Verification of Imperative Programs in Hoare Type Theory

Ilya Sergey IMDEA Software Institute

ilyasergey.net/pnp-2014

Declarative vs Imperative

Declarative Programming

- The program already "specifies" its result;
- Logical/Constraint programming: the program is a number of logical clauses/constraints that specify the requirements for the result.
- <u>(Pure) functional programming</u>: the program is an expression whose value, upon evaluation is the result of the program (if it doesn't diverge).
 - The program can be replaced by its result (referential transparency).

Imperative Programming

- The program describes a sequence of steps that should be performed in order to obtain the result;
- The result of the program is its side effect:
 - An output to the screen;
 - a state of the memory;
 - an exception;
- The lack of referential transparency due to side effects.

How to give a declarative specification to imperative programs?

Use the types, Luke!

A long time ago...

Floyd-Hoare program logic

[Floyd:SAM'67, Hoare:CACM'69]

- Independently discovered by Robert W. Floyd (1967) and Tony Hoare (1969);
- Sometimes referred to as "axiomatic program semantics";
- Specifies a program by means of pre-/postconditions;
- Provides an inference system to infer proofs of specifications of larger programs from specifications of smaller ones.

Meaning:

If right before the program c is executed the state of mutable variables is described by the proposition P, then, if c terminates, the resulting state satisfies the proposition Q.

Example specification

{True} x := 3 { x = 3 }

Hoare logic language

- The state is represented by a (supposedly infinite) set of <u>mutable variables</u>, which can be assigned arbitrary values;
- All variables have <u>distinct names;</u>
- <u>No</u> procedures, <u>no</u> heap/pointers;
- Simple conditional commands (if-then-else) and while-loops.

Hoare logic rules

Assignment

substitute x with e

$$\{3=3\} x := 3 \{x=3\}$$

Sequential composition $\frac{\{P\} c_1 \{Q\} \{Q\} c_2 \{R\}}{\{P\} c_1; c_2 \{R\}}$ (Seq)

$$\{???\} \times := 3; y := x \{x = 3 \land y = 3\}$$

Sequential composition $\frac{\{P\} c_1 \{Q\} \{Q\} c_2 \{R\}}{\{P\} c_1; c_2 \{R\}}$ (Seq)

Yikes!

$$\{3 = 3 \land 3 = 3\}$$

 $x := 3;$
 $\{x = 3 \land x = 3\}$ (Assign)
 $y := x$
 $\{x = 3 \land y = 3\}$ (Assign)

Rule of consequence

$\begin{array}{ccc} P \Rightarrow P' & \{P'\} \ c \ \{Q'\} & Q' \Rightarrow Q \\ & & & \\ & & & \\ & & & \\ P \ c \ \{Q\} \end{array} \end{array} (Conseq) \end{array}$

$$\{ \text{True} \} \implies \{3 = 3 \land 3 = 3\}$$
$$x := 3; y := x$$
$$\{x = 3 \land y = 3\}$$

Rule of consequence $P \Rightarrow P' \{P'\} \in \{Q'\} \quad Q' \Rightarrow Q$ (Conseq)

{ True } $x := 3; y := x \{x = 3 \land y = 3\}$

{ P } c { Q }

Function subtyping rule

Function subtyping rule

 $P \leq P' \quad Q' \leq Q$ $P' \rightarrow Q' \leq P \rightarrow Q$

Logical variables

$$\forall a, b,$$

 $(\{x = a \land y = b\} \ t := x; \ x := y; \ y := t \ \{x = b \land y = a\})$

Why Hoare logic doesn't scale

- The language with mutable variables is <u>too simplistic;</u>
- The lack of procedures means the <u>absence of modularity;</u>
- But the main problem is adding *pointers*.

A language with pointers

- Heap is a finite partial map from **nat** to arbitrary values;
- Pointers are natural numbers from the heap domain;
- In the presence of pointers, we assume all variables to be *immutable*.

 $\{ x \mapsto - \land y \mapsto b \} x ::= 3 \{ x \mapsto 3 \land y \mapsto b \}$ This spec is wrong! if x and y are aliases, the value of y was affected $\left\{ \begin{array}{l} x \mapsto - \land y \mapsto b \end{array} \right\} \\ x ::= 3 \\ \left\{ \begin{array}{l} x \mapsto 3 \land \\ (x \neq y \land y \mapsto b) \lor (x = y \land y \mapsto 3) \end{array} \right\} \end{array}$

What about 3 variables?

... or an array?

Separation Logic [Reynolds:LICS02]

- Co-invented in 2002 by John C. Reynolds, Peter O'Hearn, Samin Ishtiaq and Hongseok Yang;
- The key idea is to make heap disjointness <u>explicit;</u>
- Aliasing is no longer a problem.

$$\{x \mapsto - \land y \mapsto b\} x ::= 3 \{x \mapsto 3 \land y \mapsto b\}$$

Separation Logic [Reynolds:LICS02]

- Co-invented in 2002 by John C. Reynolds, Peter O'Hearn, Samin Ishtiaq and Hongseok Yang;
- The key idea is to make heap disjointness <u>explicit;</u>
- Aliasing is no longer a problem.

 $\{h \mid h = x \mapsto - \cdot y \mapsto b\} x ::= 3 \{h \mid h = x \mapsto 3 \cdot y \mapsto b\}$ disjoint union of heaps

Revising the language and logic

- Variables are now <u>immutable</u>, single-assigned—changes in the state are changes in the heap;
- All commands <u>return results</u>, which are pure expressions;
- Non-result returning operations return an element of *unit*;
- <u>Allocation/deallocation</u> are provided as primitives with appropriate logical rules specifying them;
- while-loops are expressed using <u>recursive functions</u>.

Writing to a pointer

{h
$$|h = x \mapsto -\}$$
 x ::= e {res, h $|h = x \mapsto e \land res = tt$ }
(Write)

Reading from a pointer

$$\{h \mid h = x \mapsto v \land res = v\}$$
 (Read)

Frame rule

Anti-frame rule

Allocation/deallocation

{h | h = emp} alloc(e) {res, h | h = res \mapsto e} (Alloc)

{h | h = x \mapsto -} dealloc(x) {res, h | h = emp \land res = tt} (Dealloc)

Binding

The result of c_1 is bound within c_2 under a name x.

"Oblivious" Binding

The result of c_1 is irrelevant for c_2 .

The rule of conjunction

{h | $P_1(h)$ } c {res, h | $Q_1(res, h)$ } {h | $P_2(h)$ } c {res, h | $Q_2(res, h)$ }

(Conj)

{h | $P_1(h) \land P_2(h)$ } c {res, h | $Q_1(res, h) \land Q_2(res, h)$ }

Working with functions

{h | P(h)} ret e {res, h | P(h) \land res = e} (Return)

 $\forall x, \{h \mid P(x,h)\} f(x) \{res, h \mid Q(x, res, h)\} \in \Gamma$ $\Gamma \vdash \forall x, \{h \mid P(x,h)\} f(x) \{res, h \mid Q(x, res, h)\}$ (Hyp)
(Hyp)
(Hyp)
(Hyp)
(Hyp)

 $\frac{\Gamma \vdash \forall x, \{h \mid P(x, h)\} f(x) \{res, h \mid Q(x, res, h)\}}{\Gamma \vdash \{h \mid P(e, h)\} f(e) \{res, h \mid Q(e, res, h)\}}$ (App)
Representing loops using recursive functions

Fixed point combinator

fix : $(T \rightarrow T) \rightarrow T$ fix f = f (fix f)

- A way to implement <u>general recursion</u> in pure calculi;
- <u>Cannot</u> be encoded within a primitively-recursive language;
- Its argument f should be <u>continuous</u> (in Scott's topology).

Factorial implementation using fix

fix :
$$(T \rightarrow T) \rightarrow T$$

fix f = f (fix f)

Refactoring loops to functions

while e do c

A rule for recursive functions

which justifies the inference of the spec for fix.

Remark: P and Q here play the role of the loop invariant.

Verifying imperative programs in Separation Logic

A factorial implementation

```
fun fact (N : nat): nat = {
  n < -- alloc(N);
  acc <-- alloc(1);</pre>
  res <--
    (fix loop ( : unit).
      a' <-- !acc;
      n' <-- !n;
      if n' == 0 then ret a'
      else acc ::= a' * n';;
           n ::= n' - 1;;
           loop(tt)
    )(tt);
  dealloc(n);;
  dealloc(acc);;
  ret res
}
```

A factorial implementation

```
fun fact (N : nat): nat = {
  n <-- alloc(N);
  acc <-- alloc(1);</pre>
  res <--
    (fix loop (_ : unit).
      a' <-- !acc;
      n' <-- !n;
      if n' == 0 then ret a'
      else acc ::= a' * n';;
           n ::= n' - 1;;
           loop(tt)
    )(tt);
  dealloc(n);;
  dealloc(acc);;
  ret res
}
```

```
f(N) \stackrel{\text{\tiny def}}{=} if N = N' + 1
then N \times f(N')
else 1
```

```
 \{ h \mid h = emp \} \\ fact(N) \\ \{ res, h \mid h = emp \land res = f(N) \}
```

Compositional verification

```
fun fact (N : nat): nat = {
  n <-- alloc(N);
  acc <-- alloc(1);</pre>
  res <--
    (fix loop (_ : unit).
     a' <-- !acc;
     n' <-- !n;
      if n' == 0 then ret a'
                                def
                                  fact loop(tt)
      else acc ::= a' * n';;
           n ::= n' - 1;;
           loop(tt)
     (tt);
  dealloc(n);;
  dealloc(acc);;
  ret res
}
```

Compositional verification

```
fun fact (N : nat): nat = {
    n <--- alloc(N);
    acc <--- alloc(1);
    res <--- fact_loop(tt);
    dealloc(n);;
    dealloc(acc);;
    ret res
}</pre>
```

Compositional verification

$$F_{inv}(n, \operatorname{acc}, N, h) \stackrel{\text{def}}{=} \\ \exists n', a', (h = n \mapsto n' \cdot \operatorname{acc} \mapsto a') \land \\ (f(n') \times a' = f(N))$$

 $\{ h \mid F_{inv}(n, acc, N, h) \} \\ fact_loop(tt) \\ \{ res, h \mid F_{inv}(n, acc, N, h) \land res = f(N) \}$

{h | *F_{inv}*(n, acc, *N*, h)} fun fact loop (: unit): nat = (precondition) $\{h \mid F_{inv}(n, acc, N, h)\}$ (fix loop (: unit). (*F_{inv}* definition) $\{h \mid \exists n'a', (h = n \mapsto n' \bullet acc \mapsto a') \land (f(n') \times a' = f(N))\}$ a' <-- !acc: {h | $\exists n'$, (h = n \mapsto n' • acc \mapsto a') \land (f(n') × a' = f(N))} (Read), (Conj) n' <-- !n; (Read), (Conj) $\{h \mid (h = n \mapsto n' \bullet acc \mapsto a') \land (f(n') \times a' = f(N))\}$ if n' == 0 then ret a' (Cond), (Return) {res, h | (h = n \mapsto 0 • acc \mapsto f(N)) \land (res = f(N))} {res, h | $F_{inv}(n, acc, N, h) \land (res = f(N))$ } (*F*_{inv} definition) **else** acc ::= a' * n':: (Cond), (Write) $\{h \mid (h = n \mapsto n' \bullet acc \mapsto a' \times n') \land (f(n') \times a' = f(N))\}$ n ::= n' - 1;; (Write) $\{h \mid (h = n \mapsto n' - I \bullet acc \mapsto a' \times n') \land (f(n') \times a' = f(N))\}$ (mathematics) $\{h \mid (h = n \mapsto n' - I \bullet acc \mapsto a' \times n') \land (f(n' - I) \times a' \times n' = f(N))\}$ $\{h \mid F_{inv}(n, acc, N, h)\}$ (*F_{inv}* definition) loop(tt))

(Fix), (Hyp), (App)

 $\{\operatorname{res}, h \mid F_{inv}(n, \operatorname{acc}, N, h) \land (\operatorname{res} = f(N))\}$

 $\{h \mid F_{inv}(n, acc, N, h)\}$ $fact_loop(tt)$ $\{res, h \mid F_{inv}(n, acc, N, h) \land (res = f(N))\}$

 $\{h \mid F_{inv}(n, acc, N, h)\}$ fact loop(tt) {res, h | $F_{inv}(n, acc, N, h) \land (res = f(N))$ }

{h | *h* = emp} fun fact (N : nat): nat = { $\{h \mid h = emp\}$ n < -- alloc(N); $\{h \mid h = n \mapsto N\}$ acc <-- alloc(1);</pre> $\{h \mid h = n \mapsto N \bullet acc \mapsto I\}$ {h | $F_{inv}(n, acc, N, h)$ } res <-- fact loop(tt);</pre> {h | $F_{inv}(n, acc, N, h) \land (res = f(N))$ } {h | $(h = n \mapsto - \bullet acc \mapsto -) \land (res = f(N))$ } (*F*_{inv} definition) dealloc(n);; {h | $(h = \text{acc} \mapsto -) \land (\text{res} = f(N))$ } (Dealloc) dealloc(acc);; {h | $(h = emp) \land (res = f(N))$ } (Dealloc) **ret** res } $(h = emp) \land (res = f(N))$ (Ret)

(precondition) (Alloc) (Alloc)

(*F*_{inv} definition)

(fact loop spec), (Hyp), (App)

Lessons learned

- Hoare/separation logic inference rules are reminiscent to datatype constructors;
- Large proofs can be decomposed into small ones;
- Hoare triples make reasoning modular;
 - also, they are similar to types in many ways;
- Paper-and-pencil reasoning is error-prone;
- We should be able to use Coq's dependent types to mechanize reasoning in Hoare/separation logic.

Missing ingredient:

monads

Expressions and Commands

Expressions:
 tt
 (3 + 2)
 fact (42)

pure: referentially-transparent, always evaluate to a result value

Commands (aka computations, programs):
 ret 3
 x ::= 5
 c <- !x; y ::= x + 3;; t <- !y; ret t

effectful: might diverge, write to store, throw exceptions

Eugenio Moggi

Notions of computation and monads, Inf. Comput., 1991

... we identify the type A with the object of *values* (of type A) and obtain the object of *computations* (of type A) by applying an unary type-constructor T to A. We call T a *notion of computation*, since it abstracts away from the type of pure values computations may produce.

Philip Wadler

Comprehending Monads, LFP, 1991

It is relatively straightforward to adopt Moggi's technique of structuring denotational specifications into a technique for structuring functional programs. This paper presents a simplified version of Moggi's ideas, framed in a way better suited to functional programmers than semanticists; in particular, no knowledge of category theory is assumed. In functional programming, *monads* are <u>datatypes</u> that represent <u>effectful</u> computations:

state, I/O, exceptions, continuations, divergence, ...

A monad datatype defines a strategy to chain (or <u>bind</u>) several operations together as well as to inject (or <u>return</u>) pure expressions into computations.

Monads in Haskell

Monadic do-notation

Monadic do-notation

do x <- c1
 y <- c2
 c3</pre>

Monadic do-notation

:: IO ()

Key Highlights

- Imperative programs perform <u>effectful</u> computations;
- <u>Hoare triples</u> provide a way to specify their effect;
- Computations are composed using <u>bind</u> and <u>return</u>;
- In functional programming, <u>effects</u> are specified by <u>monads;</u>
- Monads are composed using <u>bind</u> and <u>return</u>.

Hoare triples + Monadic types

Hoare Type Theory

Specifying and verifying effectful programs in Coq with dependent types.

Hoare types

Structuring the verification of imperative programs in Hoare Type Theory

[demo]

Deep vs shallow embedding

Deep embedding

- Sometimes is referred to as "external DSLs";
- a new language is implemented from scratch;
 - parser, interpreter, name binding, type checking all should be implemented;
- usually, easier to debug and profile;
- one can implement a language with an arbitrary semantics.
- Examples: MPS approach, any modern mainstream PL.
Shallow embedding

- Also known as "internal/embedded DSLs";
- a new language reuses its host language's infrastructure;
 - implementation amounts to defining the "de-sugaring" into the host language;
 - Any host program is also a DSL program;
- the DSL's semantics is essentially it host's semantics.
- <u>Examples</u>: Lisp DSLs, Scala parser combinators/actors, PLT Redex *etc*.

HTT is shallow embedding into Coq

- Hoare triples are instances of a particular datatypes;
- Higher-order specifications (e.g., *iterator*) for free;
- Coq takes care of the proof verification (i.e., type checking);
- Enables verification of real-life examples;
- Limitations of the framework are caused by Coq's model:
 - for instance, effectful functions cannot be stored into a heap (can be fixed by adding extra axioms).

Soundness of Hoare Type Theory

- Imperative programs are constructed as Coq expressions, but they cannot be run within Coq (because of general recursion);
- Extraction into a general-purpose language can be implemented;
- Soundness is established via denotational semantics:
 - Each imperative program is a state transformer;
 - Each pre/postcondition is a set of state transformers;
 - Soundness is established as an element/set inclusion.

More programming in HTT

[demo]