
Programs and Proofs
!

Mechanizing Mathematics with
Dependent Types

Ilya Sergey

ilyasergey.net/pnp-2014

IMDEA Software Institute

http://ilyasergey.net/pnp-2014

Foreword

Formal Mathematics	

as a branch 	

of Computer Science

Computer Science

Computer Science

• Computation and complexity	

• Information and coding theory	

• Data structures and algorithms	

• Programming languages	

• Formal methods and logics	

• Security and cryptography	

• Computer networks	

• Databases	

• Artificial Intelligence	

• Computer graphics	

• Computer/Human interaction	

• Computer architecture	

• Software Engineering	

• ...

Mathematics

Mathematics

— is what mathematicians do.

Formal Mathematics

Formal Mathematics

makes rigorous statements…

Formal Mathematics

makes rigorous statements…

… and proves them.

What is a proof ?

Poor definition

A proof is sufficient evidence 	

or an argument for the truth of a proposition.

Poor definition

A proof is sufficient evidence 	

or an argument for the truth of a proposition.

Better definition

Better definition

A proof is a sequence of statements,

Better definition

A proof is a sequence of statements,
each of which is either validly

derived from those preceding it	

or is an axiom or assumption,

Better definition

A proof is a sequence of statements,
each of which is either validly

derived from those preceding it	

or is an axiom or assumption,

and the conclusion of which, is the statement
of which the truth is thereby established.

What is the truth?

That falls within  
the purview  

of your conundrums
of philosophy.

A proposition is considered to be true
(in a given set of assumptions and axioms)

if a proof of it can be constructed.

A proposition is considered to be true
(in a given set of assumptions and axioms)

if a proof of it can be constructed.

(so the truth constructive is relative)

What about falsehood?

What about falsehood?

A proposition is false  
if no proof can be derived for it.

How do we construct proofs?

How do we construct proofs?

By using rules and hypotheses.

A hypothesis

Assuming that the proposition A is true,  
we can derive that A is true.

A hypothesis

Assuming that the proposition A is true,  
we can derive that A is true.

A ⊢ AIn formal logical notation:

Implication introduction

If, assuming that the proposition A is true, we
can derive the proof of the proposition B,  
then we can derive the implication A ⇒ B.

Implication introduction

If, assuming that the proposition A is true, we
can derive the proof of the proposition B,  
then we can derive the implication A ⇒ B.

A ⊢ B	

————	

⊢ A ⇒ B

In formal logical notation:

Modus ponens

The proposition A is true, and, moreover,  
A being true implies that B is true; then we can
derive that B is true.

Modus ponens

The proposition A is true, and, moreover,  
A being true implies that B is true; then we can
derive that B is true.

⊢ A ⊢ A ⇒ B	

————————	

⊢ B

Conjunction introduction/elimination

From “A is true” and “B is true”, we can derive
that A ⋀ B is true as well.

Conjunction introduction/elimination

From “A is true” and “B is true”, we can derive
that A ⋀ B is true as well.

⊢ A ⊢ B	

——————	

⊢ A ⋀ B

Conjunction introduction/elimination

From “A is true” and “B is true”, we can derive
that A ⋀ B is true as well.

⊢ A ⊢ B	

——————	

⊢ A ⋀ B

From “A ⋀ B is true” we can derive  
that A is true and that B is true.

Conjunction introduction/elimination

From “A is true” and “B is true”, we can derive
that A ⋀ B is true as well.

⊢ A ⊢ B	

——————	

⊢ A ⋀ B

From “A ⋀ B is true” we can derive  
that A is true and that B is true.

⊢ A ⋀ B	

————	

⊢ A

⊢ A ⋀ B	

————	

⊢ B

Disjunction introduction/elimination

From “A is true” or “B is true”, we can derive
that A ⋁ B is true.

Disjunction introduction/elimination

From “A is true” or “B is true”, we can derive
that A ⋁ B is true.

⊢ A	
 	

————	

⊢ A ⋁ B

⊢ B	
 	

————	

⊢ A ⋁ B

Disjunction introduction/elimination

From “A is true” or “B is true”, we can derive
that A ⋁ B is true.

From “A ⋁ B is true”, “A ⇒ C” and “B ⇒ C”,  
we can derive that C is true (case analysis).

⊢ A	
 	

————	

⊢ A ⋁ B

⊢ B	
 	

————	

⊢ A ⋁ B

Disjunction introduction/elimination

From “A is true” or “B is true”, we can derive
that A ⋁ B is true.

From “A ⋁ B is true”, “A ⇒ C” and “B ⇒ C”,  
we can derive that C is true (case analysis).

⊢ A ⋁ B ⊢ A ⇒ C ⊢ B ⇒ C 	

————————————	

⊢ C

⊢ A	
 	

————	

⊢ A ⋁ B

⊢ B	
 	

————	

⊢ A ⋁ B

Universal quantification
If c is an arbitrary element of X, and A(c) is true,	

then ∀x∈X, A(x) is true (universal generalization).

Universal quantification
If c is an arbitrary element of X, and A(c) is true,	

then ∀x∈X, A(x) is true (universal generalization).

⊢ A(c) c ∈ X is arbitrary	
 	

————————————	

⊢ ∀x∈X, A(x)

Universal quantification
If c is an arbitrary element of X, and A(c) is true,	

then ∀x∈X, A(x) is true (universal generalization).

⊢ A(c) c ∈ X is arbitrary	
 	

————————————	

⊢ ∀x∈X, A(x)

If c is an arbitrary element of X and  
∀x∈X, A(x) is true, then A(c) is true (instantiation).

Universal quantification
If c is an arbitrary element of X, and A(c) is true,	

then ∀x∈X, A(x) is true (universal generalization).

⊢ A(c) c ∈ X is arbitrary	
 	

————————————	

⊢ ∀x∈X, A(x)

If c is an arbitrary element of X and  
∀x∈X, A(x) is true, then A(c) is true (instantiation).

⊢ ∀x∈X, A(x) c ∈ X	
 	

——————————	

⊢ A(c)

Existential quantification
If c is a particular element of X, and A(c) is true,	

then ∃x∈X, A(x) is true (existential introduction).

Existential quantification
If c is a particular element of X, and A(c) is true,	

then ∃x∈X, A(x) is true (existential introduction).

⊢ A(c) c ∈ X is fixed	
 	

————————————	

⊢ ∃x∈X, A(x)

Existential quantification
If c is a particular element of X, and A(c) is true,	

then ∃x∈X, A(x) is true (existential introduction).

⊢ A(c) c ∈ X is fixed	
 	

————————————	

⊢ ∃x∈X, A(x)

If ∃x∈X, A(x) is true, and for any c∈X,  
A(c) implies B, then B is true (generalized case analysis).

Existential quantification
If c is a particular element of X, and A(c) is true,	

then ∃x∈X, A(x) is true (existential introduction).

⊢ A(c) c ∈ X is fixed	
 	

————————————	

⊢ ∃x∈X, A(x)

If ∃x∈X, A(x) is true, and for any c∈X,  
A(c) implies B, then B is true (generalized case analysis).

⊢ ∀x∈X, (A(x)⇒ B) ⊢ ∃x∈X, A(x)	

———————————————	

⊢ B

Falsehood

Falsehood
Special proposition: False.

Falsehood
Special proposition: False.

No introduction rule.

Falsehood
Special proposition: False.

No introduction rule.

Assuming falsehood, we can derive a proof
of any statement.

Falsehood
Special proposition: False.

No introduction rule.

Assuming falsehood, we can derive a proof
of any statement.

⊢ False	
 	

————	

⊢ A

Falsehood

A is false (¬A) if, assuming A is true, we can
derive the proof of False.

¬A ≝ A ⇒ False	

Falsehood

⊢ A ⋀ ¬ A	
 	

——————	

⊢ B

Any statement can be proved to be true,
assuming a contradiction (A ⋀ ¬A).

Falsehood

⊢ A	
 ⊢ ¬A	
 	

——————	

⊢ B

Any statement can be proved to be true,
assuming a contradiction (A ⋀ ¬A).

Falsehood

⊢ A	
 ⊢ A ⇒ False	
 	

—————————	

⊢ B

Any statement can be proved to be true,
assuming a contradiction (A ⋀ ¬A).

Falsehood

Any statement can be proved to be true,
assuming a contradiction (A ⋀ ¬A).

 ⊢ False	
	

————	

⊢ B

Falsehood

A system of hypotheses and rules (axioms) is
consistent if no proof of False can be derived in it.

Falsehood

A system of hypotheses and rules (axioms) is
consistent if no proof of False can be derived in it.

That, is it does not contain paradoxes.

Falsehood

A system of hypotheses and rules (axioms) is
consistent if no proof of False can be derived in it.

That, is it does not contain paradoxes.

Example 1: Naïve set theory is inconsistent
(Russel’s paradox).

Falsehood

A system of hypotheses and rules (axioms) is
consistent if no proof of False can be derived in it.

That, is it does not contain paradoxes.

Example 1: Naïve set theory is inconsistent
(Russel’s paradox).

Example 2: Zermelo–Fraenkel set theory  
is consistent (see axiom schema of specification).

How do we check proofs?

How do we check proofs?

By verifying each inference step.

This might be difficult

This might be difficult
(but not as difficult as to construct a proof)

This might be difficult
(but not as difficult as to construct a proof)

… but still

Some proofs are too critical

• Hardware correctness	

• Software correctness	

• Integrity of cryptographic protocols

Some proofs are too large

Some proofs are too large

• Fermat's Last Theorem (stated in 1637, proved in 1993)	

• The proof is about 150 pages of handwritten math

Some proofs are too large

• Fermat's Last Theorem (stated in 1637, proved in 1993)	

• The proof is about 150 pages of handwritten math

• Odd order theorem (stated in 1911, proved in 1962)	

• The proof is about 250 pages of printed text

Some proofs are too large

• Fermat's Last Theorem (stated in 1637, proved in 1993)	

• The proof is about 150 pages of handwritten math

• Odd order theorem (stated in 1911, proved in 1962)	

• The proof is about 250 pages of printed text

• Four colour theorem (proved in 1976)	

• 1936 special cases are discharged via a program

Can we use computers  
to check our proofs?

Can we use computers  
to check our proofs?

Yes

Can we use computers  
to check our proofs?

Yes

In fact, this is what  
some programmers do every day.

Programs

Programs

Data Types + Functions

=

Programming Languages

• Haskell	

• ML	

• F#	

• Lisp	

• Scala	

• Agda	

• Coq	

• Perl	

• Python	

• Ruby	

• C++	

• Java	

• C#	

• …

Functional Programming Languages

• Haskell	

• ML	

• F#	

• Lisp	

• Scala 	

• Agda	

• Coq

Functional Programming Languages

• Haskell	

• ML	

• F#	

• Lisp	

• Scala 	

• Agda	

• Coq

• Data types define immutable values 	

• Functions are values as well	

• Programs are pure functions

Statically-typed  
Functional Programming Languages

• Haskell	

• ML	

• F#	

• Scala	

• Agda	

• Coq

Statically-typed  
Functional Programming Languages

• Haskell	

• ML	

• F#	

• Scala	

• Agda	

• Coq

• Every value has a type	

• Type defines a set of values	

• Type of a program — its specification

A type with one element

Datatype unit := tt.

A type with one element

Datatype unit := tt.

unit ≝ { tt }

A type with two elements

Datatype bool := true | false.

A type with two elements

Datatype bool := true | false.

bool ≝ { true, false }

A type with no elements

Datatype empty := .

A type with no elements

Datatype empty := .

empty ≝ { }

A type defined recursively

Datatype nat := 0 | .+1 of nat.

A type defined recursively

Datatype nat := 0 | .+1 of nat.

n ∈ nat ⇒ n.+1 ∈ nat
z }| {

A type defined recursively

Datatype nat := 0 | .+1 of nat.

nat ≝ { 0, (0.+1), (0.+1.+1), … }

n ∈ nat ⇒ n.+1 ∈ nat
z }| {

A type defined recursively

Datatype nat := 0 | .+1 of nat.

nat ≝ { 0, (0.+1), (0.+1.+1), … }

n ∈ nat ⇒ n.+1 ∈ nat
z }| {

| {z }| {z }
1 2

A parametrized type

Datatype prod A B := pair of A & B

A parametrized type

Datatype prod A B := pair of A & B

A × B ≝ { (a, b) | a ∈ A, b ∈ B }

Another parametrized type

Datatype sum A B := inl of A | inr of B

Another parametrized type

Datatype sum A B := inl of A | inr of B

A + B ≝ { (a, 1) | a ∈ A } ∪ { (b, 2) | b ∈ B }

Parametrized recursive type

Datatype list A := Nil | Cons of A & (list A).

Parametrized recursive type

Datatype list A := Nil | Cons of A & (list A).

list A ≝ Nil ∪ { Cons(a, l) | l ∈ list A }

A simple function

Function negate : bool -> bool :=!
 fun b => match b with!
 | true => false!
 | false => true!
 end.

A simple function

Function negate : bool -> bool :=!
 fun b => match b with!
 | true => false!
 | false => true!
 end.

negate ∈ bool ! bool
z }| {

A recursive function

Function even : nat -> bool :=!
 fun n => match n with!
 | n’.+1 => negate (even n’)!
 | 0 => true!
 end.

A recursive function

Function even : nat -> bool :=!
 fun n => match n with!
 | n’.+1 => negate (even n’)!
 | 0 => true!
 end.

even ∈ nat ! bool
z }| {

An ill-typed function

Function even : nat -> bool :=!
 fun n => match n with!
 | n’.+1 => negate (even n’)!
 | 0 => Nil!
 end.

An ill-typed function

Function even : nat -> bool :=!
 fun n => match n with!
 | n’.+1 => negate (even n’)!
 | 0 => Nil!
 end.

Wrong type: bool expected, but list ? found.

Types are program specifications

A type-checking algorithm ensures that
each value has an appropriate type, i.e.,  
that it belongs to the corresponding set.

Types are program specifications

A type-checking algorithm ensures that
each value has an appropriate type, i.e.,  
that it belongs to the corresponding set.

+

Types are program specifications

A type-checking algorithm ensures that
each value has an appropriate type, i.e.,  
that it belongs to the corresponding set.

+

Given a type A, can we construct  
a program (value) p, such that  

p is an element of type A?

Given a type A, can we construct  
a program (value) p, such that  

p is an element of type A?

In other words: can we inhabit the type A?

unit

unit

tt

bool

bool

true

bool

false

nat

nat

0

nat

1

nat

2014

empty

empty

???

A -> A

A -> A

fun (a: A) => a

A -> A

fun (a: A) => a

A ⊢ A	

————	

⊢ A ⇒ A

A -> (A -> B) -> B

A -> (A -> B) -> B

fun (a: A) !
 (f : A -> B) => f a

A -> (A -> B) -> B

fun (a: A) !
 (f : A -> B) => f a

⊢ A ⊢ A ⇒ B	

————————	

⊢ B

(A × B) -> A

(A × B) -> A

fun (a: A × B) =>!
 match a with!
 | pair a b => a!
 end

(A × B) -> A

fun (a: A × B) =>!
 match a with!
 | pair a b => a!
 end

⊢ A ⋀ B	

————	

⊢ A

(A × B) -> B

(A × B) -> B

fun (a: A × B) =>!
 match a with!
 | pair a b => b!
 end

(A × B) -> B

fun (a: A × B) =>!
 match a with!
 | pair a b => b!
 end

⊢ A ⋀ B	

————	

⊢ B

A -> B -> (A × B)

A -> B -> (A × B)

fun (a: A)(b: B) => pair a b

A -> B -> (A × B)

fun (a: A)(b: B) => pair a b

⊢ A ⊢ B	

——————	

⊢ A ⋀ B

A -> (A × B)

A -> (A × B)

???

A -> A + B

A -> A + B

fun (a: A) => inl a

⊢ A	
 	

————	

⊢ A ⋁ B

A -> A + B

fun (a: A) => inl a

(A + B) -> (A -> C) -> (B -> C) -> C

(A + B) -> (A -> C) -> (B -> C) -> C

fun (x: A + B)(f: A -> B)(g: B -> C) =>!
 match x with!
 | inl a => f a!
 | inr b => g b!
 end

(A + B) -> (A -> C) -> (B -> C) -> C

fun (x: A + B)(f: A -> B)(g: B -> C) =>!
 match x with!
 | inl a => f a!
 | inr b => g b!
 end

⊢ A ⋁ B ⊢ A ⇒ C ⊢ B ⇒ C 	

————————————	

⊢ C

empty -> A

empty -> A

fun (x: empty) => match x with end

empty -> A

fun (x: empty) => match x with end

⊢ False	
 	

————	

⊢ A

To show that a type A is inhabited, it is
sufficient to construct a program  
p : A using datatype constructors,  

case-analysis and function application.

To show that a type A is inhabited, it is
sufficient to construct a program  
p : A using datatype constructors,  

case-analysis and function application.

———————————————————

To prove a proposition A  
it is sufficient to construct a proof  

p of A using assumptions,  
axioms and derived inference rules.

Curry-Howard correspondence

Propositions = Types

Curry-Howard correspondence

Propositions = Types

Proofs = Programs

Curry-Howard correspondence

Curry-Howard correspondence

Axioms are  
datatype constructors

Curry-Howard correspondence

Axioms are  
datatype constructors

Inference rules are
functions

Curry-Howard correspondence

Curry-Howard correspondence

unitTrue

Curry-Howard correspondence

unitTrue

emptyFalse

Curry-Howard correspondence

unitTrue

emptyFalse

A × BA ⋀ B

Curry-Howard correspondence

unitTrue

emptyFalse

A × BA ⋀ B

A + BA ⋁ B

Curry-Howard correspondence

unitTrue

emptyFalse

A × BA ⋀ B

A + BA ⋁ B

A ! BA ⇒ B

Curry-Howard correspondence

Curry-Howard correspondence

function applicationmodus ponens

Curry-Howard correspondence

function applicationmodus ponens

a hypothesis function argument

Curry-Howard correspondence

function applicationmodus ponens

a hypothesis function argument

introduction rule datatype constructor

Curry-Howard correspondence

function applicationmodus ponens

a hypothesis function argument

introduction rule datatype constructor

elimination rule pattern matching

Programs-as-proofs are constructive

A program of type A → B,  
taken as a proof, specifies how to
derive a proof of its result type B
from the proof of A algorithmically.

Programs-as-proofs are constructive

A program of type A → B,  
taken as a proof, specifies how to
derive a proof of its result type B
from the proof of A algorithmically.

This is not always the case  
in the classical logic.

Non-constructive Axioms

Non-constructive Axioms

• Excluded middle: A ⋁ ¬A	

• Neither a proof of A, nor of ¬A is required;

Non-constructive Axioms

• Excluded middle: A ⋁ ¬A	

• Neither a proof of A, nor of ¬A is required;

• Double negation: ((A ⇒ False) ⇒ False) ⇒ A	

• Again, the proof of A is not required.

Non-constructive Axioms

• Excluded middle: A ⋁ ¬A	

• Neither a proof of A, nor of ¬A is required;

• Double negation: ((A ⇒ False) ⇒ False) ⇒ A	

• Again, the proof of A is not required.

Assuming these axioms keeps Curry-Howard
correspondence consistent as a formal system.

What about quantifiers?

Statically-typed  
functional programming languages

• Haskell	

• ML	

• F#	

• Scala	

• Agda	

• Coq

• Every value has a type	

• Type defines a set of values	

• Type of a program — its specification

Dependently-typed  
functional programming languages

• Agda	
 • Coq

• Every value has a type	

• Type defines a set of values	

• Type of a program — its specification

Dependently-typed  
functional programming languages

• Agda	
 • Coq

• Every value has a type	

• Type defines a set of values	

• Type of a program — its specification	

• Types can depend on values

Function Type
A -> B

Function Type
A -> B

bool -> nat

Function Type
A -> B

fun b =>!
 match b with!
 | true => 0!
 | false => 1!
 end

bool -> nat

Dependent Function Type

П(x: A). B(x)

Dependent Function Type

П(x: A). B(x)

П(b: bool). if b then nat else unit

Dependent Function Type

П(x: A). B(x)

fun b =>!
 match b with!
 | true => 0!
 | false => tt!
 end

П(b: bool). if b then nat else unit

Pair Type

A × B

Pair Type

A × B

Datatype prod A B := pair of A & B

Dependent Pair Type

Σ(x: A). P(x)

Dependent Pair Type

Σ(x: A). P(x)

Datatype sigma A (P: A -> B):= !
 ex (x: A) of P x

Dependent Pair Type

Σ(x: A). P(x)

Datatype sigma A (P: A -> B):= !
 ex (x: A) of P x

Every value of type sigma A P contains  
a value x of type A (witness)  

and a value of type P(x).

Curry-Howard correspondence

Curry-Howard correspondence

∀x ∈ A, P(x) П(x: A). P(x)

Curry-Howard correspondence

∀x ∈ A, P(x) П(x: A). P(x)

∃x ∈ A, P(x) Σ(x: A). P(x)

An example of dependent type

П(P : nat -> Prop).!
 P(0) -> !
 (П(n : nat). P(n) -> P(n.+1)) -> !
! П(n : nat). P n

An example of dependent type

∀(P ∈ nat ⇒ Prop).!
 P(0) ⇒ !
 (∀(n ∈ nat). P(n) ⇒ P(n + 1)) ⇒ !
! ∀(n ∈ nat). P n

An example of dependent type

∀(P ∈ nat ⇒ Prop).!
 P(0) ⇒ !
 (∀(n ∈ nat). P(n) ⇒ P(n + 1)) ⇒ !
! ∀(n ∈ nat). P n

Function nat_ind (P : nat -> Prop) !
 (f0 : P 0)  
 (fn : П(n : nat), P n -> P (n.+1)) :=!
 fun (n : nat) =>!
 match n with!
 | 0 => f0!
 | n’.+1 => fn n’ (nat_ind P f0 fn n0)!
 end.

Dependently-typed  
functional programming languages

• Agda	
 • Coq

Proof Assistants

• Agda	
 • Coq

Proof Assistants

• Agda	
 • Coq

• Not Turing-complete 	

• type-checking should terminate	

• Proofs can be built interactively using scripts	

• “Boring” proofs can be automated

Interactive proof construction
(in Coq)

Theorem counterexample (A: Type) (P: A → Prop) : !
 (∃x: A, ¬P x) → ¬(∀ x, P x).

Interactive proof construction
(in Coq)

Theorem counterexample (A: Type) (P: A → Prop) : !
 (∃x: A, ¬P x) → ¬(∀ x, P x).

Interactive proof construction
(in Coq)

Proof.!
 case => x H1 H2. !
 by apply : H1 (H2 x).!
Qed.

Function counterexample := !
 fun (A : Type) (P : A -> Prop) (hyp : ∃x : A, ¬ P x) =>!
 (fun F : ∀(x : A) (p : (fun x0 : A => ¬ P x0) x),!
 (fun _ : (∃x0 : A, ¬ P x0) => ¬ (∀x0 : A, P x0))!
 (ex_intro (fun x0 : A => ¬ P x0) x p) =>!
 match hyp as e!
 return ((fun _ : (∃x : A, ¬ P x) => ¬ (∀x : A, P x)) e)!
 with!
 | ex x x0 => F x x0!
 end) (fun (x : A) (H1 : ¬ P x) (H2 : ∀x0 : A, P x0) => H1 (H2 x)).!

Interactive proof construction
(in Coq)

Current advances

• Four colour theorem — mechanised in Coq in 2005	

• CompCert — fully verified C compiler (2006)	

• Odd order theorem — mechanised in Coq in 2013	

• Keppler’s conjecture — formally proved in 2014	

• sel4 — formally verified OS kernel (2014)

To take away

• Formal proofs are functional programs in disguise;	

• propositions are program types;	

• writing a proof = constructing a program;	

• proving is still tricky and takes a mathematician’s insight;	

• proof assistants help to automate the “boring” parts  
of mechanised formal proof constructions…	

• … and the rest is a huge fun.

“A mathematician is expected 	

 to sit at his computer and think.”

Hari Seldon

