseok Yang;	



• The key idea is to make heap disjointness explicit;	



• Aliasing is no longer a problem.

disjoint union of heaps



Revising the language and logic

• Variables are now immutable, single-assigned—changes in 
the state are changes in the heap;	



• All commands return results, which are pure expressions;	



• Non-result returning operations return an element of unit;	



• Allocation/deallocation are provided as primitives with 
appropriate logical rules specifying them;	



• while-loops are expressed using recursive functions.



Writing to a pointer

{h | h = x ↦ - }  x ::= e {res, h | h = x ↦ e ⋀ res = tt}     	


!

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (Write)



Reading from a pointer

{h | h = x ↦ v }  !x {res, h | h = x ↦ v ⋀ res = v }     	


!

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (Read)



Frame rule

{h | P(h)}  c {res, h | Q(res, h)}	


——————————————————————— 	



{h | ∃h1,  h = h1• h’ ⋀  P(h1)}  c {res, h | ∃h1,  h = h1• h’ ⋀  Q(res, h1)}

(Frame)

“frame” (universally quantified)

“small 
 footprint”

“large 
 footprint”



Anti-frame rule

{h | ∃h1,  h = h1• h’ ⋀  P(h1)}  c {res, h | ∃h1,  h = h1• h’ ⋀  Q(res, h1)}	


——————————————————————— 	



{h | P(h)}  c {res, h | Q(res, h)} (Anti-Frame)

h’ is taken to be empty



Allocation/deallocation

{h | h = emp}  alloc(e) {res, h | h = res ↦ e}     	


!

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (Alloc)

{h | h = x ↦ -}  dealloc(x) {res, h | h = emp ⋀ res = tt}     	


!

	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 (Dealloc)



{h | P(h)} c1 {res, h | Q(res, h)}	


!

{h | Q(x, h)} c2 {res, h | R(res, h)}	


——————————————— 	


{h | P(h)}  x <- c1;  c2 {res, h | R(res, h)}

Binding

The result of c1 is bound within c2 under a name x.

(Bind)



“Oblivious” Binding

{h | P(h)} c1 {res, h | Q(h)}	


!

{h | Q(h)} c2 {res, h | R(res, h)}	


——————————————— 	



{h | P(h)}  c1 ;;  c2 {res, h | R(res, h)}

The result of c1 is irrelevant for c2.

(BindO)



The rule of conjunction

{h | P1(h)} c {res, h | Q1(res, h)}	


!

{h | P2(h)} c {res, h | Q2(res, h)}	


———————————————————— 	


{h | P1(h) ⋀ P2(h)}  c {res, h | Q1(res, h) ⋀ Q2(res, h)}

(Conj)



Working with functions
{h | P(h)}  ret e {res, h | P(h)⋀ res = e}        (Return)

∀x, {h | P(x, h)} f (x) {res, h | Q(x, res, h)} ∈ Г	


             ———————————————————     (Hyp)	



Г ⊢ ∀x, {h | P(x, h)} f (x) {res, h | Q(x, res, h)}

a context of assumed functions’ specs

Г ⊢ ∀x, {h | P(x, h)} f (x) {res, h | Q(x, res, h)}	


             ———————————————————     (App)	



Г ⊢ {h | P(e, h)} f(e) {res, h | Q(e, res, h)}



Representing loops	


using recursive functions



Fixed point combinator

• A way to implement general recursion in pure calculi;	



• Cannot be encoded within a primitively-recursive language;	



• Its argument f should be continuous (in Scott’s topology).

fix  :  (T → T) → T

fix f  = f (fix f)



Factorial implementation using fix

fact = fix (fun (f : nat ! nat) =>!
             (fun (n : nat) => !
                  if n = 0 then 1 !
                  else n * f (n - 1)))

fix  :  (T → T) → T

fix f  = f (fix f)

z }| {
T = nat → nat

| {z }
T → T = (nat → nat) → (nat → nat)



Refactoring loops to functions

while e do ce



Refactoring loops to functions

(fix f (x: bool). if x 	


                      then c ;; f(e’) 	


                      else  ret tt) (e)

Initial condition

In-loop condition



A rule for recursive functions

Г; ∀x, {h | P(x, h)} f(x) {res, h | Q(x, res, h)} 	


 	



               ⊢  {h | P(x, h)} c {res, h | Q(x, res, h)}	


             —————————————————————     (Fix)	



Г ⊢ ∀y {h | P(y, h)} (fix f(x).c)(y) {res, h | Q(y, res, h)}

Assuming a specification for f… one has to verify its body…

which justifies the inference of the spec for fix.

Remark: P and Q here play the role of the loop invariant.



Verifying imperative programs	


in Separation Logic



A factorial implementation
fun fact (N : nat): nat = {!
  n   <-- alloc(N);!
  acc <-- alloc(1); !
  res <-- !
    (fix loop (_ : unit). !
      a' <-- !acc;!
      n' <-- !n;!
      if n' == 0 then ret a'!
      else acc ::= a' * n';;!
           n   ::= n' - 1;;!
           loop(tt) !
    )(tt);!
  dealloc(n);;!
  dealloc(acc);;!
  ret res!
}



A factorial implementation
fun fact (N : nat): nat = {!
  n   <-- alloc(N);!
  acc <-- alloc(1); !
  res <-- !
    (fix loop (_ : unit). !
      a' <-- !acc;!
      n' <-- !n;!
      if n' == 0 then ret a'!
      else acc ::= a' * n';;!
           n   ::= n' - 1;;!
           loop(tt) !
    )(tt);!
  dealloc(n);;!
  dealloc(acc);;!
  ret res!
}

f(N) ≝ if N = N’ + 1 	


             then N × f(N’) 

else 1

{h | h = emp} 	


fact(N) 	



{res, h | h = emp ⋀ res = f(N)}



fun fact (N : nat): nat = {!
  n   <-- alloc(N);!
  acc <-- alloc(1); !
  res <-- !
    (fix loop (_ : unit). !
      a' <-- !acc;!
      n' <-- !n;!
      if n' == 0 then ret a'!
      else acc ::= a' * n';;!
           n   ::= n' - 1;;!
           loop(tt) !
    )(tt);!
  dealloc(n);;!
  dealloc(acc);;!
  ret res!
}

Compositional verification

≝ fact_loop(tt)



Compositional verification

fun fact (N : nat): nat = {!
  n   <-- alloc(N);!
  acc <-- alloc(1); !
  res <-- fact_loop(tt);!
  dealloc(n);;!
  dealloc(acc);;!
  ret res!
}

fun fact_loop (_: unit): nat =!
 (fix loop (_ : unit). !
      a' <-- !acc;!
      n' <-- !n;!
      if n' == 0 then ret a'!
      else acc ::= a' * n';;!
           n   ::= n' - 1;;!
           loop(tt))



Compositional verification

Finv(n, acc, N, h) ≝ 	



  ∃n’, a’, ( h = n ↦ n’ • acc ↦ a’ ) ⋀ 	


           ( f(n’) × a’ = f(N) )

{h | Finv(n, acc, N, h)} 	


fact_loop(tt) 	



{res, h | Finv(n, acc, N, h) ⋀ res = f(N)}

fun fact_loop (_: unit): nat =!
 (fix loop (_ : unit). !
      a' <-- !acc;!
      n' <-- !n;!
      if n' == 0 then ret a'!
      else acc ::= a' * n';;!
           n   ::= n' - 1;;!
           loop(tt))



fun fact_loop (_: unit): nat =!

!
 (fix loop (_ : unit). !

!
      a' <-- !acc;!

!
      n' <-- !n;!

!
      if n' == 0 then ret a'!

!
!
      else acc ::= a' * n';;!

!
          n   ::= n' - 1;;!

!
!
!
           loop(tt))

{h | Finv(n, acc, N, h)} 

{h | Finv(n, acc, N, h)} 

{h | ∃ n’ a’, (h = n ↦ n’ • acc ↦ a’)⋀(f(n’) × a’ = f(N))} 

{h | ∃ n’, (h = n ↦ n’ • acc ↦ a’)⋀(f(n’) × a’ = f(N))} 

{h | (h = n ↦ n’ • acc ↦ a’)⋀(f(n’) × a’ = f(N))} 

{res, h | (h = n ↦ 0 • acc ↦ f(N))⋀(res = f(N))} 

{res, h | Finv(n, acc, N, h)⋀(res = f(N))} 

{h | (h = n ↦ n’ • acc ↦ a’ × n’)⋀(f(n’) × a’ = f(N))} 

{h | (h = n ↦ n’-1 • acc ↦ a’ × n’)⋀(f(n’) × a’ = f(N))} 

{h | (h = n ↦ n’-1 • acc ↦ a’ × n’)⋀(f(n’ - 1) × a’ × n’ = f(N))} 
{h | Finv(n, acc, N, h)} 

{res, h | Finv(n, acc, N, h)⋀(res = f(N))} 

(precondition)

(Finv definition)

(Read), (Conj)

(Read), (Conj)

(Cond), (Return)

(Finv definition)

(Cond), (Write)

(Write)
(mathematics)
(Finv definition)

(Fix), (Hyp), (App)



fact_loop(tt) 

{h | Finv(n, acc, N, h)} 

{res, h | Finv(n, acc, N, h)⋀(res = f(N))} 



fun fact (N : nat): nat = {!
!
  n   <-- alloc(N);!
!
  acc <-- alloc(1); !
!
!
  res <-- fact_loop(tt);!
!
!
  dealloc(n);;!
!
  dealloc(acc);;!
!
  ret res }!

fact_loop(tt) 

{h | Finv(n, acc, N, h)} 

{res, h | Finv(n, acc, N, h)⋀(res = f(N))} 
{h | h = emp} 

{h | h = emp} 

{h | h = n ↦ N} 

{h | h = n ↦ N • acc ↦ 1} 

{h | Finv(n, acc, N, h)} 

{h | Finv(n, acc, N, h) ⋀ (res = f(N))} 
{h | (h = n ↦ - • acc ↦ -) ⋀ (res = f(N))} 

{h | (h = acc ↦ -) ⋀ (res = f(N))} 

{h | (h = emp) ⋀ (res = f(N))} 

{h | (h = emp) ⋀ (res = f(N))} 

(precondition)

(Finv definition)

(Alloc)

(Alloc)

(fact_loop spec), (Hyp), (App)
(Finv definition)

(Dealloc)

(Dealloc)

(Ret)



{h | h = emp} 

{h | (h = emp) ⋀ (res = f(N))} 

fact(N) 



Lessons learned
• Hoare/separation logic inference rules are reminiscent  

to datatype constructors;	



• Large proofs can be decomposed into small ones;	



• Hoare triples make reasoning modular;	



• also, they are similar to types in many ways;	



• Paper-and-pencil reasoning is error-prone;	



• We should be able to use Coq’s dependent types to 
mechanize reasoning in Hoare/separation logic.



Missing ingredient:

monads



Expressions and Commands

• Expressions:  
tt  
(3 + 2)  
fact (42)	



	

   pure: referentially-transparent, always evaluate to a result value	



• Commands (aka computations, programs):  
ret 3  
x ::= 5    
c <— !x; y ::= x + 3;; t <- !y; ret t  
 
effectful: might diverge, write to store, throw exceptions





... we identify the type A with the object of values (of type A) 
and obtain the object of computations (of type A) by applying 
an unary type-constructor T to A. 	


We call T a notion of computation, since it abstracts away 
from the type of pure values computations may produce.

Notions of computation and monads, Inf. Comput., 1991

Eugenio Moggi





It is relatively straightforward to adopt Moggi’s technique of 
structuring denotational specifications into a technique for 
structuring functional programs. This paper presents a simplified 
version of Moggi’s ideas, framed in a way better suited to 
functional programmers than semanticists; in particular, no 
knowledge of category theory is assumed.

Comprehending Monads, LFP, 1991

Philip Wadler



In functional programming, monads are datatypes 	


that represent effectful computations:  

state, I/O, exceptions, continuations, divergence, …

A monad datatype defines a strategy  
to chain (or bind) several operations together  

as well as  
to inject (or return) pure expressions into computations.



Monads in Haskell

class Monad m where!
!
    (>>=)          :: m a -> (a -> m b) -> m b!
!
    return         :: a -> m a

type of computation type of pure value



c1  >>=  (\x -> c2 >>= (\y -> c3))

Monadic do-notation

(m a) b -> (m c)

(m c)

z }| {z}|{

| {z }

z }| {
a -> (m c)

(m b)
z}|{



do  x <- c1!
    y <- c2!
    c3 

Monadic do-notation



main = do putStrLn “Enter a character”!
          !
          c <- getChar!
          !
          putStrLn “This was: ” ++ [c]!
          !
          return () 

Monadic do-notation

:: IO ()

:: IO Char

:: IO ()

9
>>>>>>=

>>>>>>;

:: IO ()



Key Highlights

• Imperative programs perform effectful computations;	



• Hoare triples provide a way to specify their effect;	



• Computations are composed using bind and return;	



• In functional programming, effects are specified by monads;	



• Monads are composed using bind and return.



Hoare triples

Monadic types
+



Hoare Type Theory

Specifying and verifying effectful programs	


in Coq with dependent types.



Hoare types

c  :  { x1 x2 … } STsep ( p , q )

logical variables	


appearing in p and q A → heap → Prop

heap → Prop



8.4 Elements of Hoare Type Theory 125

All these observation resulted in a series of works on Hoare Type Theory (or just HTT),
which defines a notion of an indexed Hoare monad (or, Hoare type) as a mechanism
to encode Hoare-style specifications as dependent types and reduce the verification of
e�ectful progress to proving propositions in Coq [41–43].

In the rest of this chapter we will consider a number of important concepts of HTT,
so the necessary modules should be imported from the library folder htt, which contains
the compiled files (see Section 1.3.3 for the instructions on obtaining and building HTT
from the sources).

Require Import ssreflect ssrbool ssrnat eqtype seq ssrfun.

Add LoadPath "./../htt".
Require Import pred pcm unionmap heap heaptac stmod stsep stlog stlogR.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

8.4.1 The Hoare monad
The Hoare monad (also dubbed as Hoare type), which is a type of result-returning e�ectful
computations with pre- and postconditions is represented in HTT by the type STsep,
which is, in fact, just a notation for a more general but less tractable type STspec, whose
details we do not present here, as they are quite technical and are not necessary in order
to verify programs in HTT.10

The Hoare type is usually specified using the HTT-provided notation as {x1 x2 ...},
STsep (p, q), where p and q are the predicates, corresponding to the pre and postcondition
with p being of type heap æ Prop and q of type A æ heap æ Prop, such that A is the
type of the result of the command being specified. The identifiers x1, x2 etc. bind the
logical variables that are assumed to be universally quantified and can appear freely in
p and q, similarly to the free variables in the specifications in Hoare logics (Section 8.1).
For example, the alloc function has the following (simplified compared to the original
one) small footprint specification in the STsep-notation:

alloc : ’ (A : Type) (v : A),
STsep (fun h ∆ h = Unit,

[vfun (res : ptr) h ∆ h = res :-> v])

That is, alloc is a procedure, which starts in an empty heap Unit and whose argument
v of type A becomes referenced by the pointer (which is also the alloc’s result) in the
resulting singleton-pointer heap. The notation x :-> y corresponds to the the points-to
assertion x ‘æ y in the mathematical representation of separation logic, and [vfun x ∆
...] notation accounts for the fact that the computation can throw an exception [42], the
possibility we do not discuss in this course.

10A curious reader can take a look at the definitions in the module stmod of the HTT library.

Example: allocator type

{h | h = emp} 

{res, h | h = res ↦ v } 



Structuring the verification	


of imperative programs in 	



Hoare Type Theory

[demo]



Deep vs shallow  
embedding



Deep embedding

• Sometimes is referred to as “external DSLs”;	



• a new language is implemented from scratch;	



• parser, interpreter, name binding, type checking—  
all should be implemented;	



• usually, easier to debug and profile;	



• one can implement a language with an arbitrary semantics.	



• Examples: MPS approach, any modern mainstream PL.	





Shallow embedding
• Also known as “internal/embedded DSLs”;	



• a new language reuses its host language’s infrastructure;	



• implementation amounts to defining the “de-sugaring”  
into the host language;	



• Any host program is also a DSL program;	



• the DSL’s semantics is essentially it host’s semantics.	



• Examples:  Lisp DSLs, Scala parser combinators/actors,  
PLT Redex etc.	





HTT is shallow embedding 
into Coq

• Hoare triples are instances of a particular datatypes;	



• Higher-order specifications (e.g., iterator) for free;	



• Coq takes care of the proof verification (i.e., type checking);	



• Enables verification of real-life examples;	



• Limitations of the framework are caused by Coq’s model:	



• for instance, effectful functions cannot be stored  
into a heap (can be fixed by adding extra axioms).  



Soundness of Hoare Type Theory

• Imperative programs are constructed as Coq expressions, 
but they cannot be run within Coq  
(because of general recursion);	



• Extraction into a general-purpose language can be 
implemented;	



• Soundness is established via denotational semantics:	



• Each imperative program is a state transformer;	



• Each pre/postcondition is a set of state transformers;	



• Soundness is established as an element/set inclusion.



More programming in HTT

[demo]


