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1 Introduction

These lecture notes are the result of the author’s personal experience of learning how to
structure formal reasoning using the Coq proof assistant and employ Coq in large-scale
research projects. The present manuscript offers a brief and practically-oriented intro-
duction to the basic concepts of mechanized reasoning and interactive theorem proving.
The primary audience of this text are the readers with expertise in software develop-

ment and programming and knowledge of discrete mathematic disciplines on the level
of an undergraduate university program. The high-level goal of the course is, therefore,
to demonstrate how much the rigorous mathematical reasoning and development of ro-
bust and intellectually manageable programs have in common, and how understanding of
common programming language concepts provides a solid background for building math-
ematical abstractions and proving theorems formally. The low-level goal of this course
is to provide an overview of the Coq proof assistant, taken in its both incarnations: as
an expressive functional programming language with dependent types and as a proof
assistant providing support for mechanized interactive theorem proving.
By aiming for these two goals, this manuscript is, thus, intended to provide a demon-

stration how the concepts familiar from the mainstream programming languages and
serving as parts of good programming practices can provide illuminating insights about
the nature of reasoning in Coq’s logical foundations and make it possible to reduce the
burden of mechanical theorem proving. These insights will eventually give the reader
a freedom to focus solely on the essential part of her formal development instead of
fighting with a proof assistant in futile attempts to encode the “obvious” mathematical
intuition—a reason that made many of the new-comers abandon their attempts to apply
the machine-assisted approach for formal reasoning as an everyday practice.

1.1 Why yet another course on Coq?
The Coq proof assistant [10] has been in development since 1983, and by now there is a
number of courses that provide excellent introductions into Coq-powered interactive theo-
rem proving and software development. Among the other publicly available manuscripts,
the author finds the following three to be the most suitable for teaching purposes.

• The classical book Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions by Yves Bertot and Pierre Castéran [3] is
a great and exhaustive overview of Coq as a formal system and a tool, covering
both logical foundations, reasoning methodologies, automation tools and offering
large number of examples and exercises (from which this course borrows some).
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• Benjamin Pierce et al.’s Software Foundations electronic book [53] introduces Coq
development from an angle of the basic research in programming languages, focusing
primarily on formalization of program language semantics and type systems, which
serve both as main motivating examples of Coq usage and a source of intuition for
explaining Coq’s logical foundations.

• The most recently published book, Certified Programming with Dependent Types
by Adam Chlipala [7] provides a gentle introduction to Coq from the perspective of
writing programs that manipulate certificates, i.e., first-class proofs of the program’s
correctness. The idea of certified programming is a natural fit for a programming
language with dependent types, which Coq offers, and the book is structured as
a series of examples that make the dependently-typed aspect of Coq shine, along
with the intuition behind these examples and a detailed overview of state-of-the-art
proof automation techniques.

Although all the three books have been used in numerous introductory courses for Coq
with a large success, it is the author’s opinion that there are still some topics essential
for grasping the intuition behind rigorous and boilerplate-free mathematical reasoning
via a proof assistant that are left underrepresented. This course is targeted to fill these
gaps, while giving the reader enough background to proceed as a Coq hacker on her own.
In particular, this manuscript describes in detail the following aspects of proof engineer-
ing, most of which are enabled or empowered by Gonthier et al.’s small-scale reflection
extension (Ssreflect) to Coq [23] and its accompanying library called Mathematical Com-
ponents:

• Special treatment is given to the computational nature of inductive reasoning about
decidable propositions, which makes it possible to compute a result of the vast
majority of them (as opposed to prove them constructively) as a boolean value,
given that they are formulated as computable recursive Coq functions, rather than
inductive predicates (which is more in the spirit of the traditional Coq school).

• Instead of supplying the reader with a large vocabulary of tactics necessary for
everyday Coq hacking, this course focuses on a very small but expressive set of
proof constructing primitives (of about a seven in total), offered by Ssreflect or
inherited from the vanilla Coq with notable enhancements.

• This course advocates inductive types’ parameters as an alternative to indices as a
way of reasoning about explicit equalities in datatypes with constraints.

• The reasoning by rewriting is first presented from the perspective of Coq’s definition
of propositional equality and followed by elaboration on the idea of using datatype
indices as a tool to define client-specific conditional rewriting rules.

• This manuscript explains the essentials of Ssreflect’s boolean reflection between the
sort Prop and the datatype bool as a particular case of conditional rewriting, follow-
ing the spirit of the computational approach to the proofs of decidable propositions.

• Formal encoding of familiar mathematical structures (e.g., monoids and lattices)
is presented by means of Coq’s dependent records and overloading mathematical
operations using the mechanism of canonical instances.



1.1 Why yet another course on Coq? 7

• A novel (from a teaching perspective) case study is considered, introducing the
readers to the concepts of Hoare Type Theory and describing the basics of type-
based reasoning about imperative programs by means of shallow embedding.

1.1.1 What this course is about
Besides the enumerated above list of topics, which are described in detail and supported
by a number of examples, this course supplies some amount of “standard” material re-
quired to introduce a reader with a background in programming and classical mathe-
matical disciplines to proof engineering and program development in Coq. It starts from
explaining how simple functional programs and datatypes can be defined and executed in
the programming environment of Coq, proceeding to the definition of propositional logic
connectives and elements of interactive proof construction. Building further on the pro-
gramming intuitions about algebraic datatypes, this manuscript introduces a definition of
propositional equality and the way to encode custom rewriting rules, which then culmi-
nates with a discussion on the boolean reflection and reasoning by means of computation.
This discussion is continued by revising important principles of proofs by induction in
Coq and providing pointers to the standard Ssreflect libraries, which should be used as
a main component for everyday mathematical reasoning. The course concludes by rec-
onciling all of the described concepts and Coq/Ssreflect reasoning principles by tackling
a large case study—verifying imperative programs within the framework of Nanevski et
al.’s Hoare Type Theory [41, 42].

1.1.2 What this course is not about
There is a range of topics that this course does not cover, although it is the author’s
belief that the provided material should be sufficient for the reader to proceed to these
more advanced subjects on her own. Some of the exciting topics, which are certainly
worth studying but lie beyond the scope of this manuscript, are listed below together
with pointers to the relevant bibliographic references.

• Reasoning about infinite objects in Coq via co-induction (see Chapters 5 and 7 of
the book [7] as well as the research papers [32, 34]).

• Proof automation by means of tactic engineering (see [7, Chapters 13–15] and the
papers [61, 62, 70]) or lemma overloading [25].

• Using a proof assistant in the verification of program calculi [2, 53] and optimizing
compilers [1] as well as employing Coq to specify and verify low-level and concurrent
programs [5, 8, 17, 44].

1.1.3 Why Ssreflect?
A significant part of this course’s material is presented using the Ssreflect extension of
Coq [23] and its accompanying libraries, developed as a part of the Mathematical Compo-
nents project1 in order to facilitate the automated reasoning in very large mathematical

1https://math-comp.github.io/math-comp/

https://math-comp.github.io/math-comp/
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developments, in particular, the fully formal machine-checked proofs of the four color
theorem [22] and Feit-Thompson (odd order) theorem [24].
Ssreflect includes a small set of powerful novel primitives for interactive proof con-

struction (tactics), different from the traditional set provided by Coq. It also comes with
a large library of various algebraic structures, ranging from natural numbers to graphs,
finite sets and algebras, formalized and shipped with exhaustive toolkits of lemmas and
facts about them. Finally, Ssreflect introduces some mild modifications to Coq’s native
syntax and the semantics of the proof script interpreter, which makes the produced proofs
significantly more concise.
Using Ssreflect for the current development is not the goal by itself: a large part of

the manuscript could be presented using traditional Coq without any loss in the insights
but, perhaps, some loss in brevity. However, what is more important, using Ssreflect’s
libraries and tactics makes it much easier to stress the main points of this course, namely,
that (a) the proof construction process should rely on Coq’s native computational ma-
chinery as much as possible and (b) rewriting (in particular, by equality) is one of the
most important proof techniques, which should be mastered and leveraged in the proofs.
Luckily, the way most of the lemmas in Ssreflect and Mathematical Components libraries
are implemented makes them immediately suitable to use for rewritings, which directly
follows the natural mathematical intuition. The enhancements Ssreflect brings over the
standard Coq rewriting machinery also come in handy.
Last, but not least, Ssreflect comes with a much improved Search tool (comparing to

the standard one of Coq). Given that a fair part of time spent for development (either
programs and proofs) is typically dedicated to reading and understanding the code (or,
at least, specifications) written by other implementors, the Search tool turns out to be
invaluable when it comes to looking for necessary third-party facts to employ in one’s
own implementation.
In the further chapters of this course, we will not be making distinction between native

Coq and Ssreflect-introduced commands, tactics and tacticals, and will keep the combined
lists of them in the Index section at the end of the manuscript.

1.2 Prerequisites
The reader is expected to have some experience with mainstream object-oriented and
functional programming languages, such as Scala [46], Haskell [31], OCaml [35] or Stan-
dard ML [39]. While strong knowledge of any of the mentioned languages is not manda-
tory, it might be useful, as many of the Coq’s concepts making appearance in the course
are explained using the analogies with constructs adopted in practical programming, such
as algebraic datatypes, higher-order functions, records and monads.
While this manuscript is aiming to be self-contained in its presentation of a subset

of Coq, it would be naïve to expect it to be the only Coq reference used for setting-up
a formal development. That said, we encourage the reader to use the standard Coq
manual [10] as well as Ssreflect documentation [23] whenever an unknown tactic, piece
of syntax or obscure notation is encountered. Coq’s Search, Locate and Print tools,
explained in Chapter 2 are usually of great help when it comes to investigating what
someone’s Coq code does, so don’t hesitate to use them.
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Finally, we assume that the Emacs text editor with a Proof General mode installed
(as explained further in this chapter) will be used as the environment for writing code
scripts, and the GNU make machinery is available on the reader’s machine in order to
build the necessary libraries and tools.

1.3 Setup
In order to be able to follow the manuscript and execute the examples provided, the
reader is expected to have Coq with Ssreflect installed on her machine. This section
contains some general instructions on the installation and set-up. Most of the mentioned
below sources can be downloaded from the following URL, accompanying these notes:

http://ilyasergey.net/pnp

Alternatively, you can clone the sources of these lecture notes, along with the exercises
and the solution from the following public GitHub repository:

https://github.com/ilyasergey/pnp

1.3.1 Installing Coq, Ssreflect and Mathematical Components
The sources of this manuscript have been compiled and tested with Coq version 8.11.2,
Ssreflect/Mathematical Components version 1.11.0, and FCSL PCM version 1.2.0. It is
not guaranteed that the same examples will work seamlessly with different versions.
The easiest way to obtain the necessary versions of Coq and the libraries is to install

them via the OPAM package manager (https://opam.ocaml.org):

opam install coq.8.11.2

In order to install Ssreflect/Mathematical Components, FCSL PCM, and HTT, you
will need to register the corresponding repository and then install the packages as follows:

opam repo add coq-released https://coq.inria.fr/opam/released
opam pin add coq-htt git+https://github.com/TyGuS/htt\#master --no-action --yes
opam install coq-mathcomp-ssreflect coq-fcsl-pcm coq-htt

1.3.2 Emacs set-up
The Emacs2 (or Aquamacs3 for MacOS users) text editor provides a convenient environ-
ment for Coq development, thanks to the Proof General mode. After downloading and
installing Emacs follow the instructions from the Proof General repository4 to configure
the Emacs support for Coq.
Linux users who are more used to the Windows-style Copy/Paste/Undo keystrokes can

also find it convenient to enable the Cua mode in Emacs, which can be done by adding
the following lines into the .emacs file:

2http://www.gnu.org/software/emacs/
3http://aquamacs.org
4https://github.com/ProofGeneral/PG

http://ilyasergey.net/pnp
https://github.com/ilyasergey/pnp
https://opam.ocaml.org
http://www.gnu.org/software/emacs/
http://aquamacs.org
https://github.com/ProofGeneral/PG


10 1 Introduction

(cua-mode t)
(setq cua-auto-tabify-rectangles nil)
(transient-mark-mode 1)
(setq cua-keep-region-after-copy t)

Every Coq file has the extension .v. Opening any .v file will automatically trigger the
Proof General mode.
Finally, the optional Company-Coq5 collection of extensions to Proof General adds

many modern IDE features such as auto-completion of tactics and names, refactoring,
and inline help.

1.3.3 Getting the lecture files and solutions
The reader is encouraged to download the additional material for this course in the form
of Coq files with all examples from the manuscript plus some additional exercises. The
sources can be obtained from the GitHub repository. The Coq files accompanying lec-
tures (with solutions omitted) are contained in the lectures folder. For the examples
of Chapter 8 and the corresponding lecture source file, the sources of the Hoare Type
Theory (HTT) development will be required. The up-to-date sources of HTT are avail-
able in the GitHub repository https://github.com/TyGuS/htt. The HTT itself can be
installed via opam. Solutions for all of the exercises can be found in the folder solutions
of the GitHub project accessible by the link above.
After the sources are cloned, run make from the root folder. This will build all necessary

libraries, lectures, solutions for the exercises, and the lecture notes. The resulting PDF
file is latex/pnp.pdf.
The table below describes the correspondence between the chapters of the manuscript

and the accompanying files.

№ Chapter title Coq file
2 Functional Programming in Coq FunProg.v
3 Propositional Logic LogicPrimer.v
4 Equality and Rewriting Principles Rewriting.v
5 Views and Boolean Reflection BoolReflect.v
6 Inductive Reasoning in Ssreflect SsrStyle.v
7 Encoding Mathematical Structures DepRecords.v
8 Case Study: Program Verification in Hoare Type Theory HTT.v

1.4 Naming conventions
Coq as a tool and environment for interactive theorem proving incorporates a number
of entities in itself. As a programming and specification language, Coq implements a
dependently-typed calculus (i.e., a small formal programming language) Gallina, which

5https://github.com/cpitclaudel/company-coq

https://github.com/ilyasergey/pnp
https://github.com/TyGuS/htt
https://github.com/cpitclaudel/company-coq
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is an extension of the Calculus of Inductive Constructions (CIC) explained in Chapter 3.
Therefore, all the expressions and programs in Coq, including standard connectives (e.g.,
if-then-else or let-in) are usually referred to as Gallina terms. In the listing, key-
words of Gallina terms will be usually spelled using typewriter monospace font. The
defined entities, such as functions, datatypes theorems and local variables will be usually
spelled in the italic or sans serif fonts.
On top of the language of programs in Coq there is a language of commands and

tactics, which help to manage the proof scripts, define functions and datatypes, and
perform queries, such as searching and printing. The language of Coq commands, such
as Search and Print, is called Vernacular. Commands and tactics, similarly to the
keywords, are spelled in typewriter monospace font.
In the rest of the manuscript, though, we will be abusing the terminology and blur the

distinction between entities that belong to Gallina, Vernacular or Coq as a framework,
and will be referring to them simply as “Coq terms”, “Coq tactics” and “Coq commands”.
In the program displays, interleaving with the text, some mathematical symbols, such

as ∀, ∃ and →, will be displayed in Unicode, whereas in the actual program code they
are still spelled in ASCII, e.g., forall, exists and ->, correspondingly.

1.5 Acknowledgements
This course was inspired by the fantastic experience of working with Aleks Nanevski on
verification of imperative and concurrent programs during the author’s stay at IMDEA
Software Institute. Aleks’ inimitable sense of beauty when it comes to formal proofs has
been one of the main principles guiding the design of these lecture notes.
I’m grateful to Michael D. Adams, Amal Ahmed, Jim Apple, Daniil Berezun, Gio-

vanni Bernardi, Dmitri Boulytchev, William J. Bowman, Kirill Bryantsev, Santiago Cuel-
lar, Andrea Cerone, Olivier Danvy, Rémy Haemmerle, Wojciech Karpiel, José Francisco
Morales, Phillip Mates, Gleb Mazovetskiy, Anton V. Nikishaev, Karl Palmskog, Daniel
Patterson, Anton Podkopaev, Leonid Shalupov, Kartik Singhal, Jan Stolarek, Anton
Trunov and James R. Wilcox who provided a lot of valuable feedback and found count-
less typos in earlier versions of the notes.
The mascot picture Le Coq Mécanisé on the front page is created by Lilia Anisimova.





2 Functional Programming in Coq
Our journey to the land of mechanized reasoning and interactive theorem proving starts
from observing the capabilities of Coq as a programming language.
Coq’s programming component is often described as a functional programming lan-

guage, since its programs are always pure (i.e., not producing any sort of side effects),
possibly higher-order functions, which means that they might take other functions as
parameters and return functions as results. Similarly to other functional programming
languages, such as Haskell, OCaml or Scala, Coq makes heavy use of algebraic datatypes,
represented by a number of possibly recursive constructors. Very soon, we will see how
programming with inductive algebraic datatypes incorporates reasoning about them, but
for now let us take a short tour of Coq’s syntax and define a number of simple programs.

2.1 Enumeration datatypes
Let us create an empty .v file—a standard extension for Coq files, recognized, in particu-
lar, by Proof General, and define our first Coq datatype. The simplest datatype one can
imagine is unit, a type inhabited by exactly one element. In Coq, one can define such a
type in the following manner:1

Inductive unit : Set := tt.
The definition above postulates that the type unit has exactly one constructor, namely,

tt. In the type theory jargon, which we will adopt, it is said that the expression tt inhabits
the unit type. Naturally, it is the only inhabitant of the set, corresponding to the unit
type. We can now check the tt’s affiliation via the Check command:
Check tt.

tt
: unit

Moreover, we can make sure that the unit datatype itself defines a set:
Check unit.

unit
: Set

In fact, since Coq makes the analogy between sets and types so transparent, it is not
difficult to define a type describing the empty set:

1Use the Ctrl-C Ctrl-Enter keyboard shortcut to initiate the interactive programming/proof mode
in Proof General and gradually compile the file.
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Inductive empty : Set := .

That is, the empty set is precisely described by the type, values of which we simply
cannot construct, as the type itself does not provide any constructors! In fact, this
observation about inhabitance of types/sets and the definition of an empty type will
come in quite handy very soon when we will be talking about the truth and falsehood
in the setting of the Curry-Howard correspondence in Chapter 3. Unfortunately, at this
moment there is not so much we can do with such simple types as unit or empty, so we
proceed by defining some more interesting datatypes.
The type bool is familiar to every programmer. In Coq, it is unsurprisingly defined

by providing exactly two constructors: true and false. Since bool is already provided by
the standard Coq library, we do not need to define it ourselves. Instead, we include the
following modules into our file using the From ... Require Import command:2

From mathcomp
Require Import ssreflect ssrbool.

Now, we can inspect the definition of the bool type by simply printing it:

Print bool.

Inductive bool : Set := true : bool | false : bool

Let us now try to define some functions that operate with the bool datatype ignoring
for a moment the fact that most of them, if not all, are already defined in the standard
Coq/Ssreflect library. Our first function will simply negate the boolean value and return
its opposite:

Definition negate b :=
match b with
| true ⇒ false
| false ⇒ true
end.

The syntax of Coq as programming language is very similar to Standard ML. The
keyword Definition is used to define non-recursive values, including functions. In the
example above, we defined a function with one argument b, which is being scrutinized
against two possible value patterns (true and false), respectively, and the corresponding
results are returned. Notice that, thanks to its very powerful type inference algorithm,
Coq didn’t require us to annotate neither the argument b with its type, nor the function
itself with its result type: these types were soundly inferred, which might be confirmed
by checking the overall type of negate, stating that it is a function from bool to bool:

Check negate.
negate : bool → bool

2The From ... premise is optional, and in this particular case it allows to include libraries frommathcomp
without additional qualifiers.
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2.2 Simple recursive datatypes and programs
At this point we have seen only very simple forms of inductive types, such that all
their inhabitants are explicitly enumerated (e.g., unit and bool). The next type used
ubiquitously in the computations and mathematical reasoning are natural numbers, the
first truly inductive datatype. Following the Peano axioms, the type nat of natural
numbers is defined by induction, i.e., via the following two constructors:

Print nat.

Inductive nat : Set := O : nat | S : nat → nat
The definition of the type nat is recursive. It postulates that O is a natural number

(hence, the first constructor), and, if n is a natural number then S n is a natural number as
well (hence, the name S, which is a shortcut for successor). At this point, the reader can
recall the notion of mathematical induction, usually introduced in school and postulating
that if a statement P has to be proven to hold over all natural numbers, it should be
proven to hold on zero and if it holds for n, then it should hold for n + 1. The very same
principle is put into the definition of the natural numbers themselves. In the future, we
will see many other interesting data structures going far beyond natural numbers and
each equipped with its own induction principle. Moreover, quite soon we will see that in
Coq recursive definitions/computations and inductive proofs are in fact two sides of the
same coin.
For now, let us write some functions dealing with natural numbers. In order to work

conveniently with the elements of type nat, we will import yet another Ssreflect library:

From mathcomp
Require Import ssrnat.

Probably, the most basic function working on natural numbers is their addition. Even
though such function is already implemented in the vast majority of the programming
languages (including Coq), let us do it from scratch using the definition of nat from
above. Since nat is a recursive type, the addition of two natural numbers n and m
should be defined recursively as well. In Coq, recursive functions are defined via the
keyword Fixpoint. In the following definition of the my plus function, we will make use of
Ssreflect’s postfix notation .+1 (with no spaces between the characters) as an alternative
to the standard nat’s recursive constructor S.3 Also, Coq provides a convenient notation
0 for the zero constructor O.

Fixpoint my plus n m :=
match n with
| 0 ⇒ m
| n’.+1 ⇒ let: tmp := my plus n’ m in tmp.+1
end.

Here, we deliberately used less concise notation in order to demonstrate the syntax
let: x := e1 in e2 construct, which, similarly to Haskell and OCaml, allows one to bind

3It is important to bear in mind that .+1 is not just a function for incrementation, but also is a datatype
constructor, allowing one to obtain the Peano successor of a number n by taking n.+1.
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intermediate computations within expressions.4 The function my plus is recursive on its
first argument, which is being decreased in the body, so n’ is a predecessor of n, which is
passed as an argument to the recursive call. We can now check the result of evaluation
of my plus via Coq’s Eval compute in command:5

Eval compute in my plus 5 7.
= 12 : nat
The same function could be written quite a bit shorter via Ssreflect’s pattern-matching

if-is-notation, which is a convenient alternative to pattern matching with only two
alternatives:
Fixpoint my plus’ n m := if n is n’.+1 then (my plus’ n’ m).+1 else m.
At this point, the reader might have an impression that the computational language

of Coq is the same as of OCaml and Haskell, so all usual tricks from the functional
programming might be directly applicable. Unfortunately, it is not so, and the main
difference between Coq and other general-purpose programming languages stems from
the way it treats recursion. For instance, let us try to define the following “buggy”
addition function, which goes into an infinite recursion instead of producing the value,
due to the fact that the recursion argument is not decreasing and remains to be n:

Fixpoint my plus buggy n m :=
if n is n’.+1 then (my plus buggy n m).+1 else m.

we immediately get the following error out of the Coq interpreter:

Error : Cannot guess decreasing argument of fix.
This is due to the fact that the recursion in my plus buggy is not primitive: that

is, there is a recursive call, whose argument is not “smaller” comparing to the initial
function’s arguments n or m, which makes this procedure to fall into a larger class of
generally recursive programs. Unlike primitively-recursive programs, generally-recursive
programs may not terminate or terminate only on a subset of their inputs, and checking
termination statically in general is an undecidable problem (that is, such checking will
not terminate by itself, which is known under the name of Turing’s halting problem).6
The check for primitive recursion, which implies termination, is performed by Coq syn-

tactically, and the system makes sure that there is at least one argument of an inductively-
defined datatype, which is being consistently decreased at each function call.7 This cri-
teria is sufficient to ensure the termination of all functions in Coq. Of course, such
termination check is a severe restriction to the computational power of Coq, which there-

4The same example also demonstrates the use of Ssreflect alternative to Coq’s standard let command,
not trailed with a colon. We will be making use of Ssreflect’s let: consistently, as it provides
additional benefits with respect to in-place pattern matching, which we will see later.

5The command in evaluation might look a bit verbose in this form, but it is only because of its great
flexibility, as it allows for different evaluation strategies. In this case we employed compute, as it
performs all possible reductions.

6The computability properties of primitively and generally recursive functions is a large topic, which is
essentially orthogonal to our development, so we omit a detailed discussion on the theory of recursion.

7Sometimes, it is possible to “help” Coq to guess such argument using the explicit annotation struct
right after the function parameter list, e.g., {struct n} in the case of my plus.



2.2 Simple recursive datatypes and programs 17

fore is not Turing-complete as a programming language (as it supports only primitive
recursion).
Although Coq is equipped with an amount of machinery to reason about potentially

non-terminating programs and prove some useful facts about them8 (for example, Chap-
ter 7 of the book [7] provides a broad overview of methods to encode potentially non-
terminating programs in Coq and reason about them), it usually requires some ingenuity
to execute generally-recursive computations within Coq. Fortunately, even without the
possibility to execute any possible program in the system, Coq provides a rich tool-set
to encode such programs, so a number of statements could be proved about them (as we
will see in Chapter 8), and the encoded programs themselves could be later extracted into
a general-purpose language, such as Haskell or OCaml in order to be executed (see [3,
Chapter 10] for detailed description of the extraction).
So, why is ensuring termination in Coq so important? The reason for this will be

better understood once we introduce the way Coq works with logical statements and
propositions. For now, it should be enough to accept the fact that in order to ensure the
logical calculus underlying Coq sound, the results of all functions in it (even operating
with infinite values, e.g., streams defined co-inductively) should be computable in a finite
number of steps. A bit further we will see that the proofs of propositions in Coq are
just ordinary values in its computational language, and the construction of the proofs
naturally should terminate, hence computation of any value in Coq should terminate,
since each value can be involved into a proof of some statement.
Postponing the discussion on the nature of propositions and proofs in Coq, we will

continue our overview of programming principles in Coq.
With the example of the addition function, we have already seen how the recursive

functions are defined. However, using the Fixpoint command is not the only way to pro-
vide definitions to functions similar to my plus. When defining the types unit or empty,
we could have noticed the following output produced by the interactive interpreter:
unit is defined
unit rect is defined
unit ind is defined
unit rec is defined
These three lines indicate that along with the new datatype (unit in this case) three

additional entities have been generated by the system. These are the companion induction
and recursion principles, which are named using the simple convention basing on the name
of the datatype. For example, the nat datatype comes accompanied by nat rect, nat ind
and nat rec, correspondingly.
Continuing playing with natural numbers and leaving the nat rect and nat ind aside for

a moment, we focus on the recursion primitive nat rec, which is a higher-order function
with the following type:
Check nat rec.

nat rec : ∀ P : nat → Set,
P 0 → (∀ n : nat, P n → P n.+1) → ∀ n : nat, P n

8Typically, this is done by supplying a user-specific termination argument, which "strictly reduces" at
each function call, or defining a function, so it would take a co-inductive datatype as its argument.
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The type of nat rec requires a bit of explanation. It is polymorphic in the sense of
Haskell and OCaml (i.e., it is parametrized over another type). More precisely, its first
parameter, bound by the ∀ quantifier is a function, which maps natural numbers to types
(hence the type of this parameter is nat → Set). The second parameter is a result of
type described by application of the function P to zero. The third parameter is a family
of functions, indexed by a natural number n. Each function from such a family takes
an argument of type P n and returns a result of type P n.+1. The default recursion
principle for natural numbers is therefore a higher-order function (i.e., a combinator).
If the three discussed arguments are provided, the result of nat rec will be a function,
mapping a natural number n to a value of type P n.
To see how nat rec is implemented, let us explore its generalized version, nat rect:

Print nat rect.

nat rect =
fun (P : nat → Type) (f : P 0) (f0 : ∀ n : nat, P n → P n.+1) ⇒
fix F (n : nat) : P n :=
match n as n0 return (P n0 ) with
| 0 ⇒ f
| n0.+1 ⇒ f0 n0 (F n0 )
end

: ∀ P : nat → Type,
P 0 → (∀ n : nat, P n → P n.+1) → ∀ n : nat, P n

Abstracting away from the details, we can see that nat rect is indeed a function with
three parameters (the keyword fun is similar to the lambda notation and is common in
the family of ML-like languages). The body of nat rect is implemented as a recursive
function (defined via the keyword fix) taking an argument n of type nat. Internally, it
proceeds similarly to our implementation of my plus: if the argument n is zero, then the
“default” value f of type P 0 is returned. Otherwise, the function proceeds recursively
with a smaller argument n0 by applying the “step” function f0 to the n0 and the result
of recursive call F n0.
Therefore, the summing function can be implemented via the nat’s recursion combi-

nator as follows:
Definition my plus’’ n m := nat rec (fun ⇒ nat) m (fun n’ m’ ⇒ m’.+1) n.
Eval compute in my plus’’ 16 12.
= 28 : (fun : nat ⇒ nat) 16
The result of invoking my plus’’ is expectable. Notice, however, that when defining it

we didn’t have to use the keyword Fixpoint (or, equivalently, fix), since all recursion
has been “sealed” within the definition of the combinator nat rect.

2.2.1 Dependent function types and pattern matching
An important thing to notice is the fact that the type of P in the definition of nat rec is a
function that maps values of type nat into arbitrary types. This gives us a possibility to
define dependently-typed functions, whose return type depends on their input argument
value. A simple example of such a function is below:
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Check nat rec.
Definition sum no zero n :=
let: P := (fun n ⇒ if n is 0 then unit else nat) in
nat rec P tt (fun n’ m ⇒
match n’ return P n’ → with
| 0 ⇒ fun ⇒ 1
| n’’.+1 ⇒ fun m ⇒ my plus m (n’.+1)
end m) n.

Eval compute in sum no zero 0.
= tt : (fun n : nat ⇒ match n with | 0 ⇒ unit | .+1 ⇒ nat end) 0

Eval compute in sum no zero 5.

= 15
: (fun n : nat ⇒ match n with

| 0 ⇒ unit
| .+1 ⇒ nat
end) 5

The toy function sum no zero maps every natural number n to a sum of numbers 1
... n, except for 0, which is being mapped into the value tt of type unit. We define it
via the nat rec combinator by providing it a function P, which defines the type contract
described just above. Importantly, as the first parameter to nat rec, we pass a type-
level function P, which maps 0 to the unit type and all other values to the type nat.
The “step” function, which is a third parameter, of this nat rec call, makes use of the
dependent pattern matching, which now explicitly refines the return type P n’ → of
the whole match e with ps end expression. This small addition allows the Coq type
checker to relate the expected type of my plus’ first argument in the second branch to
the type of the pattern matching scrutinee n’. Without the explicit return in the pattern
matching, in some cases when its result type depends on the value of the scrutinee, the
Coq type checking engine will fail to unify the type of the branch and the overall type. In
particular, had we omitted the return clauses in the pattern matching, we would get the
following type-checking error, indicating that Coq cannot infer that the type of my plus’
argument is always nat, so it complains:

Definition sum no zero’ n :=
let: P := (fun n ⇒ if n is 0 then unit else nat) in
nat rec P tt (fun n’ m ⇒
match n’ with
| 0 ⇒ fun ⇒ 1
| n’’.+1 ⇒ fun m ⇒ my plus m (n’.+1)

end m) n.

Error :
In environment
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n : ?37
P := fun n : nat ⇒ match n with

| 0 ⇒ unit
| .+1 ⇒ nat
end : nat → Set

n’ : nat
m : P n’
The term "m" has type "P n’" while it is expected to have type "nat".
In general, dependent pattern matching is a quite powerful tool, which, however, should

be used with a great caution, as it makes assisting the Coq type checker a rather non-
trivial task. In the vast majority of the cases dependent pattern matching can be avoided.
We address the curious reader to the Chapter 8 of the book [7] for more examples on the
subject.
Dependent function types, akin to those of nat rec and our sum no zero, which allow

the type of the result to vary depending on the value of a function’s argument, are
a powerful way to specify the behaviour of functions, and therefore, are often used to
“enforce” the dependently-typed programs to work in a particular expected way. In
Coq, dependent function types are omnipresent, and are syntactically specified using
the ∀-binder, similarly to the way parametric types are specified in Haskell or typed
calculi like polymorphic lambda calculus (also known as System F [21, 56]).9 The crucial
difference between Coq’s core calculus and System F is that in Coq the types can be
parametrised not just by types but also by values. While the utility of this language
“feature” can be already demonstrated for constructing and type-checking programs (for
example, sum no zero), its true strength is best demonstrated when using Coq as a
system to construct proofs, which is the topic of the subsequent chapters.

2.2.2 Recursion principle and non-inhabited types
Automatically-generated recursion principles for inductively-defined datatypes provide a
generic (although not universal) scheme to define recursive functions for the corresponding
values. But what if a type is not inhabited, i.e., there are no values in it? We have already
seen such a type—it’s empty, which corresponds to the empty set. As any inductive
datatype in Coq, it comes with an automatically generated generalized recursion principle,
so let us check its type:
Check empty rect.

empty rect
: ∀ (P : empty → Type) (e : empty), P e

Very curiously, the type signature of empty rect postulates that it is sufficient to provide
a function from empty to any type (which can very well be just a constant type, e.g.,
nat), and an argument e of type empty, so the result of the call to empty rect will be of
type P e. More concisely, empty rect allows us to produce a result of any type, given that

9Although, generally speaking, Coq abuses the ∀-notation using it for what is denoted in other typed
calculi by means of quantifiers Λ (terms parametrized by types), ∀ (types parametrized by types) and
Π (types parametrized by terms) [52].
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we can provide an argument of type empty. While it might sound very surprising at the
first moment, upon some reflection it seems like a perfectly valid principle, since we will
never be able to construct the required value of type empty in the first place. In more
fancy words, such recursion principle can be reformulated as the following postulate:

Assuming existence of a value, which cannot be constructed,
we will be able to construct anything.

This is a very important insight, which will become illuminating when we will be
discussing the reasoning with negation in the next chapter.
To conclude this section, we only mention that defining a datatype with no constructors

is not the only way to get a type, which is not inhabited. For example, the following
type strange [3] has a constructor, which, however, can never be invoked, as it requires
a value of it type itself in order to return a value:
Inductive strange : Set := cs : strange → strange.
Therefore, an attempt to create a value of type strange by invoking its single con-

structor will inevitably lead to an infinite, non-terminating, series of constructor calls,
and such programs cannot be encoded in Coq. It is interesting to take a look at the
recursion principle of strange:
Check strange rect.

strange rect
: ∀ P : strange → Type,
(∀ s : strange, P s → P (cs s)) → ∀ s : strange, P s

That is, if we pose the argument P to be a constant type function fun ⇒ empty,
and the second argument to be just an identity function (fun x ⇒ x) that maps its
second argument to itself, we will get a function that, upon receiving argument of type
strange will construct an argument of type empty! More precisely, the existence of a
value of type strange would allow us to create a value of type empty and, therefore
a value of any type, as was previously demonstrated. The following definition of the
function strange to empty substantiates this observation:
Definition strange to empty (s: strange): empty :=
strange rect (fun ⇒ empty) (fun e ⇒ e) s.
To summarize, designing a datatype, which is not inhabited, while not trivial, is not

impossible, and it is a task of a designer of a particular type to make sure that its values
in fact can be constructed.

2.3 More datatypes
While programming with natural numbers is fun, it is time for us to take a brief look at
other datatypes familiar from functional programming, as they appear in Coq.
The type of pairs is parametrized by two arbitrary types A and B (by now let us think

of its sort Type as a generalization of Set, which we have seen before). As in Haskell or
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OCaml, prod can also be seen as a type-level constructor with two parameters that can
be possibly curried:
Check prod.

prod : Type → Type → Type

Pairs in Coq are defined as a higher-order datatype prod with just one constructor:
Print prod.

Inductive prod (A B : Type) : Type := pair : A → B → A × B

For pair: Arguments A, B are implicit and maximally inserted
For prod: Argument scopes are [type scope type scope]
For pair: Argument scopes are [type scope type scope ]
The display above, besides showing how prod is defined, specifies that the type argu-

ments of prod are implicit, in the sense that they will be inferred by the type-checker
when enough information is provided, e.g., the arguments of the constructor pair are in-
stantiated with particular values. For instance, type arguments can be omitted in the
following expression:
Check pair 1 tt.

(1, tt) : nat × unit
If one wants to explicitly specify the type arguments of a constructor, the @-prefixed

notation can be used:
Check @pair nat unit 1 tt.

(1, tt) : nat × unit
Notice that the parameters of the datatype come first in the order they are declared,

followed by the arguments of the constructor.
The last two lines following the definition of prod specify that the notation for pairs

is overloaded (in particular, the “ × ” notation is also used by Coq to denote the
multiplication of natural numbers), so it is given a specific interpretation scope. That is,
when the expression nat × unit will appear in the type position, it will be interpreted as
a type pair nat unit rather than like an (erroneous) attempt to “multiply” two types as
if they were integers.
Coq comes with a number of functions for manipulating datatypes, such as pair. For

instance, the first and second components of a pair:
Check fst.

fst : ∀ A B : Type, A × B → A

Check snd.
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snd : ∀ A B : Type, A × B → B
Curiously, the notation “ × ” is not hard-coded into Coq, but rather is defined as

a lightweight syntactic sugar on top of standard Coq syntax. Very soon we will see how
one can easily extend Coq’s syntax by defining their own notations. We will also see how
is it possible to find what a particular notation means.
The arsenal of a functional programmer in Coq would be incomplete without proper

sum and list datatypes:10

Print sum.

Inductive sum (A B : Type) : Type := inl : A → A + B | inr : B → A + B

From mathcomp
Require Import seq.
Print seq.

Notation seq := list

Print list.

Inductive list (A : Type) : Type := nil : list A | cons : A → list A → list A

Exercise 2.1 (Fun with lists in Coq). Implement the recursive function alternate of type
seq nat → seq nat → seq nat, so it would construct the alternation of two sequences
according to the following “test cases”.

Eval compute in alternate [:: 1;2;3] [:: 4;5;6].

= [:: 1; 4; 2; 5; 3; 6]
: seq nat

Eval compute in alternate [:: 1] [:: 4;5;6].

= [:: 1; 4; 5; 6]
: seq nat

Eval compute in alternate [:: 1;2;3] [:: 4].

= [:: 1; 4; 2; 3]
: seq nat

Hint: The reason why the “obvious” elegant solution might fail is that the argument is
not strictly decreasing.
10In Ssreflect’s enhanced library lists are paraphrased as the seq datatype, which is imported from the

module seq.
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2.4 Searching for definitions and notations
Of course, we could keep enumerating datatypes and operations on them from the stan-
dard Coq/Ssreflect library (which is quite large), but it’s always better for a starting Coq
hacker to have a way to find necessary definitions on her own. Fortunately, Coq provides
a very powerful search tool, whose capabilities are greatly amplified by Ssreflect. Its use
is better demonstrated by examples.
Search "filt".

List.filter ∀ A : Type, (A → bool) → list A → list A
List.filter In
∀ (A : Type) (f : A → bool) (x : A) (l : list A),
List.In x (List.filter f l) ↔ List.In x l ∧ f x = true

Search "filt" ( → list ).

List.filter ∀ A : Type, (A → bool) → list A → list A
That is, the first Search query just takes a string and looks for definitions of functions

and propositions that have it as a part of their name. The second pattern elaborates the
first by adding a requirement that the type of the function should include ( → list )
as a part of its return type, which narrows the search scope. As usual the underscores
denote a wildcard in the pattern and can be used both in the name or type component.
Moreover, one can use named patterns of the form ?id to bind free identifiers in the
sub-types of a sought expression. For instance, the next query will list all functions with
map-like types (notice how the higher-order constructor types are abstracted over using
wildcards):
Search ((?X → ?Y ) → ?X → ?Y ).

option map ∀ A B : Type, (A → B) → option A → option B
List.map ∀ A B : Type, (A → B) → list A → list B
...
If necessary, the type patterns in the query can have their types explicitly specified

in order to avoid ambiguities due to notation overloading. For instance, the following
search will return all functions and propositions that make use of the × notation and
operate with natural numbers:
Search ( × : nat).
In contrast, the next query will only list the functions/propositions, where × is

treated as a notation for the pair datatype (including fst and snd, which we have already
seen):
Search ( × : Type).
A detailed explanation of the syntax of Search tool as well as additional examples can

be found in Chapter 10 of Ssreflect documentation [23].
When working with someone’s Coq development, sometimes it might be not entirely

obvious what particular notation means: Coq’s extensible parser is very simple to abuse
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by defining completely intractable abbreviations, which might say a lot to the library
developer, but not to its client. Coq provides the Locate command to help in demystifying
notations as well as locating the position of particular definitions. For example, the
following query will show all the definitions of the notation “ + ” as well as the scopes
they defined in.
Locate " + ".

Notation Scope
"x + y" := sum x y : type scope

"m + n" := addn m n : nat scope
We can see now that the plus-notation is used in particular for the addition of natural

numbers (in nat scope) and the declaration of a sum type (in type scope). Similarly to
the notations, the Locate command can help finding the definition in the source modules
they defined:11

Locate map.

Constant Coq.Lists.List.map
(shorter name to refer to it in current context is List.map)

Constant Ssreflect.ssrfun.Option.map
(shorter name to refer to it in current context is ssrfun.Option.map)

...

2.5 An alternative syntax to define inductive datatypes
In the previous sections of this chapter we have already seen the way inductive datatypes
are defined in the setting “traditional” Coq. These are the definitions that will be dis-
played when using the Print utility. However, in the rest of the development in this book,
we will be using a version of Coq, enhanced with the Ssreflect tool, which, in particular,
provides more concise notation for defining constructors. For instance, as an alternative
to the standard definition of the product datatype, we can define our own product in the
following way:
Inductive my prod (A B : Type) : Type := my pair of A & B.
Notice that A and B are type parameters of the whole datatype as well as of its single

constructor my pair, which additionally required two value arguments, whose types are
A and B, respectively.
Next, let us try to create a value of type my prod nat unit and check its type.

Check my pair 1 tt.

Error : The term "1" has type "nat" while it is expected to have type "Type".
11The module system of Coq is similar to OCaml and will be discussed further in this chapter.
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The error message is caused by the fact that the constructor has expected the type
parameters to be provided explicitly first, so the value above should in fact have been
created by calling my pair nat unit 1 tt. Since mentioning types every time is tedious, we
can now take advantage of Coq’s elaboration algorithm, which is capable to infer them
from the values of actual arguments (e.g., 1 and tt), and declare my pair’s type arguments
as implicit:
Arguments my pair [A B].
We have already witnessed standard Coq’s datatypes making use of specific user-defined

notations. Let us define such notation for the typemy prod and its my pair constructor.
Notation "X ** Y" := (my prod X Y ) (at level 2).
Notation "( X „ Y )" := (my pair X Y ).
The level part in the first notation definition is mandatory for potentially left-recursive

notations, which is the case here, in order to set up parsing priorities with respect to other
notations.
With these freshly defined notations we are now free to write the following expressions:

Check (1 „ 3).

(1„ 3)
: nat ** nat

Check nat ** unit ** nat.

(nat ** unit) ** nat
: Set

Notice that the notation “ ** ” for my pair by default is set to be left-associative.
The other associativity should be declared explicitly, and we address the reader to the
Chapter 12 of Coq manual [10] for the details of the Notation command syntax.

2.6 Sections and modules
We conclude this chapter by a very brief overview of Coq’s module system.
Sections are the simplest way to structure the programs in Coq. In particular, sections

allow the programmer to limit the scope of modules imported to the current file (each
compiled .v file in the scope of the interpreter is considered as a module), as well as to
defined locally-scoped variables. To see how it works, let us construct a section containing
a utility function for natural numbers. Declaring a section starts from the keyword
Section, followed by the name of the section:
Section NatUtilSection.
We now define a variable n of type n, whose scope is lexically limited by the section

NatUtilSection (including its internal sections). One can think of variables declared this
way as of unspecified values, which we assume to be available outside of the section.
Variable n: nat.
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We can now define a function, implementing multiplication of natural numbers by
means of addition. To do this, we assume the variable n to be fixed, so the multiplication
can be formulated just as a function of one parameter:
Fixpoint my mult m := match (n, m) with
| (0, ) ⇒ 0
| ( , 0) ⇒ 0
| ( , m’.+1) ⇒ my plus (my mult m’) n
end.
We now close the section by using the End keyword.

End NatUtilSection.
Unlike Haskell or Java’s modules, sections in Coq are transparent: their internal defini-

tions are visible outside of their bodies, and the definitions’ names need not be qualified.
The same does not apply to sections’ variables. Instead, they become parameters of def-
initions they happened to be used in. This can be seen by printing the implementation
of my mult outside of the section NatUtilSection.
Print my mult.

my mult =
fun n : nat ⇒
fix my mult (m : nat) : nat :=
let (n0, y) := (n, m) in
match n0 with
| 0 ⇒ 0
| .+1 ⇒ match y with

| 0 ⇒ 0
| m’.+1 ⇒ my plus (my mult m’) n
end

end
: nat → nat → nat

We can see now that the variable n became an actual parameter of my mult, so the
function now takes two parameters, just as expected.
An alternative to sections in Coq, which provides better encapsulation, are modules.

A module, similarly to a section, can contain locally-declared variables, sections and
modules (but not modules within sections!). However, the internals of a module are not
implicitly exposed to the outside, instead they should be either referred to by qualified
names or exported explicitly by means of putting them into a submodule and via the
command Export, just as demonstrated below:
Module NatUtilModule.
Fixpoint my fact n :=
if n is n’.+1 then my mult n (my fact n’) else 1.

Module Exports.
Definition fact := my fact.
End Exports.
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End NatUtilModule.
The submodule Exports creates a synonym fact for the function my fact, defined out-

side of it. The following command explicitly exports all internals of the module NatU-
tilModule.Exports, therefore making fact visible outside of NatUtilModule.
Export NatUtilModule.Exports.

Check my fact.

Error : The reference my fact was not found in the current environment.

Check fact.

fact
: nat → nat
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In the previous chapter we had an opportunity to explore Coq as a functional program-
ming language and learn how to define inductive datatypes and programs that operate
with them, implementing the latter ones directly or using the automatically-generated
recursion combinators. Importantly, most of the values that we met until this moment,
inhabited the types, which were defined as elements of the sort Set. The types unit,
empty, nat, nat × unit etc. are good examples of first-order types inhabiting the sort
Set and, therefore, contributing to the analogy between sets and first-order types, which
we explored previously. In this chapter, we will be working with a new kind of entities,
incorporated by Coq: propositions.

3.1 Propositions and the Prop sort
In Coq, propositions bear a lot of similarities with types, demonstrated in Chapter 2,
and inhabit a separate sort Prop, similarly to how first-order types inhabit Set.1 The
“values” that have elements of Prop as their types are usually referred to as proofs or
proof terms, the naming convention which stems out of the idea of Curry-Howard Cor-
respondence [14, 30].2 Sometimes, the Curry-Howard Correspondence is paraphrased as
proofs-as-programs, which is truly illuminating when it comes to the intuition behind the
formal proof construction in Coq, which, in fact, is just programming in disguise.
The Calculus of Inductive Constructions (CIC) [3, 13] a logical foundation of Coq, sim-

ilarly to its close relative, Martin-Löf’s Intuitionistic Type Theory [38], considers proofs
to be just regular values of the “programming” language it defines. Therefore, the process
of constructing proofs in Coq is very similar to the process of writing programs. Intu-
itively, when one asks a question “Whether the proposition P is true?”, what is meant
in fact is “Whether the proof of P can be constructed?”. This is an unusual twist, which
is crucial for understanding the concept of the “truth” and proving propositions in CIC
(and, equivalently, in Coq), so we specifically outline it here in the form of a motto:

Only those propositions are considered to be true, which are provable constructively,
i.e., by providing an explicit proof term, that inhabits them.

This formulation of “truth” is somewhat surprising at the first encounter, comparing
to classical propositional logic, where the propositions are considered to be true simply if
they are tautologies (i.e., reduce to the boolean value true for all possible combinations
of their free variables’ values), therefore leading to the common proof method in clas-
sical propositional logic: truth tables. While the truth table methodology immediately
delivers the recipe to prove propositions without quantifiers automatically (that is, just

1In the Coq community, the datatypes of Prop sort are usually referred to as inductive predicates.
2http://en.wikipedia.org/wiki/Curry-Howard_correspondence

http://en.wikipedia.org/wiki/Curry-Howard_correspondence
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by checking the corresponding truth tables), it does not quite scale when it comes to
the higher-order propositions (i.e., quantifying over predicates) as well as of propositions
quantifying over elements of arbitrary domains. For instance, the following proposition,
in which the reader can recognize the induction principle over natural numbers, can-
not be formulated in the zeroth- or first-order propositional logic (and, in fact, in any
propositional logic):

For any predicate P , if P (0) holds, and for any m, P (m) implies P (m + 1),
then for any n, P (n) holds.

The statement above is second-order as it binds a first-order predicate by means of
universal quantification, which makes it belong to the corresponding second-order logic
(which is not even propositional, as it quantifies over arbitrary natural values, not just
propositions). Higher-order logics [9] are known to be undecidable in general, and, there-
fore, there is no automatic way to reduce an arbitrary second-order formula to one of the
two values: true or false.
CIC as a logic is expressive enough to accommodate propositions with quantifications

of an arbitrary order and over arbitrary values. On one hand, it makes it an extremely
powerful tool to state almost any proposition of interest in modern mathematics or com-
puter science. On the other hand, proving such statements (i.e., constructing their proof
terms), will require human assistance, in the same way the “paper-and-pencil” proofs
are constructed in classical mathematics. However, unlike the paper-and-pencil proofs,
proofs constructed in Coq are a subject of immediate automated check, since they are just
programs to be verified for well-typedness. Therefore, the process of proof construction
in Coq is interactive and assumes the constant interoperation between a human prover,
who constructs a proof term for a proposition (i.e., writes a program), and Coq, the
proof assistant, which carries out the task of verifying the proof (i.e., type-checking the
program). This largely defines our agenda for the rest of this course: we are going to
see how to prove logical statements by means of writing programs, that have the types
corresponding to these statements.
In the rest of this chapter we will focus only on the capability of Coq as a formal system

allowing one to reason about propositions, leaving reasoning about values aside till the
next chapter. It is worth noticing that a fragment of Coq, which deals with the sort Prop,
accommodating all the propositions, and allows the programmer to make statements with
propositions, corresponds to the logical calculus, known as System Fω (see Chapter 30
of [52]) extending System F [21, 56], mentioned in Chapter 2. Unlike System F , which
introduces polymorphic types, and, equivalently, first-order propositions that quantify
over other propositions, System Fω allows one to quantify as well over type operators,
which can be also thought of as higher-order propositions.

3.2 The truth and the falsehood in Coq
We start our acquaintance with propositional logic in Coq by demonstrating how the
two simplest propositions, the truth and the falsehood, are encoded. Once again, let us
remember that, unlike in propositional logic, in Coq these two are not the only possible
propositional values, and soon we will see how a wide range of propositions different from
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mere truth or falsehood are implemented. From now on, we will be always including to
the development the standard Ssreflect’s module ssreflect, which imports some necessary
machinery for dealing with propositions and proofs.
From mathcomp Require Import ssreflect.

The truth is represented in Coq as a datatype of sort Prop with just one constructor,
taking no arguments:
Print True.

Inductive True : Prop := I : True
Such simplicity makes it trivial to construct an instance of the True proposition:3 Now

we can prove the following proposition in Coq’s embedded propositional logic, essentially
meaning that True is provable.
Theorem true is true: True.

1 subgoals, subgoal 1 (ID 1)

============================
True
The command Theorem serves two purposes. First, similarly to the command Definition,

it defines a named entity, which is not necessarily a proposition. In this case the name is
true is true. Next, similarly to Definition, there might follow a list of parameters, which
is empty in this example. Finally, after the colon : there is a type of the defined value,
which in this case it True. With this respect there is no difference between Theorem and
Definition. However, unlike Definition, Theorem doesn’t require one to provide the
expression of the corresponding type right away. Instead, the interactive proof mode is
activated, so the proof term could be constructed incrementally. The process of the grad-
ual proof construction is what makes Coq to be a interactive proof assistant, in addition
to being already a programming language with dependent types.
Although not necessary, it is considered a good programming practice in Coq to start

any interactive proof with the Coq’s command Proof, which makes the final scripts easier
to read and improves the general proof layout.
Proof.
In the interactive proof mode, the goals display shows a goal of the proof—the type

of the value to be constructed (True in this case), which is located below the double
line. Above the line one can usually see the context of assumptions, which can be used
in the process of constructing the proof. Currently, the assumption context is empty, as
the theorem we stated does not make any and ventures to prove True out of thin air.
Fortunately, this is quite easy to do, as from the formulation of the True type we already
know that it is inhabited by its only constructor I. The next line proved the exact value
of the type of the goal.

3In the context of propositional logic, we will be using the words “type” and “proposition” interchange-
ably without additional specification when it’s clear from the context.
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exact: I.
This completes the proof, as indicated by the Proof General’s *response* display:

No more subgoals.
(dependent evars:)
The only thing left to complete the proof is to inform Coq that now the theorem

true is true is proved, which is achieved by typing the command Qed.
Qed.
In fact, typing Qed invokes a series of additional checks, which ensure the well-formedness

of the constructed proof term. Although the proof of true is true is obviously valid, in
general, there is a number of proof term properties to be checked a posteriori and par-
ticularly essential in the case of proofs about infinite objects, which we do not cover in
these course (see Chapter 13 of [3] for a detailed discussion on such proofs).
So, our first theorem is proved. As it was hinted previously, it could have been stated

even more concisely, formulated as a mere definition, and proved by means of providing
a corresponding value, without the need to enter the proof mode:
Definition true is true’ : True := I.
Although this is a valid way to prove statements in Coq, it is not as convenient as

the interactive proof mode, when it comes to construction of large proofs, arising from
complicated statements. This is why, when it comes to proving propositions, we will
prefer the interactive proof mode to the “vanilla” program definition. It is worth noticing,
though, that even though the process of proof construction in Coq usually looks more
like writing a script, consisting from a number of commands (which are called tactics in
Coq jargon), the result of such script, given that it eliminates all of the goals, is a valid
well-typed Coq program. In comparison, in some other dependently-typed frameworks
(e.g., in Agda), the construction of proof terms does not obscure the fact that what is
being constructed is a program, so the resulting interactive proof process is formulated as
“filling the holes” in a program (i.e., a proof-term), which is being gradually refined. We
step away from the discussion on which of these two views to the proof term construction
is more appropriate.
There is one more important difference between values defined as Definitions and

Theorems. While both define what in fact is a proof terms for the declared type, the
value bound by Definition is transparent: it can be executed by means of unfolding and
subsequent evaluation of its body. In contrast, a proof term bound by means of Theorem
is opaque, which means that its body cannot be evaluated and serves only one purpose:
establish the fact that the corresponding type (the theorem’s statement) is inhabited,
and, therefore is true. This distinction between definitions and theorems arises from the
notion of proof irrelevance, which, informally, states that (ideally) one shouldn’t be able
to distinguish between two proofs of the same statement as long as they both are valid.4
Conversely, the programs (that is, what is created using the Definition command) are
typically of interest by themselves, not only because of the type they return.
The difference between the two definitions of the truth’s validity, which we have just

constructed, can be demonstrated by means of the Eval command.
4Although, in fact, proof terms in Coq can be very well distinguished.



3.2 The truth and the falsehood in Coq 33

Eval compute in true is true.
= true is true : True

Eval compute in true is true’.
= I : True
As we can see now, the theorem is evaluated to itself, whereas the definition evaluates

to it body, i.e., the value of the constructor I.
A more practical analogy for the above distinction can be drawn if one will think of

Definitions as of mere functions, packaged into libraries and intended to be used by
third-party clients. In the same spirit, one can think of Theorems as of facts that need
to be checked only once when established, so no one would bother to re-prove them
again, knowing that they are valid, and just appeal to their types (statement) without
exploring the proof.5 This is similar to what is happening during the oral examinations on
mathematical disciplines: a student is supposed to remember the statements of theorems
from the previous courses and semesters, but is not expected to reproduce their proofs.
At this point, an attentive reader can notice that the definition of True in Coq is strik-

ingly similar to the definition of the type unit from Chapter 2. This is a fair observation,
which brings us again to the Curry-Howard analogy, and makes it possible to claim that
the trivial truth proposition is isomorphic to the unit type from functional programming.
Indeed, both have just one way to be constructed and can be constructed in any context,
as their single constructor does not require any arguments.
Thinking by analogy, one can now guess how the falsehood can be encoded.

Print False.

Inductive False : Prop :=
Unsurprisingly, the proposition False in Coq is just a Curry-Howard counterpart of

the type empty, which we have constructed in Chapter 2. Moreover, the same intuition
that was applicable to empty’s recursion principle (“anything can be produced given
an element of an empty set”), is applicable to reasoning by induction with the False
proposition:
Check False ind.

False ind
: ∀ P : Prop, False → P

That is, any proposition can be derived from the falsehood by means of implication.6
For instance, we can prove now that False implies the equality 1 = 2.7

5While we consider this to be a valid analogy to the mathematical community functions, it is only true
in spirit. In the real life, the statements proved once, are usually re-proved by students for didactical
reasons, in order to understand the proof principles and be able to produce other proofs. Furthermore,
the history of mathematics witnessed a number of proofs that have been later invalidated. Luckily,
the mechanically-checked proofs are usually not a subject of this problem.

6In light of the Curry-Howard analogy, at this moment it shouldn’t come as a surprise that Coq uses
the arrow notation -> both for function types and for propositional implication: after all, they both
are just particular cases of functional abstraction, in sorts Set or Prop, correspondingly.

7We postpone the definition of the equality till the next chapter, and for now let us consider it to be
just an arbitrary proposition.
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Theorem one eq two: False → 1 = 2.
Proof.
One way to prove this statement is to use the False induction principle, i.e., the theorem

False ind, directly by instantiating it with the right predicate P:
exact: (False ind (1 = 2)).
This indeed proves the theorem, but for now, let us explore a couple of other ways

to prove the same statement. For this we first Undo the last command of the already
succeeded but not yet completed proof.
Undo.
Instead of supplying the argument (1 = 2) to False ind manually, we can leave it to

Coq to figure out, what it should be, by using the Ssreflect apply: tactic.
apply: False ind.
The following thing just happened: the tactic apply: supplied with an argument

False ind, tried to figure out whether our goal False → (1 = 2) matches any head type
of the theorem False ind. By head type we mean a component of type (in this case, ∀ P
: Prop, False → P), which is a type by itself and possibly contains free variables. For
instance, recalling that → is right-associative, head-types of False ind would be P, False
→ P and ∀ P : Prop, False → P itself.
So, in our example, the call to the tactics apply: False ind makes Coq realize that the

goal we are trying to prove matches the type False → P, where P is taken to be (1 = 2).
Since in this case there is no restrictions on what P can be (as it is universally-quantified
in the type of False ind), Coq assigns P to be (1 = 2), which, after such specialization,
turns the type of False ind to be exactly the goal we’re after, and the proof is done.
There are many more ways to prove this rather trivial statement, but at this moment

we will demonstrate just yet another one, which does not appeal to the False ind induction
principle, but instead proceeds by case analysis.
Undo.
case.
The tactic case makes Coq to perform the case analysis. In particular, it deconstructs

the top assumption of the goal. The top assumption in the goal is such that it comes first
before any arrows, and in this case it is a value of type False. Then, for all constructors
of the type, whose value is being case-analysed, the tactic case constructs subgoals to be
proved. Informally, in mathematical reasoning, the invocation of the case tactic would
correspond to the statement “let us consider all possible cases, which amount to the
construction of the top assumption”. Naturally, since False has no constructors (as it
corresponds to the empty type), the case analysis on it produces zero subgoals, which
completes the proof immediately. Since the result of the proof is just some program,
again, we can demonstrate the effect of case tactic by proving the same theorem with
an exact proof term:
Undo.
exact: (fun (f : False) ⇒ match f with end).
As we can see, one valid proof term of one eq two is just a function, which case-analyses

on the value of type False, and such case-analysis has no branches.
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Qed.

3.3 Implication and universal quantification
By this moment we have already seen how implication is represented in Coq: it is just
a functional type, represented by the “arrow” notation → and familiar to all functional
programmers. Indeed, if a function of type A → B is a program that takes an argument
value of type A and returns a result value of type B, then the propositional implication P
→ Q is, ... a program that takes an argument proof term of type P and returns a proof
of the proposition Q.
Unlike most of the value-level functions we have seen so far, propositions are usually

parametrized by other propositions, which makes them instances of polymorphic types,
as they appear in System F and System Fω. Similarly to these systems, in Coq the
universal quantifier ∀ (spelled forall) binds a variable immediately following it in the
scope of the subsequent type.8 For instance, the transitivity of implication in Coq can
be expressed via the following proposition:

∀ P Q R: Prop, (P → Q) → (Q → R) → P → R

The proposition is therefore parametrized over three propositional variables, P, Q and
R, and states that from a proof term of type P → Q and a proof term of type Q → R
one can build a proof term of type P → R.9 Let us now prove this statement in the form
of a theorem.
Theorem imp trans: ∀ P Q R: Prop, (P → Q) → (Q → R) → P → R.
Proof.
Our goal is the statement of the theorem, its type. The first thing we are going to do

is to “peel off” some of the goal assumptions—the ∀-bound variables—and move them
from the goal to the assumption context (i.e., from below to above the double line). This
step in the proof script is usually referred to as bookkeeping, since it does not directly
contribute to reducing the goal, but instead moves some of the values from the goal to
assumption, as a preparatory step for the future reasoning.
Ssreflect offers a tactic and a small but powerful toolkit of tacticals (i.e., higher-order

tactics) for bookkeeping. In particular, for moving the bound variables from “bottom to
the top”, one should use a combination of the “no-op” tactic move and the tactical ⇒
(spelled =>). The following command moves the next three assumptions from the goal,
P, Q and R to the assumption context, simultaneously renaming them to A, B and C.
The renaming is optional, so we just show it here to demonstrate the possibility to give
arbitrary (and, preferably, more meaningful) names to the assumption variables “on the
fly” while constructing the proof via a script.
move⇒ A B C.

8As it has been noticed in Chapter 2 the ∀-quantifier is Coq’s syntactic notation for dependent function
types, sometimes also referred to a Π-types or dependent product types.

9Recall that the arrows have right associativity, just like function types in Haskell and OCaml, which
allows one to apply functions partially, specifying their arguments one by one
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A : Prop
B : Prop
C : Prop
============================
(A → B) → (B → C ) → A → C
We can now move the three other arguments to the top using the same command: the

move⇒ combination works uniformly for ∀-bound variables as well as for the propositions
on the left of the arrow.
move⇒ H1 H2 a.

H1 : A → B
H2 : B → C
a : A
============================
C
Again, there are multiple ways to proceed now. For example, we can recall the func-

tional programming and get the result of type C just by two subsequent applications of
H1 and H2 to the value a of type A:
exact: (H2 (H1 a)).
Alternatively, we can replace the direct application of the hypotheses H1 and H2 by

the reversed sequence of calls to the apply: tactics.
Undo.
The first use of apply: will replace the goal C by the goal B, since this is what it takes
to get C by using H2 :
apply: H2.

H1 : A → B
a : A
============================
B

The second use of apply: reduces the proof of B to the proof of A, demanding an
appropriate argument for H1.
apply: H1.

a : A
============================
A
Notice that both calls to apply: removed the appropriate hypotheses, H1 and H2

from the assumption context. If one needs a hypothesis to stay in the context (to use
it twice, for example), then the occurrence of the tactic argument hypothesis should be
parenthesised: apply: (H1 ).
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Finally, we can see that the only goal left to prove is to provide a proof term of type A.
Luckily, this is exactly what we have in the assumption by the name a, so the following
demonstration of the exact a finishes the proof:
exact: a.
Qed.
In the future, we will replace the use of trivial tactics, such as exact: by Ssreflect’s

much more powerful tactics done, which combines a number of standard Coq’s tactics in
an attempt to finish the proof of the current goal and reports an error if it fails to do so.

Exercise 3.1 (∀-distributivity). Formulate and prove the following theorem in Coq,
which states the distributivity of universal quantification with respect to implication:

∀P Q, [(∀x, P (x) =⇒ Q(x)) =⇒ ((∀y, P (y)) =⇒ ∀z, Q(z))]

Hint: Be careful with the scoping of universally-quantified variables and use parentheses
to resolve ambiguities!

3.3.1 On forward and backward reasoning
Let us check now the actual value of the proof term of theorem imp trans.
Print imp trans.

imp trans =
fun (A B C : Prop) (H1 : A → B) (H2 : B → C ) (a : A) ⇒
(fun evar 0 : B ⇒ H2 evar 0 ) ((fun evar 0 : A ⇒ H1 evar 0 ) a)

: ∀ P Q R : Prop, (P → Q) → (Q → R) → P → R

Argument scopes are [type scope type scope type scope ]
Even though the proof term looks somewhat hairy, this is almost exactly our initial

proof term from the first proof attempt: H2 (H1 a). The only difference is that the
hypotheses H1 and H2 are eta-expanded, that is instead of simply H1 the proof terms
features its operational equivalent fun b: B ⇒ H2 b. Otherwise, the printed program
term indicates that the proof obtained by means of direct application of H1 and H2 is
the same (modulo eta-expansion) as the proof obtained by means of using the apply:
tactic.
These two styles of proving: by providing a direct proof to the goal or some part of it,

and by first reducing the goal via tactics, are usually referred in the mechanized proof
community as forward and backward proof styles.

• The backward proof style assumes that the goal is being gradually transformed by
means of applying some tactics, until its proof becomes trivial and can be completed
by means of basic tactics, like exact: or done.

• The forward proof style assumes that the human prover has some “foresight” with
respect to the goal she is going to prove, so she can define some “helper” entities as
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well as to adapt the available assumptions, which will then be used to solve the goal.
Typical example of the forward proofs are the proofs from the classical mathematic
textbooks: first a number of “supporting” lemmas is formulated, proving some
partial results, and finally all these lemmas are applied in concert in order to prove
an important theorem.

While the standard Coq is very well supplied with a large number of tactics that support
reasoning in the backward style, it is less convenient for the forward-style reasoning.
This aspect of the tool is significantly enhanced by Ssreflect, which introduces a small
number of helping tactics, drastically simplifying the forward proofs, as we will see in the
subsequent chapters.

3.3.2 Refining and bookkeeping assumptions
Suppose, we have the following theorem to prove, which is just a simple reformulation of
the previously proved imp trans:
Theorem imp trans’ (P Q R: Prop) : (Q → R) → (P → Q) → P → R.
Proof.
move⇒ H1 H2.
Notice that we made the propositional variables P, Q and R to be parameters of the

theorem, rather than ∀-quantified values. This relieved us from the necessity to lift them
using move⇒ in the beginning of the proof.
In is natural to expect that the original imp trans will be of some use. We are now

in the position to apply it directly, as the current goal matches its conclusion. However,
let us do something slightly different: move the statement of imp trans into the goal,
simultaneously with specifying it (or, equivalently, partially applying) to the assumptions
H1 and H2. Such move “to the bottom part” in Ssreflect is implemented by means of
the : tactical, following the move command:
move: (imp trans P Q R)=> H.

H1 : Q → R
H2 : P → Q
H : (P → Q) → (Q → R) → P → R
============================
P → R

What has happened now is a good example of the forward reasoning: the specialized
version of (imp trans P Q R), namely, (P → Q)→ (Q → R)→ P → R, has been moved
to the goal, so it became ((P → Q) → (Q → R) → P → R) → P → R. Immediately
after that, the top assumption (that is, what has been just “pushed” to the goal stack)
was moved to the top and given the name H. Now we have the assumption H that can
be applied in order to reduce the goal.
apply: H.

H1 : Q → R
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H2 : P → Q
============================
P → Q

subgoal 2 (ID 142) is:
Q → R

The proof forked into two goals, since H had two arguments, which we can now fulfill
separately, as they trivially are our assumptions.
done.
done.
The proof is complete, although the last step is somewhat repetitive, since we know

that for two generated sub-goals the proofs are the same. In fact, applications of tactics
can be chained using the ; connective, so the following complete proof of imp trans’ runs
done for all subgoals generated by apply: H :
Restart.
move: (imp trans P Q R)=> H H1 H2.
apply: H ; done.
Also, notice that the sequence in which the hypotheses were moved to the top has

changed: in order to make the proof more concise, we first created the “massaged”
version of imp trans, and then moved it as H to the top, following by H1 and H2, which
were in the goal from the very beginning.
To conclude this section, let us demonstrate even shorter way to prove this theorem

once again.
Restart.
move⇒H1 H2 ; apply: (imp trans P Q R)=>//.
Qed.
After traditional move of the two hypotheses to the top, we applied the specialised

version of imp trans, where its three first arguments were explicitly instantiated with the
local P, Q and R. This application generated two subgoals, each of which has been then
automatically solved by the trailing tactical ⇒ //, which is equivalent to ;try done and,
informally speaking, “tries to kill all the newly created goals”.10

3.4 Conjunction and disjunction
Two main logical connectives, conjunction and disjunction, are implemented in Coq as
simple inductive predicates in the sort Prop. In order to avoid some clutter, from this
moment and till the end of the chapter let us start a new module Connectives and assume
a number of propositional variables in it (as we remember, those will be abstracted over
outside of the module in the statements they happen to occur).
Module Connectives.
10The Coq’s try tactical tries to execute its tactic argument in a "soft way", that is, not reporting an

error if the argument fails.
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Variables P Q R: Prop.
The propositional conjunction of P and Q, denoted by P ∧ Q, is a straightforward

Curry-Howard counterpart of the pair datatype that we have already seen in Chapter 2,
and is defined by means of the predicate and.
Locate " /\ ".
"A ∧ B" := and A B : type scope

Print and.

Inductive and (A B : Prop) : Prop := conj : A → B → A ∧ B

For conj: Arguments A, B are implicit
For and: Argument scopes are [type scope type scope]
For conj: Argument scopes are [type scope type scope ]
Proving a conjunction of P and Q therefore amounts to constructing a pair by invoking

the constructor conj and providing values of P and Q as its arguments:11

Goal P → R → P ∧ R.
move⇒ p r.
The proof can be completed in several ways. The most familiar one is to apply the

constructor conj directly. It will create two subgoals, P and Q (which are the constructor
arguments), that can be immediately discharged.
apply: conj=>//.
Alternatively, since we now know that and has just one constructor, we can use the

generic Coq’s constructor n tactic, where n is an (optional) number of a constructor to
be applied (and in this case it’s 1)
Undo.
constructor 1=>//.
Finally, for propositions that have exactly one constructor, Coq provides a specialized

tactic split, which is a synonym for constructor 1:
Undo. split=>//.
Qed.
In order to prove something out of a conjunction, one needs to destruct it to get its

constructor’s arguments, and the simplest way to do so is by the case-analysis on a single
constructor.
Goal P ∧ Q → Q.
case.
Again, the tactic case replaced the top assumption P ∧ Q of the goal with the argu-

ments of its only constructor, P and Q making the rest of the proof trivial.
done.
Qed.
11The command Goal creates an anonymous theorem and initiates the interactive proof mode.
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The datatype of disjunction of P and Q, denoted by P ∨ Q, is isomorphic to the sum
datatype from Chapter 2 and can be constructed by using one of its two constructors:
or introl or or intror.
Locate " \/ ".
"A ∨ B" := or A B : type scope

Print or.

Inductive or (A B : Prop) : Prop :=
or introl : A → A ∨ B | or intror : B → A ∨ B

For or introl, when applied to less than 1 argument:
Arguments A, B are implicit

...
In order to prove disjunction of P and Q, it is sufficient to provide a proof of just P or

Q, therefore appealing to the appropriate constructor.
Goal Q → P ∨ Q ∨ R.
move⇒ q.
Similarly to the case of conjunction, this proof can be completed either by applying a

constructor directly, by using constructor 2 tactic or by a specialised Coq’s tactic for
disjunction: left or right. The notation " ∨ " is right-associative, hence the following
proof script, which first reduces the goal to the proof of Q ∨ R, and then to the proof of
Q, which is trivial by assumption.
by right; left.
Qed.
The use of Ssreflect’s tactical by makes sure that its argument tactic (right; left in

this case) succeeds and the proof of the goal completes, similarly to the trailing done. If
the sequence of tactics left; right wouldn’t prove the goal, a proof script error would
be reported.
The statements that have a disjunction as their assumption are usually proved by case

analysis on the two possible disjunction’s constructors:
Goal P ∨ Q → Q ∨ P.
case⇒x.
Notice how the case analysis via the Ssreflect’s case tactic was combined here with

the trailing ⇒. It resulted in moving the constructor parameter in each of the subgoals
from the goal assumptions to the assumption context. The types of x are different in the
two branches of the proof, though. In the first branch, x has type P, as it names the
argument of the or introl constructor.

P : Prop
Q : Prop
R : Prop
x : P
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============================
Q ∨ P

subgoal 2 (ID 248) is:
Q ∨ P

by right.

P : Prop
Q : Prop
R : Prop
x : Q
============================
Q ∨ P
In the second branch the type of x is Q, as it accounts for the case of the or intror

constructor.
by left.
Qed.
It is worth noticing that the definition of disjunction in Coq is constructive, whereas

the disjunction in classical propositional logic is not. More precisely, in classical logic
the proof of the proposition P ∨ ~P is true by the axiom of excluded middle (see Sec-
tion 3.7 for a more detailed discussion), whereas in Coq, proving P ∨ ~P would amount
to constructing the proof of either P or ~P. Let us illustrate it with a specific example.
If P is a proposition stating that P = NP, then in classical logic tautology P ∨ ~P holds,
although it does not contribute to the proof of either of the disjuncts. In constructive
logic, which Coq is an implementation of, in the trivial assumptions given the proof of P
∨ ~P, we would be able to extract the proof of either P or ~P.12

3.5 Proofs with negation
In Coq’s constructive approach proving the negation of ~P of a proposition P literally
means that one can derive the falsehood from P.
Locate "˜ ".
"˜ x" := not x : type scope

Print not.

not = fun A : Prop ⇒ A → False
: Prop → Prop

Therefore, the negation not on propositions from Prop is just a function, which maps a
proposition A to the implication A → False. With this respect the intuition of negation
from classical logic might be misleading: as it will be discussed in Section 3.7, the Calculus
12Therefore, winning us the Clay Institute’s award.
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of Constructions lacks the double negation elimination axiom, which means that the proof
of ~~A will not deliver the proof of A, as such derivation would be non-constructive, as
one cannot get a value of type A out of a function of type (A → B) → B, where B is
taken to be False.
However, reasoning out of negation helps to derive the familiar proofs by contradiction,

given that we managed to construct P and ~P, as demonstrated by the following theorem,
which states that from any Q can be derived from P and ~P.
Theorem absurd: P → ~P → Q.
Proof. by move⇒p H ; move : (H p). Qed.
One extremely useful theorem from propositional logic involving negation is contrapo-

sition. It states that in an implication, the assumption and the goal can be flipped if
inverted.
Theorem contraP: (P → Q) → ~Q → ~P.
Let us see how it can be proved in Coq

Proof.
move⇒ H Hq.
move /H.

H : P → Q
Hq : ~Q
============================
Q → False
The syntax move / H (spaces in between are optional) stands for one of the most

powerful features of Ssreflect, called views (see Section 9 of [23]), which allows one to
weaken the assumption in the goal part of the proof on the fly by applying a hypothesis
H to the top assumption in the goal. In the script above the first command move⇒ H
Hq simply popped two assumptions from the goal to the context. What is left is ~P,
or, equivalently P → False. The view mechanism then “interpreted” P in the goal via
H and changing it to Q, since H was of type P → Q, which results in the modified goal
Q → False. Next, we apply the view Hq to the goal, which switches Q to False, which
makes the rest of the proof trivial.
move /Hq.
done.
Qed.

3.6 Existential quantification
Existential quantification in Coq, which is denoted by the notation “exists x, P x” is
just yet another inductive predicate with exactly one constructor:
Locate "exists".

"’exists’ x .. y , p" := ex (fun x ⇒ .. (ex (fun y ⇒ p)) ..)
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: type scope

Print ex.

Inductive ex (A : Type) (P : A → Prop) : Prop :=
ex intro : ∀ x : A, P x → ex A P

The notation for existentially quantified predicates conveniently allows one to existen-
tially quantify over several variables, therefore, leading to a chain of enclosed calls of the
constructor ex intro.
The inductive predicate ex is parametrized with a type A, over elements of which

we quantify, and a predicate function of type A → Prop. What is very important is
that the scope of the variable x in the constructor captures ex A P as well. That is,
the constructor type could be written as ∀ x, (P x → ex A P) to emphasize that each
particular instance of ex A P carries is defined by a particular value of x. The actual
value of x, which satisfies the predicate P is, however, not exposed to the client, providing
the data abstraction and information hiding, similarly to the traditional existential types
(see Chapter 24 of [52]), which would serve as a good analogy. Each inhabitant of the
type ex is therefore an instance of a dependent pair,13 whose first element is a witness for
the following predicate P, and the second one is a result of application of P to x, yielding
a particular proposition.
The proofs of propositions that assume existential quantification are simply the proofs

by case analysis: destructing the only constructor of ex, immediately provides its argu-
ments: a witness x and the predicate P, satisfied by x. The proofs, where the existential
quantification is a goal, can be completed by applying the constructor ex intro directly or
by using a specialized Coq’s tactic exists z, which does exactly the same, instantiating
the first parameter of the constructor with the provided value z. Let us demonstrate it
on a simple example [3, §5.2.6], accounting for the weakening of the predicate, satisfying
the existentially quantified variable.
Theorem ex imp ex A (S T : A → Prop):
(exists a: A, S a) → (∀ x : A, S x → T x) → exists b: A, T b.
The parentheses are important here, otherwise, for instance, the scope of the first

existentially-quantified variable a would be the whole subsequent statement, not just the
proposition S a.
Proof.
First, we decompose the first existential product into the witness a and the proposition

Hst, and also store the universally-quantified implication assumption with the name Hst.
case⇒a Hs Hst.

A : Type
S : A → Prop
T : A → Prop
a : A

13In the literature, dependent pairs are often referred to as dependent sums or Σ-types.
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Hs : S a
Hst : ∀ x : A, S x → T x
============================
exists b : A, T b
Next, we apply the ex’s constructor by means of the exists tactic with an explicit

witness value a:
exists a.
We finish the proof by applying the weakening hypothesis Hst.

by apply: Hst.
Qed.

Exercise 3.2. Let us define our own version my ex of the existential quantifier using
the Ssreflect notation for constructors:
Inductive my ex A (S : A → Prop) : Prop := my ex intro x of S x.
The reader is invited to prove the following goal, establishing the equivalence of the

two propositions
Goal ∀ A (S : A → Prop), my ex A S <-> exists y: A, S y.
Hint: the propositional equivalence <-> is just a conjunction of two implications, so
proving it can be reduced to two separate goals by means of split tactics.

3.6.1 A conjunction and disjunction analogy
Sometimes, the universal and the existential quantifications are paraphrased as “infini-
tary” conjunction and disjunction correspondingly. This analogy comes in handy when
understanding the properties of both quantifications, so let us elaborate on it for a bit.
In order to prove the conjunction P1 ∧ ... ∧ Pn, one needs to establish that all

propositions P1 ... Pn hold, which in the finite case can be done by proving n goals, for
each statement separately (and this is what the split tactic helps to do). Similarly, in
order to prove the propositions ∀ x : A, P x, one needs to prove that P x holds for any x
of type A. Since the type A itself can define an infinite set, there is no way to enumerate
all conjuncts, however, an explicit handle x gives a way to effectively index them, so
proving P x for an arbitrary x would establish the validity of the universal quantification
itself. Another useful insight is that in Coq ∀ x : A, P x is a type of a dependent function
that maps x of type A to a value of type P x. The proof of the quantification would be,
therefore, a function with a suitable “plot”. Similarly, in the case of n-ary conjunction,
the function has finite domain of exactly n points, for each of which an appropriate proof
term should be found.
In order to prove the n-ary disjunction P1 ∨ ... ∨ Pn in Coq, it is sufficient to provide

a proof for just one of the disjunct as well as a “tag” — an indicator, which disjunct
exactly is being proven (this is what tactics left and right help to achieve). In the case
of infinitary disjunction, the existential quantification “exists x, P x”, the existentially
quantified variable plays role of the tag indexing all possible propositions P x. Therefore,
in order to prove such a proposition, one needs first to deliver a witness x (usually,
by means of calling the tactics exists), and then prove that for this witness/tag the



46 3 Propositional Logic

proposition P x holds. Continuing the same analogy, the disjunction in the assumption
of a goal usually leads to the proof by case analysis assuming that one of the disjuncts
holds at a time. Similarly, the way to destruct the existential quantification is by case-
analysing on its constructor, which results in acquiring the witness (i.e., the “tag”) and
the corresponding “disjunct”.
Finally, the folklore alias “dependent product type” for dependent function types (i.e.,
∀-quantified types) indicates its relation to products, which are Curry-Howard coun-
terparts of conjunctions. In the same spirit, the term “dependent sum type” for the
dependent types, of which existential quantification is a particular case, hints to the re-
lation to the usual sum types, and, in particular sum (discussed in Chapter 2), which is
a Curry-Howard dual of a disjunction.
End Connectives.

3.7 Missing axioms from classical logic
In the previous sections of this chapter, we have seen how a fair amount of propositions
from the higher-order propositional logics can be encoded and proved in Coq. However,
some reasoning principles, employed in classical propositional logic, cannot be encoded
in Coq in a form of provable statements, and, hence, should be encoded as axioms.
In this section, we provide a brief and by all means incomplete overview of the classical

propositional logic axioms that are missing in Coq, but can be added by means of im-
porting the appropriate libraries. Chapter 12 of the book [7] contains a detailed survey
of useful axioms that can be added into Coq development on top of CIC.
To explore some of some of the axioms, we first import that classical logic module

Classical Prop.

Import Classical Prop.
The most often missed axiom is the axiom of excluded middle, which postulates that

the disjunction of P and ~P is provable. Adding this axiom circumvents the fact that
the reasoning out of the excluded middle principle is non-constructive, as discussed in
Section 3.4.
Check classic.

classic
: ∀ P : Prop, P ∨ ~P

Another axiom from the classical logic, which coincides with the type of Scheme’s
call/cc operator14 (pronounced as call with current continuation) modulo Curry-Howard
isomorphism is Peirce’s law:
Definition peirce law := ∀ P Q: Prop, ((P → Q) → P) → P.
In Scheme-like languages, the call/cc operator allows one to invoke the undelimited

continuation, which aborts the computation. Similarly to the fact that call/cc cannot be

14http://community.schemewiki.org/?call-with-current-continuation

http://community.schemewiki.org/?call-with-current-continuation
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implemented in terms of polymorphically-typed lambda calculus as a function and should
be added as an external operator, the Peirce’s law is an axiom in the constructive logic.
The classical double negation principle is easily derivable from Peirce’s law, and corre-

sponds to the type of call/cc, which always invokes its continuation parameter, aborting
the current computation.
Check NNPP.

NNPP
: ∀ P : Prop, ~~P → P

Finally, the classical formulation of the implication through the disjunction is again an
axiom in the constructive logic, as otherwise from the function of type P → Q one would
be able to construct the proof of ~P ∨ Q, which would make the law of excluded middle
trivial to derive.
Check imply to or.

imply to or
: ∀ P Q : Prop, (P → Q) → ~P ∨ Q

Curiously, none of these axioms, if added to Coq, makes its logic unsound: it has been
rigorously proven (although, not within Coq, due to Gödel’s incompleteness result) that
all classical logic axioms are consistent with CIC, and, therefore, don’t make it possible
to derive the falsehood [66].
The following exercise reconciles most of the familiar axioms of classical logic.

Exercise 3.3 (Equivalence of classical logic axioms (from § 5.2.4 of [3])). Prove that the
following five axioms of the classical are equivalent.
Definition peirce := peirce law.
Definition double neg := ∀ P: Prop, ~~P → P.
Definition excluded middle := ∀ P: Prop, P ∨ ~P.
Definition de morgan not and not := ∀ P Q: Prop, ~( ~P ∧ ~Q) → P ∨ Q.
Definition implies to or := ∀ P Q: Prop, (P → Q) → (˜P ∨ Q).

Hint: Use rewrite /d tactics to unfold the definition of a value d and replace its name
by its body. You can chain several unfoldings by writing rewrite /d1 /d2 ... etc.
Hint: To facilitate the forward reasoning by contradiction, you can use the Ssreflect
tactic suff: P, where P is an arbitrary proposition. The system will then require you to
prove that P implies the goal and P itself.
Hint: Stuck with a tricky proof? Use the Coq Admitted keyword as a “stub” for an
unfinished proof of a goal, which, nevertheless will be considered completed by Coq. You
can always get back to an admitted proof later.

3.8 Universes and Prop impredicativity
While solving Exercise 3.3 from the previous section, the reader could notice an interesting
detail about the propositions in Coq and the sort Prop: the propositions that quantify
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over propositions still remain to be propositions, i.e., they still belong to the sort Prop.
This property of propositions in Coq (and, in general, the ability of entities of some class
to abstract over the entities of the same class) is called impredicativity. The opposite
characteristic (i.e., the inability to refer to the elements of the same class) is called
predicativity.
One of the main challenges when designing the Calculus of Constructions was to imple-

ment its logical component (i.e., the fragment responsible for constructing and operating
with elements of the Prop sort), so it would subsume the existing impredicative proposi-
tional calculi [12], and, in particular, System F (which is impredicative), allowing for the
expressive reasoning in higher-order propositional logic.
Impredicativity as a property of definitions allows one to define domains that are self-

recursive—a feature of Prop that we recently observed. Unfortunately, when restated
in the classical set theory, impredicativity immediately leads to the famous paradox by
Russell, which arises from the attempt to define the set of all sets that do not belong to
themselves. In terms of programming, Russell’s paradox provides a recipe to encode a
fixpoint combinator in the calculus itself and write generally-recursive programs.
System F is not a dependently-typed calculus and it has been proven to contain no

paradoxes [21], as it reasons only about types (or, propositions), which do not depend
on values. However, adding dependent types to the mix (which Coq requires to make
propositions quantify over arbitrary values, not just other propositions, serving as a
general-purpose logic) makes the design of a calculus more complicated, in order to avoid
paradoxes akin to the Russell’s, which arise from mixing values and sets of values. This
necessity to “cut the knot” inevitably requires to have a sort of a higher level, which
contains all sets and propositions (i.e., the whole sorts Set and Prop), but does not
contain itself. Let us call such sort Type. It turns out that the self-inclusion Type : Type
leads to another class of paradoxes [11], and in order to avoid them, the hierarchy of
higher-order sorts should be made infinite and stratified. Stratification means that each
sort has a level number, and is contained in a sort of a higher level but not in itself. The
described approach is suggested by Martin-Löf [38] and adopted literally, in particular, by
Agda [45]. The stratified type sorts, following Martin-Löf’s tradition, are usually referred
to as universes.
A similar stratification is also implemented in Coq, which has its own universe hier-

archy, although with an important twist. The two universes, Set and Prop cohabit at
the first level of the universe hierarchy with Prop being impredicative. The universe
containing both Set and Prop is called Type@{Set+1}, and it is predicative, as well as
all universes that are above it in the hierarchy. CIC therefore remains consistent as a
calculus, only because of the fact that all impredicativity in it is contained at the very
bottom of the hierarchy.

3.8.1 Exploring and debugging the universe hierarchy
In the light of Martin-Löf’s stratification, the Coq’ non-polymorphic types, such as nat,
bool, unit or list nat “live” at the 0th level of universe hierarchy, namely, in the sort Set.
The polymorphic types, quantifying over the elements of the Set universe are, therefore
located at the higher level, which in Coq is denoted as Type@{Set+1}, but in the displays
is usually presented simply as Type, as well as all the higher universes. We can enable
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the explicit printing of the universe levels to see how they are assigned:
Set Printing Universes.
Check bool.

bool
: Set

Check Set.

Set
: Type@{Set+1}

Check Prop.

Prop
: Type@{Set+1}

The following type is polymorphic over the elements of the Set universe, and this is
why its own universe is “bumped up” by one, so it now belongs to Set+1.
Definition S := ∀ T : Set, list T.
Check S.

S
: Type@{Set+1}

Until version 8.5, Coq used to provide a very limited version of universe polymorphism.
To illustrate the idea, let us consider the next definition R, which is polymorphic with
respect to the universe of its parameter A, so its result is assumed to “live” in the universe,
whose level is taken to be the level of A.
Definition R (A: Type) (x : A): A := x.
Arguments R [A].
Check R tt.

R tt
: unit

(* |= Set <= Top.93 *)
The part in comments show the inequality, generated by the Coq unification algorithm

that had to be solved in order to determine the universe level of the value R tt with
Top.93 being the level, assigned to R itself.
If the argument of R is itself a universe, it means that A’s level is higher than x ’s level,

and so is the level of R’s result.
Check R Type.
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R Type@{Top.94}
: Type@{Top.95}

(* Top.94
Top.95 |= Top.94 < Top.95

Top.95 < Top.93 *)
The Coq’s unifier algorithm in this case looks for a universe levels Top.95, which can

be larger than the level of R’s argument level Top.94, but smaller than the one of R
itself (i.e., Top.93). In the absence of other constraints, such system of equalities is easily
satisfiable.
However, the attempt to apply R to itself immediately leads to an error reported, as

the system cannot infer the level of the result, by means of solving a system of universe
level inequations, therefore, preventing meta-circular paradoxes.

Check R R.

The term "R" has type "forall A : Type@{Top.93}, A -> A"
while it is expected to have type "?A"
(unable to find a well-typed instantiation for "?A": cannot ensure that
"Type@{Top.93+1}" is a subtype of "Type@{Top.93}").
The solution to this problem is to think of the two occurrences R in the last example as

of inhabitants of different universes, so that the R-“function” belongs to the universe with
a higher level number than R-“argument”. Checking this scenario requires supporting a
more flexible form of universe polymorphism, which can assign different universe levels
to different occurrences of the same definition in a common expression, and in this sense
reminds let-polymorphism [52, §22.7]. This feature was introduced in Coq since version
8.5 [60], and it allows us to redefine R as universe-polymorphic via the new Polymorphic
keyword.15

Polymorphic Definition RPoly {A : Type} (a : A) : A := a.
About RPoly.

RPoly : ∀ A : Type@{Top.96}, A → A
(* Top.96 |= *)

RPoly is universe polymorphic
Argument A is implicit and maximally inserted
...
We can now apply RPoly to itself using the following syntax.

Definition selfRPoly := RPoly (@RPoly).

selfRPoly is defined
15More documentation on universe polymorphism is available at https://coq.inria.fr/distrib/V8.

5beta2/refman/Reference-Manual032.html.

https://coq.inria.fr/distrib/V8.5beta2/refman/Reference-Manual032.html
https://coq.inria.fr/distrib/V8.5beta2/refman/Reference-Manual032.html
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Let us now check the details of universes participating in selfRPoly’s typing.
Print selfRPoly.

selfRPoly =
RPoly@{Top.97} (@RPoly@{Top.98})

: ∀ A : Type@{Top.98}, A → A
(* Top.97

Top.98 |= Top.98 < Top.97
*)

The display above demonstrates that the two occurrences of RPoly were assumed by
the typing algorithm to belong to different universes: Top.97 for the function and Top.98
for the argument, correspondingly. In the absence of additional additional constraints,
the inequality between them can be trivially satisfied by assuming Top.98 < Top.97.





4 Equality and Rewriting Principles
In the previous chapter we have seen how main connectives from propositional logic are
encoded in Coq. However, the mathematical reasoning only by means of propositional
logic is still quite limited. In particular, by this moment we are still unable to state what
does it mean for two objects to be equal. In this chapter we are going to see how equality
can be implemented in Coq. Moreover, the statement "x is equal to y" automatically
gives us a way to replace y by x and vice versa in the process of reasoning, therefore
implementing a discipline of rewriting—one of the key ingredients of the mathematical
proof.1 Later in the chapter, we will see how rewriting by equality is just a particular
case of a general proof pattern, which allows one to define arbitrary rewriting rules by
exploiting Coq’s mechanism of indexed type families.
From mathcomp
Require Import ssreflect ssrnat ssrbool eqtype.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

4.1 Propositional equality in Coq
Let us begin by exploring the definition of the equality predicate “ = ”.
Locate " = ".

"x = y" := eq x y : type scope

Print eq.

Inductive eq (A : Type) (x : A) : A → Prop := eq refl : eq x x
As we can see, the equality is just yet another inductive predicate, similar to the

logical connectives we’ve seen in Chapter 3. However, there are differences, which are of
importance. First, equality as a predicate is parametrized over two arguments: a Type A
of an unspecified universe (so, it can be Set, Prop or any of the higher universes) and an
element x of type A. There is nothing particularly new here: we have seen parametrized
inductive predicates before, for instance, conjunction and disjunction in Section 3.4. The
novel part of this definition is what comes after the colon trailing the parameter list.
Unlike all previously seen logical connectives, the equality predicate has type A → Prop

1The reader could have, probably, heard how mathematics sometimes is referred to as a "science of
rewritings".
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in contrast to just Prop. In the Coq terminology, it means that eq is not just inductively-
defined datatype, but is an indexed type family. In this particular case, it is indexed by
elements of type A, which appears at the left of the arrow.
It is common to think of indexed type families in Coq as of generalized algebraic

datatypes (GADTs) [50, 69], familiar from Haskell, and allowing one to refine the process
pattern matching basing on the type index of the scrutinee. However, another analogy
turns out to be much more useful in the Coq setting: indexed type families in fact allow
one to encode rewriting principles. To understand, what the indexed datatype definition
has to do with rewriting, let us take a close look at the definition of eq. The type of its
only constructor eq refl is a bit misleading, as it looks like it is applied to two arguments:
x and ... x. To disambiguate it, we shall put some parentheses, so, in fact, it should
read as

Inductive eq (A : Type) (x : A) : A → Prop := eq refl : (eq x) x
That is, the constructor eq refl delivers an element of type (eq x), whose parameter is

some x (and eq is directly applied to it), and its index (which comes second) is constrained
to be x as well. That is, case-analysing on an instance of eq x y in the process of the
proof construction will inevitably lead the side condition implying that x and y actually
correspond to the same object. Coq will take advantage of this fact immediately, by
performing the unification and substituting all occurrences of y in the subsequent goal
with x. Let us see how it works in practice.

4.1.1 Case analysis on an equality witness
To demonstrate the actual proofs on the case analysis by equality, we will have to perform
an awkward twist: define our own equality predicate.
Set Implicit Arguments.
Inductive my eq (A : Type) (x : A) : A → Prop := my eq refl : my eq x x.
Notation "x === y" := (my eq x y) (at level 70).
As we can see, this definition literally repeats the Coq’s standard definition of propo-

sitional equality. The reason for the code duplication is that Ssreflect provides a specific
treatment of Coq’s standard equality predicate, so the case-analysis on its instances is
completely superseded by the powerful rewrite tactics, which we will see in Section 4.2
of this chapter. Alas, this special treatment also leads to a non-standard behaviour of
case-analysis on equality. This is why, for didactical purposes, we will have to stick with
or own home-brewed definition until the end of this section.
Let us now prove some interesting properties of the freshly-defined equality. We start

with symmetry of === by formulating the following lemma:2

Lemma my eq sym A (x y: A) : x === y → y === x.
First, we perform the case analysis on the top assumption of the goal, x === y.

case.

2The Coq’s command Lemma is identical to Theorem.
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A : Type
x : A
y : A
============================
x === x
This leads to the goal, being switched from y === x to x === x, as all occurrences of

y are now replaced by x, exactly as advertised. We can now finish the proof by applying
the constructor (apply: my refl eq) or simply by done, which is powerful enough to
figure out what to apply.
done.
Qed.
Our next exercise will be to show that the predicate we have just defined implies Leibniz

equality. The proof is accomplished in one line by case-analysing on the equality, which
leads to the automatic replacements of y by x.
Lemma my eq Leibniz A (x y: A) (P: A → Prop) : x === y → P x → P y.
Proof. by case. Qed.

4.1.2 Implementing discrimination
Another important application of the equality predicate family and similar ones are proofs
by discrimination, in which the contradiction is reached (i.e., the falsehood is derived) out
of the fact that two clearly non-equal elements are assumed to be equal. The next lemma
demonstrates the essence of the proof by discrimination using the my eq predicate.
Lemma disaster : 2 === 1 → False.
Proof.
move⇒ H.

H : 2 === 1
============================
False
As it is already hinted by the name of the method, the key insight in the proofs

by discrimination is to construct a function that can distinguish between values of the
type with an implicit definitional equality, which relates two values if they have identical
structure.3 In particular, natural numbers can be compared against each other by means
of direct pattern matching, which is decidable for them, thanks to the inductive definition.
Using this insight we define a local “discriminating” function D using the Ssreflect’s
enhanced pose tactic:
pose D x := if x is 2 then False else True.

3It is not trivial to establish computable definitional equality on any values, as the values might be of
an infinite nature. For instance, stating the equality of two functions would require checking their
results on all elements of the common domain, which might be infinite. in this respect, propositional
equality acts like it “compares the references”, whereas definitional equality “compares the structure”
of two elements.
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H : 2 === 1
D := fun x : nat ⇒

match x with
| 0 ⇒ True
| 1 ⇒ True
| 2 ⇒ False
| S (S (S )) ⇒ True
end : nat → Prop

============================
False
Now, proving D 1 is True can be accomplished by simple executing D with appropriate

arguments (recall that D is an always-terminating function, whose result is a computable
value). That Ssreflect’s tactic have allows to declare the local fact, which can be then
proved in-place by simple computation (which is performed via by []).
have D1 : D 1.
by [].

H : 2 === 1
D := ...
D1 : D 1
============================
False
Next we “push” D1 and H back to the goal (using the : tactical), and case-analyse

on the top assumption H. Notice that the semantics of : is such that it first performs a
series of “pushings” and then runs the tactic on the left of itself (i.e., case).
case: H D1.

D := ...
============================
D 2 → False
Now, we got what we have needed: the proof of the falsehood! Thanks to the equality-

provided substitution, D 1 turned into D 2, and the only thing that remains now is to
evaluate it.
move=>/=.
The tactical /=, coming after⇒ runs all possible simplifications on the result obtained

by the tactics, preceding ⇒, finishing the proof.
done.
Qed.
Let us provide a bit more explanation how did it happen that we managed to derive the

falsehood in the process of the proof. The discrimination function D is a function from
nat to Prop, and, indeed, it can return True and False, so it contains no contradictions
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by itself. We also managed to prove easily a trivial proposition D 1, which is just True,
so it’s derivable. The genuine twist happened when we managed to turn the assumption
D 1 (which was True) to D 2 (which is False). This was only possible because of the
assumed equality 2 === 1, which contained the “falsehood” from the very beginning
and forced Coq to substitute the occurrence of 1 in the goal by 2, so the discrimination
function in the assumption finished the job.

Exercise 4.1. Let us change the statement of a previous lemma for a little bit:
Lemma disaster2 : 1 === 2 → False.
Now, try to prove it using the same scheme. What goes wrong and how to fix it?

4.1.3 Reasoning with Coq’s standard equality
Now we know what drives the reasoning by equality and discrimination, so let us forget
about the home-brewed predicate my eq and use the standard equality instead. Hap-
pily, the discrimination pattern we used to implement “by hand” now is handled by
Coq/Ssreflect automatically, so the trivially false equalities deliver the proofs right away
by simply typing done.
Lemma disaster3 : 2 = 1 → False.
Proof. done. Qed.
Moreover, the case-analysing on the standard equality now comes in the form of the

powerful rewrite tactics, which takes the reasoning to the whole new level and is a
subject of the next section.

4.2 Proofs by rewriting
The vast majority of the steps when constructing real-life proofs in Coq are rewriting
steps. The general flow of the interactive proof (considered in more detail in Chapter 6) is
typically targeted on formulating and proving small auxiliary hypotheses about equalities
in the forward-style reasoning and then exploiting the derived equalities by means of
rewriting in the goal and, occasionally, other assumptions in the context. All rewriting
machinery is handled by Ssreflect’s enhanced rewrite tactics, and in this section we focus
on its particular uses.

4.2.1 Unfolding definitions and in-place rewritings
One of the common uses of the rewrite tactic is to fold/unfold transparent definitions.
In general, Coq is capable to perform the unfoldings itself, whenever it’s required. Nev-
ertheless, manual unfolding of a definition might help to understand the details of the
implementation, as demonstrated by the following example.
Definition double {A} (f : A → A) (x : A) := f (f x).
Fixpoint nat iter (n : nat) {A} (f : A → A) (x : A) : A :=
if n is S n’ then f (nat iter n’ f x) else x.
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Lemma double2 A (x : A) f t:
t = double f x → double f t = nat iter 4 f x.

Proof.
The first thing to do in this proof is to get rid of the auxiliary variable t, as it does not

occur in any of the assumptions, but just in the subsequent goal. This can be done using
the following sequence of tactics that first moves the equality assumption to the top and
then rewrites by it in the goal.
move⇒Et; rewrite Et.

A : Type
x : A
f : A → A
t : A
Et : t = double f x
============================
double f (double f x) = nat iter 4 f x
Even though the remaining goal is simple enough to be completed by done, let us

unfold both definition to make sure that the two terms are indeed equal structurally.
Such unfoldings can be chained, just as any other rewritings.
rewrite /double /nat iter.

x : A
f : A → A
============================
f (f (f (f x))) = f (f (f (f x)))
An alternative way to prove the same statement would be to use the -> tactical, which

is usually combined with move or case, but instead of moving the assumption to the top,
it makes sure that the assumption is an equality and rewrites by it.
Restart.
by move=>->; rewrite /double.
Qed.
Notice that the tactical has a companion one <-, which performs the rewriting by an

equality assumption from right to left, in contrast to ->, which rewrites left to right.
Folding, the reverse operation to unfolding, is done by using rewrite -/... instead of

rewrite /...4

4.2.2 Proofs by congruence and rewritings by lemmas

Definition f x y := x + y.
Goal ∀ x y, x + y + (y + x) = f y x + f y x.

4As the reader will notice soon, it is a general pattern with Ssreflect’s rewriting to prefix a rewrite
argument with -, if the reverse rewriting operation should be performed.
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Proof.
move⇒ x y.
First, let us unfold only all occurrences of f in the goal.

rewrite /f.

x : nat
y : nat
============================
x + y + (y + x) = y + x + (y + x)
We can now reduce the goal by appealing to Ssreflect’s congr tactics, which takes

advantage of the fact that equality implies Leibniz’ equality, in particular, with respect
to the addition taken as a function, so the external addition of equal elements can be
“stripped off”.
congr ( + ).

x : nat
y : nat
============================
x + y = y + x
Now, the only thing left to prove is that the addition is commutative, so at this point

we will just make use of Ssreflect’s ssrnat library lemma for integer addition.
Check addnC.

addnC
: ssrfun.commutative addn

At this point such signature might seem a bit cryptic, but worry not: this is just a
way to express in a generic way that the addition over natural numbers is commutative,
which can be witnessed by checking the definition of ssrfun.commutative predicate:
Print ssrfun.commutative.

ssrfun.commutative =
fun (S T : Type) (op : S → S → T ) ⇒ ∀ x y : S, op x y = op y x

: ∀ S T : Type, (S → S → T ) → Prop

As we can see, the definition of the commutative predicate ensures the equality of the
operation’s result with its arguments, permuted, hence op x y = op y x. The type of
the lemma addnC therefore refines op to be “ + ”, so, after specializing the definition
appropriately, the type of addnC should be read as:

addnC
: ∀ n m: nat, n + m = m + n
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Now, we can take advantage of this equality and rewrite by it a part of the goal. Notice
that Coq will figure out how the universally-quantified variables should be instantiated
(i.e., with y and x, respectively):
by rewrite [y + ]addnC.
Qed.
The r-pattern (regex pattern) [y + ], preceding the lemma to be used for rewriting,

specifies, which subexpression of the goal should be a subject of rewriting. When non-
ambiguous, some parts of the expressions can be replaced by wildcard underscores . In
this particular case, it does not matter that much, since any single rewriting by com-
mutativity in any of the sums, on the left or on the right, would make the proof to go
through. However, in a more sophisticated goal it makes sense to specify explicitly, what
should be rewritten:
Goal ∀ x y z, (x + (y + z)) = (z + y + x).
Proof.
by move⇒x y z ; rewrite [y + ]addnC ; rewrite [z + + ]addnC.
Qed.
Proofs of “obvious” equalities that hold modulo, e.g., commutativity and subjectivity,

usually require several rewriting to be established, which might be tedious. There are
ways to automate such proofs by means of overloaded lemmas via canonical structures.
These techniques, hinted briefly in Chapter 7, are mostly outside of the scope of this
course, so we address the reader to a number of papers, presenting the state of the art in
this direction [25, 37].

4.2.3 Naming in subgoals and optional rewritings
When working with multiple cases, it is possible to “chain” the execution of several
tactics. Then, in the case of a script tac1 ; tac2, if the goal is replaced by several after
applying tac1, then tac2 will be applied to all subgoals, generated by tac1. For example,
let us consider a proof of the following lemma from the standard ssrnat module:
Lemma addnCA: ∀ m n p, m + (n + p) = n + (m + p).
Proof.
move⇒m n.

m : nat
n : nat
============================
∀ p : nat, m + (n + p) = n + (m + p)
The proof will proceed by induction on m. We have already seen the use of the case

tactics, which just performs the case analysis. Another Ssreflect tactic elim generalizes
case by applying the default induction principle (nat ind in this case) with the respect
to the remaining goal (that is, the predicate [∀ p : nat, m + (n + p) = n + (m + p)]) is
to be proven by induction. The following sequence of tactics proceeds by induction on m
with the default induction principle. It also names some of the generated assumptions.
elim: m=>[ | m Hm ] p.
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In particular, the following steps are performed:

• m is pushed as a top assumption of the goal;

• elim is run, which leads to generation of the two goals;

– The first goal is of the shape
∀ p : nat, 0 + (n + p) = n + (0 + p)

– The second goal has the shape
∀ n0 : nat,
(∀ p : nat, n0 + (n + p) = n + (n0 + p)) →
∀ p : nat, n0.+1 + (n + p) = n + (n0.+1 + p)

• The subsequent structured naming ⇒ [ |m Hm ] p names zero assumptions in the
first goal and the two top assumptions, m and Hm, in the second goal. It then next
names the assumption p in both goals and moves it to the top.

The first goal can now be proved by multiple rewritings via the lemma add0n, stating
that 0 is the left unit with respect to the addition:
by rewrite !add0n.
The second goal can be proved by a series of rewritings using the fact about the ( +

1) function:
by rewrite !addSnnS -addnS.
Notice that the conclusion of the addnS lemma is rewritten right-to-left.
The whole proof could be, however, accomplished in one line using the optional rewrit-

ings. The intuitions is to chain the rewritings in the goals, generated by elim in a way
that the unsuccessful rewriting would not fail the whole proof construction, as they are
irrelevant for some goals anyway. This is how it can be done:
Restart.
by move⇒m n; elim: m=>[ | m Hm ] p; rewrite ?add0n ?addSnnS -?addnS.
Qed.
Notice that the optional rewritings (e.g., ?addSnnS) are performed as many times as

they can be.

4.2.4 Selective occurrence rewritings
Sometimes, instead of providing an r-pattern to specialize the rewriting, it is more con-
venient to specify, which particular syntactic occurrences in the goal term should be
rewritten. This is demonstrated by the following alternative proof of commutativity of
addition from the lemma addnCA, which we have proved before:
Lemma addnC : ∀ m n, m + n = n + m.
Proof.
by move⇒ m n; rewrite -{1}[n]addn0 addnCA addn0.
Qed.
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The first rewriting with addn0 “adds” 0 to the first occurrence of addn0, so the left-
hand side of the equality becomes m + (n + 0). The next rewriting employs the lemma
addnCA, so we get n + (m + 0) = n + m as the goal, and the last one “removes” zero,
so the result trivially follows.
We conclude this section by noticing that the same rewriting machinery is applicable

not only to the goal, but also to hypotheses in the assumption context using the rewrite
H1 in H2 syntax (where H1 is the rewriting hypothesis and H2 is a hypothesis, where the
rewriting should happen). There are many more tricks that can be done with rewritings,
and we address the reader to Chapter 7 of Ssreflect manual [23].

4.3 Indexed datatype families as rewriting rules
In Section 4.1 of this chapter we have already seen how defining indexed datatype families
makes it possible for Coq to provide a convenient rewriting machinery, which is implicitly
invoked by case analysis on such families’ refined types, thanks to sophisticated Coq’s
unification procedure.
Although so far this approach has been demonstrated by only one indexed type family

example—propositional equality, defined by means of the eq family, in this section, con-
cluding the chapter, we will show how to define other client-specific rewriting rules. Let
us start from a motivating example in the form of an “obvious” lemma.
Lemma huh n m: (m ≤ n) ∧ (m > n) → False.
From now on, we will be consistently including yet another couple of Ssreflect modules,

ssrbool and eqtype, into our development. The need for them is due to the smooth
combination of reasoning with Propositions and booleans, which is a subject of the next
chapter. Even though in Ssreflect’s library, relations on natural numbers, such as ≤ and
>, are defined as boolean functions, so far we recommend to the reader to think of them
as of predicates defined in Prop and, therefore, valid arguments to the ∧ connective.
Although the statement is somewhat obvious, in the setting of Coq’s inductive defini-

tion of natural numbers it should be no big surprise that it is proved by induction. We
present the proof here, leaving the details aside, so the reader could figure them out on
her own, as a simple exercise.
Proof.
suff X : m ≤ n → ˜(m > n) by case=>/X.
by elim: m n ⇒ [ | m IHm ] [ | n] //; exact: IHm n.
Qed.
Even this small example should make it feel like “something is not right”, as a triv-

ial mutual exclusion property required some inductive reasoning. A bigger problem is,
however, that this mutual exclusion does not directly provide us with a “case-analysis”
principle, which a human prover would naturally employ when reasoning about, for in-
stance, a natural definition of the “maximum” function
Definition maxn m n := if m < n then n else m.
and the following fact about its correctness

Lemma max is max m n: n ≤ maxn m n ∧ m ≤ maxn m n.
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The stated lemma max is max can be, indeed, proved by induction on m and n, which
is a rather tedious exercise, so we will not be following this path.

4.3.1 Encoding custom rewriting rules
In the rest of this section, we will leverage the intuition behind indexed type families
considered as rewriting rules, and will try to encode a “truth table” with two disjoint
variants of relation between n and m, namely, m ≤ n and n < m. The table itself is
encoded by the following inductive definition:
Inductive leq xor gtn m n : bool → bool → Set :=
| LeqNotGtn of m ≤ n : leq xor gtn m n true false
| GtnNotLeq of n < m : leq xor gtn m n false true.
However, this is not yet enough to enjoy the custom rewriting and case analysis on

these two variant. At this moment, the datatype family leq xor gtn, whose constructors’
indices encode a truth table’s “rows”, specifies two substitutions in the case when m ≤
n and n < m, respectively and diagrammatically looks as follows:

| C1 | C2
-------------------------
m <= n | true | false
-------------------------
n < m | false | true

The boolean values in the cells specify what the values of C1 and C2 will be substituted
with in each of the two cases. However, the table does not capture, what to substitute
them for. Therefore, our next task is to provide suitable variants for C1 and C2, so the ta-
ble would describe a real situation and capture exactly the “case analysis” intuition. This
values of the columns are captured by the following lemma, which, informally speaking,
states that the table with this particular values of C1 and C2 “makes sense”.

Lemma leqP m n : leq xor gtn m n (m ≤ n) (n < m).
Proof.
rewrite ltnNge.
by case le mn: (m ≤ n); constructor=>//; rewrite ltnNge le mn.
Qed.
Moreover, the lemma leqP, which we have just proved, delivers the necessary instance

of the “truth” table, which we can now case-analyse against.5

4.3.2 Using custom rewriting rules
Let us see now, how some proofs might be changed to the good:

5In theory, a different lemma could be proven for the same table but for different values of indices,
which would give us a different rewriting principle. However, the datatype family leq xor gtn, as
it’s currently specified, is too “tight” to admit other instances than the one provided by the lemma
leqP, thanks to the explicit constructors’ arguments: m ≤ n and n < m.
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Lemma huh’ n m: (m ≤ n) ∧ (m > n) → False.
Proof.
Let us first “switch” from the propositional conjunction ∧ to the boolean one && using

the view mechanism by using the move tactics the trailing tactical /. This trick might
look a bit unfair at the moment, but it will be soon explained in Section 5.1 of Chapter 5.
move/andP.

n : nat
m : nat
============================
m ≤ n < m → False
The top assumption m ≤ n < m of the goal is just a syntactic sugar for (m ≤ n) &&

(n < m). It is time now to make use of our rewriting rule/truth table, constructed by
means of leqP.
case:leqP.

n : nat
m : nat
============================
m ≤ n → true && false → False

subgoal 2 (ID 638) is :
n < m → false && true → False
We would recommend to try stepping this line several times, back and forth to see,

what is happening. Two goals were generated, so let us focus on the first one, as the
second one will proceed by analogy. Case-analysing on the statement of the lemma leqP
resulted in two different “options”, as one would expect from the shape of the table. The
first, case, m ≤ n, resulted in generating the assumption m ≤ n, as it is an argument of
the corresponding constructor. What is more important, all occurrences of the columns’
values were replaced in the goal by the corresponding boolean values, just as it was
encoded in the table! The similar thing happened with the second goal, which encoded
the alternative case, i.e., n < m.
Now, considering a boolean value true && false in a goal simply as a proposition (true

&& false) = true, the proof is trivial by simplification of the boolean conjunction.
done.
done.
Qed.
The proof of huh’ is now indeed significantly shorter than the proof of its predecessor,

huh. However, it might look like the definition of the rewriting rule leq xor gtn and
its accompanying lemma leqP is quite narrowly-scoped, and it is not clear how useful it
might be for other proofs.
To demonstrate the custom rewriting rules defined by means of indexed datatype fam-

ilies in their shine, let us get back to the definition of maxn and the lemma about it:
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Lemma max is max m n: n ≤ maxn m n ∧ m ≤ maxn m n.
Proof.
The proof begins by unfolding the definition of maxn.

rewrite /maxn.

m : nat
n : nat
============================
n ≤ (if m < n then n else m) ∧ m ≤ (if m < n then n else m)
We are now in the position to unleash our rewriting rule, which, together with simpli-

fications by means of the // tactical does most of the job.
case: leqP=>//.

m : nat
n : nat
============================
m < n → n ≤ n ∧ m ≤ n
The rest of the proof employs rewriting by some trivial lemmas from ssrnat, but con-

ceptually is very easy.
move⇒H ; split.
by apply: leqnn.
by rewrite ltn neqAle in H ; case/andP: H.
Qed.
The key advantage we got out of using the custom rewriting rule, defined as an indexed

datatype family is lifting the need to prove by induction a statement, which one would
intuitively prove by means of case analysis. In fact, all inductive reasoning was conve-
niently “sealed” by the proof of leqP and the lemmas it made use of, so just the tailored
“truth table”-like interface for case analysis was given to the client.
We invite the reader to exercise in using the custom rewriting rules by proving a series

of properties of maxn.

Exercise 4.2. Prove the following lemmas about maxn.
Lemma max l m n: n ≤ m → maxn m n = m.
Lemma succ max distr n m : (maxn n m).+1 = maxn (n.+1) (m.+1).
Lemma plus max distr l m n p: maxn (p + n) (p + m) = p + maxn n m.

Hint: It might be useful to employ the lemmas ltnNge, leqNgt, ltnS and similar from
Ssreflect’s ssrnat module. Use the Search command to find propositions that might help
you to deal with the goal.
Hint: Forward-style reasoning via suff and have might be more intuitive.
Hint: A hypothesis of the shape H : n < m is a syntactic sugar for H : n < m = true,
since n < m in fact has type bool, as will be explained in Chapter 5.
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We conclude this section and the chapter by showing an instance of a more sophisticated
custom rewriting rule, which now encodes a three-variant truth table for the ordering
relations on natural numbers.
Inductive nat rels m n : bool → bool → bool → Set :=
| CompareNatLt of m < n : nat rels m n true false false
| CompareNatGt of m > n : nat rels m n false true false
| CompareNatEq of m = n : nat rels m n false false true.

Exercise 4.3 (Comparing natural numbers as a rewriting rule). Prove the following
rewriting lemma for nat rels:
Lemma natrelP m n : nat rels m n (m < n) (n < m) (m == n).

Exercise 4.4. Let us define the minimum function minn on natural numbers as follows:
Definition minn m n := if m < n then m else n.
Prove the following lemma about minm and maxn:

Lemma addn min max m n : minn m n + maxn m n = m + n.
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In Chapter 4, we have seen how custom rewriting rules and truth tables can be encoded
in Coq using its support for indexed datatype families, so they are of great help for
constructing the proofs by case analysis and rewriting. In this chapter, we will show
how the custom rewriting machinery can be taken to the whole new level and be used
to facilitate the reasoning about computable properties and predicates. We will consider
a series of insights that lead to the idea of the small-scale reflection, the heart of the
Ssreflect framework, which blurs the boundaries between computable predicates defined
in the sort Prop (see Chapter 3) and Coq’s recursive functions returning a result of type
bool (in the spirit of the definitions that we have seen in Chapter 2). That said, in the
vast number of cases these two are just the sides of the same coin and, hence, should be
treated uniformly, serving to facilitate the reasoning in two different directions:

• expressing quantifications and building the proofs by means of constructive reason-
ing with logical connectives as datatypes defined in the sort Prop;

• employing brute-force computations for quantifier-free goals within the Coq frame-
work itself, taken as a programming language, in order to reduce the goals to be
proved by means of simply computing them.

We will elaborate more on the differences between predicates stated by means of Prop
and bool in Section 5.2. The term small-scale reflection, which gives the name to the
whole framework of Ssreflect, emphasizes the two complementary ways of building proofs:
by means of intuitionistic inference (i.e., using the constructors of datatypes defined in
Prop) and by means of mere computation (i.e., with bool-returning function). These two
ways, therefore, serve as each other’s “reflections” and, moreover, both are implemented
within the same system, without the need to appeal to Coq’s meta-object protocol,1
which makes this reflection small-scale.
Unfortunately, the proper explanation of the implementation of the reflection mecha-

nism between Prop and bool in Ssreflect strongly relies on the views machinery, so let us
begin by describing it first.

1In contrast, reflection mechanism in Java, Python or Ruby actually does appeal to the meta-object
protocol, e.g., the structure of the classes, which lies beyond the formally defined semantics of the
language itself and, hence, allows one to modify the program’s behaviour at runtime.
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5.1 Proving with views in Ssreflect

From mathcomp
Require Import ssreflect ssrnat prime ssrbool eqtype.

Let us assume we have the following implication to prove:
Lemma imp trans4 P Q R S : (P → Q) → (R → S) → (Q → R) → P → S.
Proof.
move⇒H1 H2 H3.

P : Type
Q : Type
R : Type
S : Type
H1 : P → Q
H2 : R → S
H3 : Q → R
============================
P → S
Since we are proficient in the proofs via implications, it is not difficult to construct the

explicit proof term by a series of apply: tactic calls or via the exact: tactic, as it has
been show in Chapter 3. Let us do something different, though, namely weaken the top
assumption of the goal by means of applying the hypothesis H1 to it, so the overall goal
will become Q → S.
move⇒p; move: (H1 p).
This proof pattern of “switching the view” turns out to be so frequent that Ssreflect

introduces a special view tactical / for it, which is typically combined with the standard
move or case tactics. In particular, the last proof line could be replaced by the following:
Undo.
move/H1.

...
H1 : P → Q
H2 : R → S
H3 : Q → R
============================
Q → S
The assumption H1 used for weakening is usually referred to as a view lemma. The

spaces before and after / are optional. One can also chain the views into one series, so
the current proof can be completed as follows:
by move/H3 /H2.
Qed.
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5.1.1 Combining views and bookkeeping
The view tactical can be also combined with the standard bookkeeping machinery, so
it will apply the specified view lemma to the corresponding assumption of the goal, as
demonstrated by the following proof script, which use the partially-applied assumption
H p as a view lemma:
Goal ∀ P Q R, P → (P → Q → R) → Q → R.
Proof.
by move⇒P Q R p H /(H p).
In fact, this proof can be shortened even further by using the view notation for the top

assumption (denoted using the underscore):
Undo.
move⇒ P Q R p.
by move/( p).
Qed.
The last proof script first moved four assumptions to the context, so the goal became

(P → Q → R) → Q → R. Next, it partially applied the top assumption (P → Q → R)
to p : P from the context and moved the result back to the goal, so it became (Q → R)
→ Q → R, which is trivially provable.
It is also possible to use views in combination with the case tactics, which first performs

the “view switch” via the view lemma provided and then case-analysed on the result, as
demonstrated by the following proof script:
Goal ∀ P Q R, (P → Q ∧ R) → P → R.
Proof.
move⇒ P Q R H.
by case/H.
Qed.
What has happened is that the combined tactic case/H first switched the top assump-

tion of the goal from P to Q ∧ R and then case-analysed on it, which gave the proof of
R right away, allowing us to conclude the proof.

5.1.2 Using views with equivalences
So far we have explored only views that help to weaken the hypothesis using the view
lemma, which is an implication. In fact, Ssreflect’s view mechanism is elaborate enough
to deal with view lemmas defined by means of equivalence (double implication) <->, and
the system can figure out itself, “in which direction” the view lemma should be applied.
Let us demonstrate it with the following example, which makes use of the hypothesis
STequiv,2 whose nature is irrelevant for the illustration purposes:
Variables S T : bool → Prop.
Hypothesis STequiv : ∀ a b, T a ↔ S (a || b).
Lemma ST False a b: (T a → False) → S (a || b) → False.
Proof.

2The Coq’s command Hypothesis is a synonym for Axiom and Variable.
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by move⇒H /STequiv.
Qed.

5.1.3 Declaring view hints
In the example from Section 5.1.2, we have seen how views can deal with equivalences.
The mentioned elaboration, which helped the system to recognize, in which direction
the double implication hypothesis STequiv should have been used, is not hard-coded into
Ssreflect. Instead, it is provided by a flexible mechanism of view hints, which allows one
to specify view lemmas that should be applied implicitly whenever it is necessary and
can be figured out unambiguously.
In the case of the proof of the ST False lemma the view hint iffRL from the included

module ssreflect3 has been “fired” in order to adapt the hypothesis STequiv, so the adapted
variant could be applied as a view lemma to the argument of type S (a || b).
Check iffRL.

iffRL
: ∀ P Q : Prop, (P ↔ Q) → Q → P

The type of iffRL reveals that what it does is simply switching the equivalence to the
implication, which works right-to-left, as captured by the name. Let us now redo the
proof of the ST False lemma to see what is happening under the hood:
Lemma ST False’ a b: (T a → False) → S (a || b) → False.
Proof.
move⇒ H.
move/(iffRL (STequiv a b)).
done.
Qed.
The view switch on the second line of the proof is what has been done implicitly in

the previous case: the implicit view iffRL has been applied to the call of STequiv, which
was in its turn supplied the necessary arguments a and b, inferred by the system from
the goal, so the type of (STequiv a b) would match the parameter type of iffRL, and the
whole application would allow to make a view switch in the goal. What is left behind
the scenes is the rest of the attempts made by Coq/Ssreflect in its search for a suitable
implicit view, which ended when the system has finally picked iffRL.
In general, the design of powerful view hints is non-trivial, as they should capture

precisely the situation when the “view switch” is absolutely necessary and the implicit
views will not “fire” spuriously. In the same time, implicit view hints is what allows for
the smooth implementation of the boolean reflection, as we will discuss in Section 5.3.

5.1.4 Applying view lemmas to the goal
Similarly to how they are used for assumptions, views can be used to interpret the goal by
means of combining the Coq’s standard apply and exact tactics with the view tactical /.

3Implicit view hints are defined by means of Hint View command, added to Coq by Ssreflect. See the
implementation of the module ssrbool and Section 9.8 of the Reference Manual [23].
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In the case if H is a view lemma, which is just an implication P → Q, where Q is the
statement of the goal, the enhanced tactic apply/ H will work exactly as the standard
Ssreflect’s apply:, that is, it will replace the goal Q with H ’s assumption P to prove.
However, interpreting goals via views turns out to be very beneficial in the presence of

implicit view hints. For example, let us consider the following proposition to prove.
Definition TS neg: ∀ a, T (negb a) → S ((negb a) || a).
Proof.
move⇒a H.
apply/STequiv.
done.
Qed.
The view switch on the goal via apply/STequiv immediately changed the goal from S

((negb a) || a) to T (negb a), so the rest of the proof becomes trivial. Again, notice that
the system managed to infer the right arguments for the STequiv hypothesis by analysing
the goal.
Now, if we print the body of TS neg, we will be able to see how an application of the

implicit application of the view lemma iffLR of type ∀ P Q : Prop, (P ↔ Q) → P → Q
has been inserted, allowing for the construction of the proof term:
Print TS neg.

TS neg =
fun (a : bool) (H : T (negb a)) ⇒
(fun F : T (negb a) ⇒

iffLR (Q:=S (negb a || a)) (STequiv (negb a) a) F) H
: ∀ a : bool, T (negb a) → S (negb a || a)

5.2 Prop versus bool
As we have already explored in the previous chapters, in CIC, the logical foundation
of Coq, there is a number of important distinctions between logical propositions and
boolean values. In particular, there is an infinite number of ways to represent different
propositions in the sort Prop by means of defining the datatypes. In contrast, the type
bool is represented just by two values: true and false. Moreover, as it was discussed in
Chapter 3, in Coq only those propositions are considered to be true, whose proof term
can be constructed. And, of course, there is no such thing as a “proof term of true”, as
true is simply a value.
A more interesting question, though, is for which propositions P from the sort Prop

the proofs can be computed automatically by means of running a program, whose result
will be an answer to the question “Whether P holds?”. Therefore, such programs should
always terminate and, upon terminating, say “true” or “false”. The propositions, for which
a construction of such programs (even a very inefficient one) is possible, are referred to
as decidable ones. Alas, as it was discussed in Section 3.1 of Chapter 3, quite a lot of
interesting propositions are undecidable. Such properties include the classical halting
problem (“Whether the program p terminates or not?”) and any higher-order formulae,
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i.e., such that contain quantifiers. For instance, it is not possible to implement a higher-
order function, which would take two arbitrary functions f1 and f2 of type nat → nat
and return a boolean answer, which would indicate whether these two functions are equal
(point-wise) or not, as it would amount to checking the result of the both function on each
natural number, which, clearly, wouldn’t terminate. Therefore, propositional equality of
functions is a good example of a proposition, which is undecidable in general, so we
cannot provide a terminating procedure for any values of its arguments (i.e., f1 and f2).
However, the undecidability of higher-order propositions (like the propositional equality

of functions) does not make them non-provable for particular cases, as we have clearly
observed thorough the past few chapters. It usually takes a human intuition, though,
to construct a proof of an undecidable proposition by means of combining a number of
hypotheses (i.e., constructing a proof term), which is what one does when building a
proof using tactics in Coq. For instance, if we have some extra insight about the two
functions f1 and f2, which are checked for equality, we might be able to construct the
proof of them being equal or not, in the similar ways as we have carried the proofs so far.
Again, even if the functions are unknown upfront, it does not seem possible to implement
an always-terminating procedure that would automatically decide whether they are equal
or not.
The above said does not mean that all possible propositions should be implemented

as instances of Prop, making their clients to always construct their proofs, when it is
necessary, since, fortunately, some propositions are decidable, so it is possible to construct
a decision procedure for them. A good example of such proposition is a predicate, which
ensures that a number n is prime. Of course, in Coq one can easily encode primality of
a natural number by means of the following inductive predicate, which ensures that n is
prime if it is 1 or has no other natural divisors but 1 and n itself.
Definition isPrime n : Prop :=
∀ n1 n2, n = n1 × n2 → (n1 = 1 ∧ n2 = n) ∨ (n1 = n ∧ n2 = 1).
Such definition, although correct, is quite inconvenient to use, as it does not provide a

direct way to check whether some particular number (e.g., 239) is prime or not. Instead,
it requires one to construct a proof of primality for each particular case using the con-
structors (or the contradiction, which would imply that the number is not prime). As it’s
well known, there is a terminating procedure to compute whether the number is prime
or not by means of enumerating all potential divisors of n from 1 to the square root of
n. Such procedure is actually implemented in the Ssreflect’s prime module and proved
correct with respect to the definition similar to the one above,4 so now one can test the
numbers by equality by simply executing the appropriate function and getting a boolean
answer:
Eval compute in prime 239.

= true
: bool

Therefore, we can summarize that the decidability is what draws the line between
propositions encoded by means of Coq’s Prop datatypes and procedures, returning a bool

4Although the implementation and the proof are somewhat non-trivial, as they require to build a
primitively-recursive function, which performs the enumeration, so we do not consider them here.
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result. Prop provides a way to encode a larger class of logical statements, in particular,
thanks to the fact that it allows one to use quantifiers and, therefore, encode higher-
order propositions. The price to pay for the expressivity is the necessity to explicitly
construct the proofs of the encoded statements, which might lead to series of tedious and
repetitive scripts. bool-returning functions, when implemented in Coq, are decidable by
construction (as Coq enforces termination), and, therefore, provide a way to compute
the propositions they implement. Of course, in order to be reduced to true or false,
all quantifiers should be removed by means of instantiated the corresponding bound
variables, after which the computation becomes possible.
For instance, while the expression (prime 239) || (prime 42) can be evaluated to true

right away, whereas the expression

∀ n, (prime n) || prime (n + 1)
is not even well-typed. The reason for this is that polymorphic ∀-quantification in

Coq does not admit values to come after the comma (so the dependent function type
“Πn : nat, n” is malformed), similarly to how one cannot write a type Int → 3 in Haskell,
as it does not make sense. This expression can be, however, coerced into Prop by means
of comparing the boolean expression with true using propositional equality

∀ n, ((prime n) || prime (n + 1) = true)
which makes the whole expression to be of type Prop. This last example brings us to

the insight that the bool-returning functions (i.e., decidable predicates) can be naturally
injected into propositions of sort Prop by simply comparing their result with true via
propositional equality, defined in Chapter 4. This is what is done by Ssreflect automati-
cally using the implicit coercion, imported by the ssrbool module:

Coercion is true (b: bool) := b = true
This coercion can be seen as an implicit type conversion, familiar from the languages

like Scala or Haskell, and it inserted by Coq automatically every time it expects to see
a proposition of sort Prop, but instead encounters a boolean value. Let us consider the
following goal as an example:
Goal prime (16 + 14) → False.
Proof. done. Qed.
As we can see, the proof is rather short, and, in fact, done by Coq/Ssreflect fully

automatically. In fact, the system first computes the value of prime (16 + 14), which is,
obviously false. Then the boolean value false is coerced into the propositional equality
false = true, as previously described. The equality is then automatically discriminated
(see Section 4.1.2), which allows the system to infer the falsehood, completing the proof.
This example and the previous discussion should convey the idea that decidable propo-

sitions should be implemented as computable functions returning a boolean result. This
simple design pattern makes it possible to take full advantage of the computational power
of Coq as a programming language and prove decidable properties automatically, rather
than by means of imposing a burden of constructing an explicit proof. We have just
seen how a boolean result can be easily injected back to the world of propositions. This
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computational approach to proofs is what has been taken by Ssreflect to the extreme,
making the proofs about common mathematical constructions to be very short, as most
of the proof obligations simply do not appear, as the system is possible to reduce them
by means of performing the computations on the fly. Even though, as discussed, some
propositions can be only encoded as elements of Prop, our general advice is to rely on
the computations whenever it is possible.
In the following subsections we will elaborate on some additional specifications and

proof patterns, which are enabled by using boolean values instead of full-fledged propo-
sitions from Prop.

5.2.1 Using conditionals in predicates
The ternary conditional operator if-then-else is something that programmers use on a
regular basis. However, when it comes to the specifications in the form of Coq’s standard
propositions it turns out one cannot simply employ the if-then-else connective in them,
as it expects its conditional argument to be of type bool. This restriction is, again, a
consequence of the fact that the result of if-then-else expression should be computable,
which conflicts with the fact that not every proposition is decidable and, hence, there is
no sound way overload the conditional operator, so it would rely on the existence of the
proof of its conditional (or its negation).

Definition prime spec bad n m : Prop := m = (if isPrime n then 1 else 2).

Error : In environment
m : nat
n : nat
The term "isPrime n" has type "Prop" while it is expected to have type "bool".
Fortunately, the computable predicates are free from this problem, so on can freely use

them in the conditionals:
Definition prime spec n m : Prop := m = (if prime n then 1 else 2).

5.2.2 Case analysing on a boolean assumption
Another advantage of the boolean predicates is that they automatically come with a nat-
ural case analysis principle: reasoning about an outcome of a particular predicate, one
can always consider two possibilities: when it returned true or false.5 This makes it par-
ticularly pleasant to reason about the programs and specifications that use conditionals,
which is demonstrated by the following example.
Definition discr prime n := (if prime n then 0 else 1) + 1.
Let us now prove that the definition prime spec gives a precise specification of the

function discr prime:
Lemma discr prime spec : ∀ n, prime spec n (discr prime n).

5We have already seen an instance of such case analysis in the proof of the leqP lemma in Section 4.3.1
of Chapter 4, although deliberately did not elaborate on it back then.
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Proof.
move⇒n. rewrite /prime spec /discr prime.

n : nat
============================
(if prime n then 0 else 1) + 1 = (if prime n then 1 else 2)
The proof of the specification is totally in the spirit of what one would have done when

proving it manually: we just case-analyse on the value of prime n, which is either true or
false. Similarly to the way the rewritings are handled by means of unification, in both
cases the system substitutes prime n with its boolean value in the specification as well.
The evaluation completes the proof.
by case: (prime n).
Qed.
Another common use case of boolean predicates comes from the possibility to perform

a case analysis on the boolean computable equality, which can be employed in the proof
proceeding by an argument “let us assume a to be equal to b (or not)”. As already hinted
by the example with the function equality earlier in this section, the computable equality
is not always possible to implement. Fortunately, it can be implemented for a large
class of datatypes, such as booleans, natural numbers, lists and sets (of elements with
computable equality), and it was implemented in Ssreflect, so one can take an advantage
of it in the proofs.6

5.3 The reflect type family
Being able to state all the properties of interest in a way that they are decidable is a
true blessing. However, even though encoding everything in terms of bool-returning
functions and connectives comes with the obvious benefits, reasoning in terms of Props
might be more convenient when the information of the structure of the proofs matters.
For instance, let us consider the following situation:
Variables do check1 do check2 : nat → bool.
Hypothesis H : ∀ n, do check2 n → prime n.
Lemma check prime n : (do check1 n) && (do check2 n) → prime n.
The lemma check prime employs the boolean conjunction && from the ssrbool module

in its assumption, so we know that its result is some boolean value. However simply case-
analysing on its component does not bring any results. What we want indeed is a way to
decompose the boolean conjunction into the components and then use the hypothesis H.
This is what could be accomplished easily, had we employed the propositional conjunction
∧ instead, as it comes with a case-analysis principle.
Abort.
This is why we need a mechanism to conveniently switch between two possible repre-

sentation. Ssreflect solves this problem by employing the familiar rewriting machinery
6The way the computable equality is encoded so it would work uniformly for different types is an
interesting topic by itself, so we postpone its explanation until Chapter 7
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(see Section 4.3 of Chapter 4) and introducing the inductive predicate family reflect,
which connects propositions and booleans:
Print Bool.reflect.

Inductive reflect (P : Prop) : bool → Set :=
| ReflectT of P : reflect P true
| ReflectF of ~P : reflect P false.
Similarly to the custom rewriting rules, the reflect predicate is nothing but a convenient

way to encode a “truth” table with respect to the predicate P, which is reflect’s only
parameter. In other words, the propositions (reflect P b) ensures that (is true b) and P
are logically equivalent and can be replaced one by another. For instance, the following
rewriting lemmas can be proved for the simple instances of Prop.
Lemma trueP : reflect True true.
Proof. by constructor. Qed.
Lemma falseP : reflect False false.
Proof. by constructor. Qed.
The proofs with boolean truth and falsehood can be then completed by case analysis,

as with any other rewriting rules:
Goal false → False.
Proof. by case:falseP. Qed.

5.3.1 Reflecting logical connectives
The true power of the reflect predicate, though, is that it might be put to work with
arbitrary logical connectives and user-defined predicates, therefore delivering the rewrit-
ing principles, allowing one to switch between bool and Prop (in the decidable case) by
means of rewriting lemmas. Ssreflect comes with a number of such lemmas, so let us
consider one of them, andP.
Lemma andP (b1 b2 : bool) : reflect (b1 ∧ b2 ) (b1 && b2 ).
Proof. by case b1 ; case b2 ; constructor⇒ //; case. Qed.
Notice that andP is stated over two boolean variables, b1 and b2, which, nevertheless,

are treated as instances of Prop in the conjunction ∧, being implicitly coerced.
We can now put this lemma to work and prove our initial example:

Lemma check prime n : (do check1 n) && (do check2 n) → prime n.
Proof.
case: andP=>//.

n : nat
============================
do check1 n ∧ do check2 n → true → prime n
Case analysis on the rewriting rule andP generates two goals, and the second one has

false as an assumption, so it is discharged immediately by using //. The remaining goal
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has a shape that we can work with, so we conclude the proof by applying the hypothesis
H declared above.
by case⇒ /H.
Qed.
Although the example above is a valid usage of the reflected propositions, Ssreflect

leverages the rewriting with respect to boolean predicates even more by defining a number
of hint views for the rewriting lemmas that make use of the reflect predicates. This allows
one to use the rewriting rules (e.g., andP) in the form of views , which can be applied
directly to an assumption or a goal, as demonstrated by the next definition.
Definition andb orb b1 b2 : b1 && b2 → b1 || b2.
Proof.
case/andP⇒H1 H2.
by apply/orP; left.
Qed.
The first line of the proof switched the top assumption from the boolean conjunction to

the propositional one by means of andP used as a view. The second line applied the orP
view, doing the similar switch in the goal, completing the proof by using a constructor
of the propositional disjunction.
Print andb orb.
Let us take a brief look to the obtained proof term for andb orb.

andb orb =
fun (b1 b2 : bool) (goal : b1 && b2 ) ⇒
(fun F : ∀ (a : b1 ) (b : b2 ),

(fun : b1 ∧ b2 ⇒ is true (b1 || b2 )) (conj a b) ⇒
match
elimTF (andP b1 b2 ) goal as a return ((fun : b1 ∧ b2 ⇒ is true (b1 || b2 )) a)

with
| conj x x0 ⇒ F x x0
end)
(fun (H1 : b1 ) ( : b2 ) ⇒
(fun F : if true then b1 ∨ b2 else ~(b1 ∨ b2 ) ⇒
introTF (c:=true) orP F) (or introl H1 ))
: ∀ b1 b2 : bool, b1 && b2 → b1 || b2

As we can see, the calls to the rewriting lemmas andP and orP were implicitly “wrapped”
into the call of hints elimTF and introTF, correspondingly. Defined via the conditional
operator, both these view hints allowed us to avoid the second redundant goal, which we
would be be forced to deal with, had we simply gone with case analysis on andP and orP
as rewriting rules.
Check elimTF.

elimTF
: ∀ (P : Prop) (b c : bool),
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reflect P b → b = c → if c then P else ~P

Exercise 5.1 (Reflecting exclusive disjunction). Let us define a propositional version of
the exclusive or predicate:
Definition XOR (P Q: Prop) := (P ∨ Q) ∧ ˜(P ∧ Q).
as well as its boolean version (in a curried form, so it takes just one argument and returns
a function):
Definition xorb b := if b then negb else fun x ⇒ x.
Now, prove the following generalized reflection lemma xorP gen and its direct conse-
quence, the usual reflection lemma xorP:
Hint: Recall that the reflect predicate is just a rewriting rule, so one can perform a case
analysis on it.
Lemma xorP gen (b1 b2 : bool)(P1 P2 : Prop):
reflect P1 b1 → reflect P2 b2 → reflect (XOR P1 P2 ) (xorb b1 b2 ).

Lemma xorP (b1 b2 : bool): reflect (XOR b1 b2 ) (xorb b1 b2 ).

Exercise 5.2 (Alternative formulation of exclusive disjunction). Let us consider an al-
ternative version of exclusive or, defined by means of the predicate XOR’:
Definition XOR’ (P Q: Prop) := (P ∧ ~Q) ∨ (˜P ∧ Q).
Prove the following equivalence lemma between to versions of XOR:

Lemma XORequiv P Q: XOR P Q ↔ XOR’ P Q.
The final step is to use the equivalence we have just proved in order to establish an
alternative version of the reflective correspondence of exclusive disjunction.
Hint: Use the Search machinery to look for lemmas that might help to leverage the
equivalence between two predicates and make the following proof to be a one-liner.
Lemma xorP’ (b1 b2 : bool): reflect (XOR’ b1 b2 ) (xorb b1 b2 ).

Unsurprisingly, every statement about exclusive or, e.g., its commutativity and asso-
ciativity, is extremely easy to prove when it is considered as a boolean function.
Lemma xorbC (b1 b2 : bool) : (xorb b1 b2 ) = (xorb b2 b1 ).
Proof. by case: b1 ; case: b2. Qed.
Lemma xorbA (b1 b2 b3 : bool) : (xorb (xorb b1 b2 ) b3 ) = (xorb b1 (xorb b2 b3 )).
Proof. by case: b1 ; case: b2 ; case: b3=>//. Qed.
It is also not difficult to prove the propositional counterparts of the above lemmas for

decidable propositions, reflected by them, hence the following exercise.

Exercise 5.3. Prove the following specialized lemmas for decidable propositions repre-
sented by booleans (without using the intuition tactic):
Lemma xorCb (b1 b2 : bool) : (XOR b1 b2 ) ↔ (XOR b2 b1 ).
Lemma xorAb (b1 b2 b3 : bool) : (XOR (XOR b1 b2 ) b3 ) ↔ (XOR b1 (XOR b2 b3 )).
Hint: In the proof of xorAb the generalized reflection lemma xorP gen might come in
handy.
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Hint: A redundant assumption H in the context can be erased by typing clear H or
move⇒ {H}. The latter form can be combined with any bookkeeping sequence, not only
with move tactics.
Hint: The Coq’s embedded tactic intuition can be helpful for automatically solving
goals in propositional logic.

5.3.2 Reflecting decidable equalities
Logical connectives are not the only class of inductive predicates that is worth building
a reflect-based rewriting principle for. Another useful class of decidable propositions,
which are often reflected, are equalities.
Postponing the description of a generic mechanism for declaring polymorphic decidable

equalities until Chapter 7, let us see how switching between decidable bool-returning
equality == (defined in the Ssreflect’s module eqtype) and the familiar propositional
equality can be beneficial.
Definition foo (x y: nat) := if x == y then 1 else 0.
The function foo naturally uses the natural numbers’ boolean equality == in its body,

as it is the only one that can be used in the conditional operator. The next goal, though,
assumes the propositional equality of x and y, which are passed to foo as arguments.
Goal ∀ x y, x = y → foo x y = 1.
Proof.
move⇒x y; rewrite /foo.

x : nat
y : nat
============================
x = y → (if x == y then 1 else 0) = 1
The rewriting rule/view lemma eqP, imported from eqtype allows us to switch from

propositional to boolean equality, which makes the assumption to be x == y. Next, we
combine the implicit fact that x == y in the assumption of a proposition is in fact (x ==
y) = true to perform in-place rewriting (see Section 4.2.1) by means of the -> tactical,
so the rest of the proof is simply by computation.
by move/eqP=>->.
Qed.

Exercise 5.4. Sometimes, the statement “there exists unique x and y, such that P (x, y)
holds” is mistakingly formalized as ∃!x ∃!y P (x, y). In fact, the latter assertion is much
weaker than the previous one. The goal of this exercise is to demonstrate this formally.7
First, prove the following lemma, stating that the first assertion can be weakened from

the second one.
Lemma ExistsUnique1 A (P : A → A → Prop):
(∃ !x, ∃ y, P x y) →
(∃ !x, ∃ y, P y x) →

7I am grateful to Vladimir Reshetnikov (@vreshetnikov) for making this observation on Twitter.

https://twitter.com/vreshetnikov
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(∃ !x, ∃ !y, P x y).
The notation ∃ ! x, P x is an abbreviation for the sigma-type, whose second component

is the higher-order predicate unique, defined as follows:
Print unique.

unique =
fun (A : Type) (P : A → Prop) (x : A) ⇒
P x ∧ (∀ x’ : A, P x’ → x = x’)

: ∀ A : Type, (A → Prop) → A → Prop

As we can see, the definition unique not just ensures that P x holds (the left conjunct),
but also that any x’ satisfying P is, in fact, equal to x. As on the top level unique is
merely a conjunction, it can be decomposed by case and proved using the split tactics.

Next, let us make sure that the statement in the conclusion of lemma ExistsUnique1, in
fact, admits predicates, satisfied by non-uniquely defined pair (x, y). You goal is to prove
that the following predicate Q, which obviously satisfied by (true, true), (false, true) and
(false, false) is nevertheless a subject of the second statement.
Definition Q x y : Prop :=
(x == true) && (y == true) || (x == false).

Lemma qlm : (∃ !x, ∃ !y, Q x y).

Hint: The following lemma eqxx, stating that the boolean equality x == x always holds,
might be useful for instantiating arguments for hypotheses you will get during the proof.
Check eqxx.

eqxx
: ∀ (T : eqType) (x : T ), x == x

Finally, you are invited to prove that the second statement is strictly weaker than the
first one by proving the following lemma, which states that the reversed implication of
the two statements for an arbitrary predicate P implies falsehood.
Lemma ExistsUnique2 :
(∀ A (P : A → A → Prop),
(∃ !x, ∃ !y, P x y) →
(∃ !x, ∃ y, P x y) ∧ (∃ !x, ∃ y, P y x)) →
False.



6 Inductive Reasoning in Ssreflect
In the previous chapters of this course, we have become acquainted with the main concepts
of constructive logic, Coq and Ssreflect. However, the proofs we have seen so far are mostly
done by case analysis, application of hypotheses and various forms of rewriting. In this
chapter we will consider in more detail the proofs that employ inductive reasoning as
their main component. We will see how such proofs are typically structured in Ssreflect,
making the corresponding scripts very concise, yet readable and maintainable. We will
also learn a few common techniques that will help to adapt an induction hypothesis to
become more suitable for a goal.
In the rest of the chapter we will be constantly relying on a series of standard Ssreflect

modules, such as ssrbool, ssrnat and eqtype, which we import right away.
From mathcomp
Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.

6.1 Structuring the proof scripts
An important part of the proof process is keeping to an established proof layout, which
helps to maintain the proofs readable and restore the intuition driving the prover’s hand.
Ssreflect offers a number of syntactic primitives that help to maintain such a layout, and in
this section we give a short overview of them. As usual, the Ssreflect reference manual [23]
(Chapter 6) provides an exhaustive formal definition of each primitive’s semantics, so we
will just cover the base cases here, hoping that the subsequent proofs will provide more
intuition on typical usage scenarios.

6.1.1 Bullets and terminators
The proofs proceeding by induction and case analysis typically require us to prove several
goals, one by one, in a sequence picked by the system. It is considered to be a good
practice to indent the subgoals (except for the last one) when there are several to prove.
For instance, let us consider the following almost trivial lemma:
Lemma andb true elim b c: b && c → c = true.
Indeed, the reflection machinery, presented in Section 5.3 of Chapter 5, makes this

proof a one liner (by case/andP.). However, for the sake of demonstration, let us not
appeal to it this time and do the proof as it would be done in a traditional Coq style: by
mere case analysis.
Proof.
case: c.
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true = true

subgoal 2 (ID 15) is :
b && false → false = true
Case analysis on c (which is first moved down to the goal to become an assumption)

immediately gives us two subgoals to prove. Each of them can be subsequently proved
by the inner cases analysis on b, so we do, properly indenting the goals.
- by case: b.
The proof script above successfully solves the first goal, as ensured by the terminator

tactical by, which we have seen previously. More precisely, by tac. first runs the script
tac and then applies a number of simplifications and discriminations to see if the proof
can be completed. If the current goal is solved, by tac. simply terminates and proceeds
to the next goal; otherwise it reports a proof script error. Alternative equivalent uses of
the same principle would be tac; by []. or tac; done, which do exactly the same.
Notice that the first goal was indented and preceded by the bullet -. The bullet token,

preceding a tactic invocation, has no operational effect on the proof and serves solely for
the readability purposes. Alternative forms of tokens are + and *.

6.1.2 Using selectors and discharging subgoals
Let us restart this proof and show an alternative way to structure the proof script, which
should account for multiple cases.
Restart.
case: c; first by [].

b : bool
============================
b && false → false = true
Now, right after case-analysing on c, the proof script specifies that the first of the

generated subgoals should be solved using by []. In this case first is called selector, and
its counterpart last would specify that the last goal should be taken care of instead,
before proceeding.
Finally, if several simple goals can be foreseen as a result of case analysis, Coq provides

a convenient way to discharge them in a structured way using the [|...|] tactical:
Restart.
case:c; [by [] | by case: b].
The script above solves the first generated goal using by [], and then solves the second

one via by case: b.

6.1.3 Iteration and alternatives
Yet another possible way to prove the statement of our subject lemma is by employing
Coq’s repetition tactical do. The script of the form do !tac. tries to apply the tactic tac
as many times as possible, as long as new goals are generated or no more goals are left
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to prove.1 The do-tactical can be also combined with the [|...|] tactical, so it will try to
apply all of the enumerated tactics as alternatives. The following script finishes the proof
of the whole lemma.
Restart.
by do ![done | apply: eqxx | case: b | case: c].
Notice that we have added two tactics into the alternative list, done and apply: eqxx,

which were doomed to fail. The script, nevertheless, has succeeded, as the remaining
two tactics, case: b and case: c, did all the job. Lastly, notice that the do-tactical can
be specified how many times it should try to run each tactic from the list by using the
restricted form do n!tac, where n is the number of attempts (similarly to iterating the
rewrite tactics). The lemma above could be completed by the script of the form by do
2![...] with the same list of alternatives.
Qed.

6.2 Inductive predicates that should be functions
It has been already discussed in Chapter 5 that, even though a lot of interesting proposi-
tions are inherently undecidable and should be, therefore, represented in Coq as instances
of the sort Prop, one should strive to implement as many decidable propositions as possi-
ble as bool-returning function. Such “computational” approach to the propositions turns
out to pay off drastically in the long-term perspective, as most of the usual proof burden
will be carried out by Coq’s computational component. In this section we will browse
through a series of predicates defined both as inductive datatypes and boolean functions
and compare the proofs of various properties stated over the alternative representations.
One can define the fact that the only natural number which is equal to zero is the zero

itself, as shown below:
Inductive isZero (n: nat) : Prop := IsZero of n = 0.
Naturally, such equality can be exploited to derived paradoxes, as the following lemma

shows:
Lemma isZero paradox : isZero 1 → False.
Proof. by case. Qed.
However, the equality on natural numbers is, decidable, so the very same definition

can be rewritten as a function employing the boolean equality (==) (see Section 5.3.2 of
Chapter 5), which will make the proofs of paradoxes even shorter than they already are:
Definition is zero n : bool := n == 0.
Lemma is zero paradox : is zero 1 → False.
Proof. done. Qed.

1Be careful, though, as such proof script might never terminate if more and more new goals will
be generated after each application of the iterated tactic. That said, while Coq itself enjoys the
strong normalization property (i.e., the programs in it always terminate), its tactic meta-language
is genuinely Turing-complete, so the tactics, while constructing Coq programs/proofs, might never
in fact terminate. Specifying the behaviour of tactics and their possible effects (including non-
termination and failures) is a topic of an ongoing active research [62, 70].
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That is, instead of the unavoidable case-analysis with the first Prop-based definition,
the functional definition made Coq compute the result for us, deriving the falsehood
automatically.
The benefits of the computable definitions become even more obvious when considering

the next example, the predicate defining whether a natural number is even or odd. Again,
we define two versions, the inductive predicate and a boolean function.
Inductive evenP n : Prop :=
Even0 of n = 0 | EvenSS m of n = m.+2 & evenP m.

Fixpoint evenb n := if n is n’.+2 then evenb n’ else n == 0.
Let us now prove a simple property: that fact that (n + 1 + n) is even leads to a

paradox. We first prove it for the version defined in Prop.
Lemma evenP contra n : evenP (n + 1 + n) → False.
Proof.
elim: n=>//[| n Hn]; first by rewrite addn0 add0n; case=>//.
We start the proof by induction on n, which is triggered by elim: n.2 The subsequent

two goals (for the zero and the successor cases) are then simplified via // and the induction
variable and hypothesis are given the names n and Hn, respectively, in the second goal (as
described in Section 4.2.3). Then, the first goal (the 0-case) is discharged by simplifying
the sum via two rewritings by addn0 and add0n lemmas from the ssrnat module and
case-analysis on the assumption of the form evenP 1, which delivers the contradiction.
The second goal is annoyingly trickier.

n : nat
Hn : evenP (n + 1 + n) → False
============================
evenP (n.+1 + 1 + n.+1) → False
First, let us do some rewritings that make the hypothesis and the goal look alike.3

rewrite addn1 addnS addnC !addnS.
rewrite addnC addn1 addnS in Hn.

n : nat
Hn : evenP (n + n).+1 → False
============================
evenP (n + n).+3 → False
Now, even though the hypothesis Hn and the goal are almost the same (modulo the

natural “(.+2)-orbit” of the evenP predicate and some rewritings), we cannot take an
advantage of it right away, and instead are required to case-analysed on the assumption
of the form evenP (n + n).+3:
case=>// m /eqP.

2Remember that the elim, as most of other Ssreflect’s tactics operates on the top assumption.
3Recall that n.+1 stands for the value of the successor of n, whereas n + 1 is a function call, so the
whole expression in the goal cannot be just trivially simplified by Coq’s computation and requires
some rewritings to take the convenient form.
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n : nat
Hn : evenP (n + n).+1 → False
m : nat
============================
(n + n).+3 = m.+2 → evenP m → False
Only now we can make use of the rewriting lemma to “strip off” the constant summands

from the equality in the assumption, so it could be employed for brushing the goal, which
would then match the hypothesis exactly.
by rewrite !eqSS ; move/eqP=><-.
Qed.
Now, let us take a look at the proof of the same fact, but with the computable version

of the predicate evenb.
Lemma evenb contra n: evenb (n + 1 + n) → False.
Proof.
elim: n=>[|n IH ] //.

n : nat
IH : evenb (n + 1 + n) → False
============================
evenb (n.+1 + 1 + n.+1) → False
In the case of zero, the proof by induction on n is automatically carried out by com-

putation, since evenb 1 = false. The inductive step is not significantly more complicated,
and it takes only two rewriting to get it into the shape, so the computation of evenb could
finish the proof.
by rewrite addSn addnS.
Qed.
Sometimes, though, the value “orbits”, which can be advantageous for the proofs in-

volving bool-returning predicates, might require a bit trickier induction hypotheses than
just the statement required to be proved. Let us compare the two proofs of the same
fact, formulated with evenP and evenb.
Lemma evenP plus n m : evenP n → evenP m → evenP (n + m).
Proof.
elim=>//n’ ; first by move=>->; rewrite add0n.

n : nat
m : nat
n’ : nat
============================
∀ m0 : nat,
n’ = m0.+2 →
evenP m0 → (evenP m → evenP (m0 + m)) → evenP m → evenP (n’ + m)
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The induction here is on the predicate evenP, so the first case is discharged by rewrit-
ing.
move⇒ m’->{n’} H1 H2 H3 ; rewrite addnC !addnS addnC.

n : nat
m : nat
m’ : nat
H1 : evenP m’
H2 : evenP m → evenP (m’ + m)
H3 : evenP m
============================
evenP (m’ + m).+2
In order to proceed with the inductive case, again a few rewritings are required.

apply: (EvenSS )=>//.

n : nat
m : nat
m’ : nat
H1 : evenP m’
H2 : evenP m → evenP (m’ + m)
H3 : evenP m
============================
evenP (m’ + m)
The proof script is continued by explicitly applying the constructor EvenSS of the evenP

datatype. Notice the use of the wildcard underscores in the application of EvenSS. Let
us check its type:
Check EvenSS.

EvenSS
: ∀ n m : nat, n = m.+2 → evenP m → evenP n

By using the underscores, we allowed Coq to infer the two necessary arguments for the
EvenSS constructor, namely, the values of n and m. The system was able to do it basing
on the goal, which was reduced by applying it. After the simplification and automatic
discharging the of the trivial subgoals (e.g., (m’ + m)+.2 = (m’ + m)+.2) via the //
tactical, the only left obligation can be proved by applying the hypothesis H2.
by apply: H2.
Qed.
In this particular case, the resulting proof was quite straightforward, thanks to the

explicit equality n = m.+2 in the definition of the EvenSS constructor.
In the case of the boolean specification, though, the induction should be done on the

natural argument itself, which makes the first attempt of the proof to be not entirely
trivial.
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Lemma evenb plus n m : evenb n → evenb m → evenb (n + m).
Proof.
elim: n=>[|n Hn]; first by rewrite add0n.

m : nat
n : nat
Hn : evenb n → evenb m → evenb (n + m)
============================
evenb n.+1 → evenb m → evenb (n.+1 + m)
The problem now is that, if we keep building the proof by induction on n or m, the

induction hypothesis and the goal will be always “mismatched” by one, which will prevent
us finishing the proof using the hypothesis.
There are multiple ways to escape this vicious circle, and one of them is to generalize

the induction hypothesis. To do so, let us restart the proof.
Restart.
move: (leqnn n).

n : nat
m : nat
============================
n ≤ n → evenb n → evenb m → evenb (n + m)
Now, we are going to proceed with the proof by selective induction on n, such that

some of its occurrences in the goal will be a subject of inductive reasoning (namely, the
second one), and some others will be left generalized (that is, bound by a forall-quantified
variable). We do so by using Ssreflect’s tactics elim with explicit occurrence selectors.
elim: n {-2}n.

m : nat
============================
∀ n : nat, n ≤ 0 → evenb n → evenb m → evenb (n + m)

subgoal 2 (ID 860) is :
∀ n : nat,
(∀ n0 : nat, n0 ≤ n → evenb n0 → evenb m → evenb (n0 + m)) →
∀ n0 : nat, n0 ≤ n.+1 → evenb n0 → evenb m → evenb (n0 + m)
The same effect could be achieved by using elim: n {1 3 4}n, that is, indicating which

occurrences of n should be generalized, instead of specifying, which ones should not (as
we did by means of {-2}n).
Now, the first goal can be solved by case-analysis on the top assumption (that is, n).

- by case=>//.
For the second goal, we first move some of the assumptions to the context.

move⇒n Hn.



88 6 Inductive Reasoning in Ssreflect

m : nat
n : nat
Hn : ∀ n0 : nat, n0 ≤ n → evenb n0 → evenb m → evenb (n0 + m)
============================
∀ n0 : nat, n0 ≤ n.+1 → evenb n0 → evenb m → evenb (n0 + m)
We then perform the case-analysis on n0 in the goal, which results in two goals, one

of which is automatically discharged.
case=>//.

m : nat
n : nat
Hn : ∀ n0 : nat, n0 ≤ n → evenb n0 → evenb m → evenb (n0 + m)
============================
∀ n0 : nat, n0 < n.+1 → evenb n0.+1 → evenb m → evenb (n0.+1 + m)
Doing one more case analysis will add one more 1 to the induction variable n0, which

will bring us to the desired (.+2)-orbit.
case=>// n0.

m : nat
n : nat
Hn : ∀ n0 : nat, n0 ≤ n → evenb n0 → evenb m → evenb (n0 + m)
n0 : nat
============================
n0.+1 < n.+1 → evenb n0.+2 → evenb m → evenb (n0.+2 + m)
The only thing left to do is to tweak the top assumption (by relaxing the inequality

via the ltnW lemma), so we could apply the induction hypothesis Hn.
by move/ltnW /Hn=>//.
Qed.
It is fair to notice that this proof was far less direct that one could expect, but it taught

us an important trick—selective generalization of the induction hypothesis. In particular,
by introducing an extra assumption n ≤ n in the beginning, we later exploited it, so we
could apply the induction hypothesis, which was otherwise general enough to match the
ultimate goal at the last step of the proof.

6.2.1 Eliminating assumptions with a custom induction hypothesis
The functions like evenb, with specific value orbits, are not particularly uncommon, and it
is useful to understand the key induction principles to reason about them. In particular,
the above discussed proof could have been much more straightforward if we first proved
a different induction principle nat2 ind for natural numbers.
Lemma nat2 ind (P: nat → Prop):
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P 0 → P 1 → (∀ n, P n → P (n.+2)) → ∀ n, P n.
Proof.
move⇒ H0 H1 H n.

P : nat → Prop
H0 : P 0
H1 : P 1
H : ∀ n : nat, P n → P n.+2
n : nat
============================
P n
Unsurprisingly, the proof of this induction principle follows the same pattern as the

proof of evenb plus—generalizing the hypothesis. In this particular case, we generalize it
in the way that it would provide an “impedance matcher” between the 1-step “default”
induction principle on natural numbers and the 2-step induction in the hypothesis H. We
show that for the proof it is sufficient to establish (P n ∧ P (n.+1)):
suff: (P n ∧ P (n.+1)) by case.
The rest of the proof proceeds by the standard induction on n.

by elim: n=>//n; case⇒ H2 H3 ; split=>//; last by apply: H.
Qed.
Now, since the new induction principle nat2 ind exactly matches the 2-orbit, we can

directly employ it for the proof of the previous result.
Lemma evenb plus’ n m : evenb n → evenb m → evenb (n + m).
Proof.
by elim/nat2 ind : n.
Qed.
Notice that we used the version of the elim tactics with specific elimination view

nat2 ind, different from the default one, which is possible using the view tactical /. In
this sense, the “standard induction” elim: n would be equivalent to elim/nat ind: n.

Exercise 6.1. Let us define the binary division function div2 as follows.
Fixpoint div2 (n: nat) := if n is p.+2 then (div2 p).+1 else 0.
Prove the following lemma directly, without using the nat2 ind induction principle.

Lemma div2 le n: div2 n ≤ n.

6.3 Inductive predicates that are hard to avoid
Although formulating predicates as boolean functions is often preferable, it is not always
trivial to do so. Sometimes, it is (seemingly) much simpler to come up with an inductive
predicate, which explicitly witnesses the property of interest. As an example for such
property, let us consider the notion of beautiful and gorgeous numbers, which we borrow
from Pierce et al.’s electronic book [53] (Chapter MoreInd).
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Inductive beautiful (n: nat) : Prop :=
| b 0 of n = 0
| b 3 of n = 3
| b 5 of n = 5
| b sum n’ m’ of beautiful n’ & beautiful m’ & n = n’ + m’.
The number is beautiful if it’s either 0, 3, 5 or a sum of two beautiful numbers. Indeed,

there are many ways to decompose some numbers into the sum 3×n + 5×n.4 Encoding
a function, which checks whether a number is beautiful or not, although not impossible,
is not entirely trivial (and, in particular, it’s not trivial to prove the correctness of such
function with respect to the definition above). Therefore, if one decides to stick with the
predicate definition, some operations become tedious, as, even for constants the property
should be inferred rather than proved:
Theorem eight is beautiful: beautiful 8.
Proof.
apply: (b sum 3 5)=>//; first by apply: b 3.
by apply b 5.
Qed.
Theorem b times2 n: beautiful n → beautiful (2 × n).
Proof.
by move⇒H ; apply: (b sum n n)=>//; rewrite mul2n addnn.
Qed.
In particular, the negation proofs become much less straightforward than one would

expect:
Lemma one not beautiful n: n = 1 → ~beautiful n.
Proof.
move⇒E H.

n : nat
E : n = 1
H : beautiful n
============================
False
The way to infer the falsehood will be to proceed by induction on the hypothesis H :

elim: H E⇒n’ ; do?[by move=>->].
move⇒ n1 m’ H2 H4 → {n’ n}.
Notice how the assumptions n’ and n are removed from the context (since we don’t

need them any more) by enumerating them using {n’ n} notation.
case: n1 H2=>// n’⇒ H3.
by case: n’ H3=>//; case.
Qed.

Exercise 6.2. Prove the following theorem about beautiful numbers.
4In fact, the solution of this simple Diophantine equation are all natural numbers, greater than 7.
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Lemma b timesm n m: beautiful n → beautiful (m × n).
Hint: Choose wisely, what to build the induction on.

To practice with proofs by induction, let us consider yet another inductive predicate,
borrowed from Pierce et al.’s course and defining which of natural numbers are gorgeous.

Inductive gorgeous (n: nat) : Prop :=
| g 0 of n = 0
| g plus3 m of gorgeous m & n = m + 3
| g plus5 m of gorgeous m & n = m + 5.

Exercise 6.3. Prove by induction the following statements about gorgeous numbers:
Lemma gorgeous plus13 n: gorgeous n → gorgeous (n + 13).
Lemma beautiful gorgeous (n: nat) : beautiful n → gorgeous n.
Lemma g times2 (n: nat): gorgeous n → gorgeous (n × 2).
Lemma gorgeous beautiful (n: nat) : gorgeous n → beautiful n.
As usual, do not hesitate to use the Search utility for finding the necessary rewriting
lemmas from the ssrnat module.

Exercise 6.4 (Gorgeous reflection). Gorgeous and beautiful numbers, defining, in fact,
exactly the same subset of nat are a particular case of Frobenius coin problem, which
asks for the largest integer amount of money, that cannot be obtained using only coins
of specified denominations.5 In the case of beautiful and gorgeous numbers we have
two denominations available, namely 3 and 5. An explicit formula exists for the case of
only two denominations n1 and n2, which allows one to compute the Frobenius number
as g(n1, n2) = n1×n2−n1−n2. That said, for the case n1 = 3 and n2 = 5 the Frobenius
number is 7, which means that all numbers greater or equal than 8 are in fact beautiful
and gorgeous (since the two are equivalent, as was established by Exercise 6.3).
In this exercise, we suggest the reader to prove that the efficient procedure of “checking”

for gorgeousness is in fact correct. First, let us defined the following candidate function.
Fixpoint gorgeous b n : bool := match n with
| 1 | 2 | 4 | 7 ⇒ false
| ⇒ true
end.
The ultimate goal of this exercise is to prove the statement reflect (gorgeous n) (gorgeous b
n), which would mean that the two representations are equivalent. Let us divide the proof
into two stages:

• The first stage is proving that all numbers greater or equal than 8 are gorgeous. To
prove this it might be useful to have the following two facts established:

Hint: Use the tactic constructor i to prove a goal, which is an n-ary disjunction, which
is satisfied if its ith disjunct is true.

5http://en.wikipedia.org/wiki/Frobenius_problem

http://en.wikipedia.org/wiki/Frobenius_problem
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Lemma repr3 n : n ≥ 8 →
∃ k, [\/ n = 3 × k + 8, n = 3 × k + 9 | n = 3 × k + 10].

Lemma gorg3 n : gorgeous (3 × n).
Next, we can establish by induction the following criteria using the lemmas repr3 and
gorg3 in the subgoals of the proof.
Lemma gorg criteria n : n ≥ 8 → gorgeous n.
This makes the proof of the following lemma trivial.
Lemma gorg refl’ n: n ≥ 8 → reflect (gorgeous n) true.

• In the second stage of the proof of reflection, we will need to prove four totally
boring but unavoidable lemmas.

Hint: The rewriting lemmas addnC and eqSS from the ssrnat module might be particu-
larly useful here.
Lemma not g1 : ˜(gorgeous 1).
Lemma not g2 : ˜(gorgeous 2).
Lemma not g4 : ˜(gorgeous 4).
Lemma not g7 : ˜(gorgeous 7).
We can finally provide prove the ultimate reflection predicate, relating gorgeous and
gorgeous b.
Lemma gorg refl n : reflect (gorgeous n) (gorgeous b n).

Exercise 6.5 (Complete trees). In this exercise, we will consider a binary tree datatype
and several functions on such trees.
Inductive tree : Set :=
| leaf
| node of tree & tree.
A tree is either a leaf or a node with two branches. The height of a leaf is zero, and
height of a node is the maximum height of its branches plus one.
Fixpoint height t :=
if t is node t1 t2 then (maxn (height t1 ) (height t2 )).+1 else 0.
The number of leaves in a node is the total number of leaves in both its branches.
Fixpoint leaves t :=
if t is node t1 t2 then leaves t1 + leaves t2 else 1.
A node is deemed a complete tree if both its branches are complete and have the same
height; a leaf is considered a complete tree.
Fixpoint complete t :=
if t is node t1 t2 then complete t1 && complete t2 && (height t1 == height t2 )
else true.
We can now prove by induction that in a complete tree, the number of leaves is two to
the power of the tree’s height.
Theorem complete leaves height t : complete t → leaves t = 2 ˆ height t.
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6.4 Working with Ssreflect libraries
As it was mentioned in Chapter 1, Ssreflect extension to Coq comes with an impressive
number of libraries for reasoning about the large collection of discrete datatypes and
structures, including but not limited to booleans, natural numbers, sequences, finite
functions and sets, graphs, algebras, matrices, permutations etc. As discussed in this and
previous chapters, all these libraries give preference to the computable functions rather
than inductive predicates and leverage the reasoning via rewriting by equality. They
also introduce a lot of notations that are worth being re-used in order to make the proof
scripts tractable, yet concise.
We would like to conclude this chapter with a short overview of a subset of the standard

Ssreflect programming and naming policies, which will, hopefully, simplify the use of the
libraries in a standalone development.

6.4.1 Notation and standard properties of algebraic operations
Ssreflect’s module ssrbool introduces convenient notation for predicate connectives, such
as ∧ and ∨. In particular, multiple conjunctions and disjunctions are better to be written
as [ ∧ P1, P2 & P3 ] and [ ∨ P1, P2 | P3 ], respectively, opposed to P1 ∧ P2 ∧ P3 and
P1 ∨ P2 ∨ P3. The specific notation makes it more convenient to use such connectives
in the proofs that proceed by case analysis. Compare.
Lemma conj4 P1 P2 P3 P4 : P1 ∧ P2 ∧ P3 ∧ P4 → P3.
Proof. by case⇒p1 [p2 ][p3 ]. Qed.
Lemma conj4’ P1 P2 P3 P4 : [ ∧ P1, P2, P3 & P4 ] → P3.
Proof. by case. Qed.
In the first case, we had progressively decompose binary right-associated conjunctions,

which was done by means of the product naming pattern [...],6 so eventually all levels were
“peeled off”, and we got the necessary hypothesis p3. In the second formulation, conj4’,
the case analysis immediately decomposed the whole 4-conjunction into the separate
assumptions.
For functions of arity bigger than one, Ssreflect’s module ssrfun also introduces conve-

nient notation, allowing them to be curried with respect to the second argument:
Locate " ˆ˜ ".

"f ˆ˜ y" := fun x ⇒ f x y : fun scope
For instance, this is how one can now express the partially applied function, which

applies its argument to the list [:: 1; 2; 3]:
Check map ˆ˜ [:: 1; 2; 3].

mapˆ˜ [:: 1; 2; 3]
: (nat → ?2919) → seq ?2919

6The same introduction pattern works in fact for any product type with one constructor, e.g., the
existential quantification (see Chapter 3).



94 6 Inductive Reasoning in Ssreflect

Finally, ssrfun defines a number of standard operator properties, such as commutativity,
distributivity etc in the form of the correspondingly defined predicates: commutative,
right inverse etc. For example, since we have now ssrbool and ssrnat imported, we can
search for left-distributive operations defined in those two modules (such that they come
with the proofs of the corresponding predicates):
Search (left distributive ).

andb orl left distributive andb orb
orb andl left distributive orb andb
andb addl left distributive andb addb
addn maxl left distributive addn maxn
addn minl left distributive addn minn
...
A number of such properties is usually defined in a generic way, using Coq’s canonical

structures, which is a topic of Chapter 7.

6.4.2 A library for lists
Lists, being one of the most basic inductive datatypes, are usually a subject of a lot of
exercises for the fresh Coq hackers. Ssreflect’s modules seq collect a number of the most
commonly used procedures on lists and their properties, as well as some non-standard
induction principles, drastically simplifying the reasoning.
For instance, properties of some of the functions, such as list reversal are simpler to

prove not by the standard “direct” induction on the list structure, but rather iterating
the list from its last element, for which the seq library provides the necessary definition
and induction principle:

Fixpoint rcons s z := if s is x :: s’ then x :: rcons s’ z else [:: z ].

Check last ind.

last ind
: ∀ (T : Type) (P : seq T → Type),
P [::] →
(∀ (s : seq T ) (x : T ), P s → P (rcons s x)) →
∀ s : seq T, P s

That is, last ind is very similar to the standard list induction principle list ind, except
for the fact that its “induction step” is defined with respect to the rcons function, rather
than the list’s constructor cons. We encourage the reader to check the proof of the list
function properties, such as nth rev or foldl rev to see the reasoning by the last ind
induction principle.
To demonstrate the power of the library for reasoning with lists, let us prove the follow-

ing property, known as Dirichlet’s box principle (sometimes also referred to as pigeonhole
principle), the formulation of which we have borrowed from Chapter MoreLogic of
Pierce et al.’s course [53].
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Variable A : eqType.
Fixpoint has repeats (xs : seq A) :=
if xs is x :: xs’ then (x \in xs’) || has repeats xs’ else false.
The property has repeats is stated over the lists with elements that have decidable

equality, which we have considered in Section 5.3.2. Following the computational ap-
proach, it is a boolean function, which makes use of the boolean disjunction || and Ssre-
flect’s element inclusion predicate \in, which is defined in the module seq.
The following lemma states that for two lists xs1 and xs2, is the size xs2 is strictly

smaller than the size of xs1, but nevertheless xs1 as a set is a subset of xs2 then there
ought to be repetitions in xs1.
Theorem dirichlet xs1 xs2 :

size xs2 < size xs1 → {subset xs1 ≤ xs2} → has repeats xs1.
Let us go through the proof of this statement, as it is interesting by itself in its intensive

use of Ssreflect’s library lemmas from the seq module.
Proof.
First, the proof scripts initiates the induction on the structure of the first, “longer”,

list xs1, simplifying and moving to the context some hypotheses in the “step” case (as
the nil-case is proved automatically).
elim: xs1 xs2=>[|x xs1 IH ] xs2 //= H1 H2.

x : A
xs1 : seq A
IH : ∀ xs2 : seq A,

size xs2 < size xs1 → {subset xs1 ≤ xs2} → has repeats xs1
xs2 : seq A
H1 : size xs2 < (size xs1 ).+1
H2 : {subset x :: xs1 ≤ xs2}
============================
(x \in xs1 ) || has repeats xs1
Next, exactly in the case of a paper-and-pencil proof, we perform the case-analysis on

the fact (x \in xs1 ), i.e., whether the “head” element x occurs in the remainder of the
list xs1. If it is, the proof is trivial and automatically discharged.
case H3 : (x \in xs1 ) ⇒ //=.

...
H3 : (x \in xs1 ) = false
============================
has repeats xs1
Therefore, we are considering now the situation when x was the only representative of

its class in the original “long” list. For the further inductive reasoning, we will have to
remove the same element from the “shorter” list xs2, which is done using the following
filtering operation (pred1 x checks every element for equality to x and predC constructs
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the negation of the passed predicate), resulting in the list xs2’, to which the induction
hypothesis is applied, resulting in two goals
pose xs2’ := filter (predC (pred1 x)) xs2.
apply: (IH xs2’); last first.

...
H2 : {subset x :: xs1 ≤ xs2}
H3 : (x \in xs1 ) = false
xs2’ := [seq x ← xs2 | (predC (pred1 x)) x0 ] : seq A
============================
{subset xs1 ≤ xs2’}

subgoal 2 (ID 5716) is :
size xs2’ < size xs1
The first goal is discharged by first “de-sugaring” the {subset ...} notation and moving

a universally-quantified variable to the top, and then performing a number of rewriting
with the lemmas from the seq library, such as inE and mem filter (check their types!).
- move⇒y H4 ; move: (H2 y); rewrite inE H4 orbT mem filter /=.
by move ⇒ → //; case: eqP H3 H4 ⇒ // ->->.
The second goal requires to prove the inequality, which states that after removal of x

from xs2, the length of the resulting list xs2 is smaller than the length of xs1. This is
accomplished by the transitivity of < and several rewritings by lemmas from the seq and
ssrnat modules, mostly targeted to relate the filter function and the size of the resulting
list.
rewrite ltnS in H1 ; apply: leq trans H1.
rewrite -(count predC (pred1 x) xs2 ) -addn1 addnC.
rewrite /xs2’ size filter leq add2r -has count.

...
H2 : {subset x :: xs1 ≤ xs2}
H3 : (x \in xs1 ) = false
xs2’ := [seq x ← xs2 | (predC (pred1 x)) x0 ] : seq A
============================
has (pred1 x) xs2
The remaining goal can be proved by reflecting the boolean proposition has into its

Prop-counterpart exists2 from Ssreflect library. The switch is done using the view hasP,
and the proof is completed by supplying explicitly the existential witness x.
by apply/hasP; ∃ x=>//=; apply: H2 ; rewrite inE eq refl.
Qed.
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Long before programming has been established as a discipline, mathematics came to be
perceived as a science of building abstractions and summarizing important properties of
various entities necessary for describing nature’s phenomenons.1 From the basic course
of algebra, we are familiar with a number of mathematical structures, such as monoids,
groups, rings, fields etc., which couple a carrier set (or a number of sets), a number of
operations on it (them), and a collection of properties of the set itself and operations on
them.
From a working programmer’s perspective, a notion of a mathematical abstract struc-

ture is reminiscent to a notion of a class from object-oriented programming, modules
from Standard ML and type classes [64] from Haskell: all these mechanisms are targeted
to solve the same goal: package a number of operations manipulating with some data,
while abstracting of a particular implementation of this data itself. What neither of these
programming mechanisms is capable of doing, comparing to mathematics, is enforcing
the requirement for one to provide the proofs of properties, which restrict the operations
on the data structure. For instance, one can implement a type class for a lattice in Haskell
as follows:

class Lattice a where
bot :: a
top :: a
pre :: a -> a -> Bool
lub :: a -> a -> a
glb :: a -> a -> a

That is, the class Lattice is parametrized by a carrier type a, and provides the
abstract interfaces for top and bottom elements of the lattice, as well as for the order-
ing predicate pre and the binary least-upper-bound and greatest-lower-bound operations.
What this class cannot capture is a number of restrictions, for instance, that the pre
relation should be transitive, reflexive and antisymmetric. That said, one can instantiate
the Lattice class, e.g., for integers, providing an implementation of pre, which is not a
partial order (e.g., just constant true). While this relaxed approach is supposedly fine
for the programming needs, as the type classes are used solely for computing, not the
reasoning about the correctness of the computations, this is certainly unsatisfactory from
the mathematical perspective. Without the possibility to establish and enforce the nec-
essary properties of a mathematical structure’s operations, we would not be able to carry
out any sort of sound formal reasoning, as we simply could not distinguish a “correct”
implementation from a flawed one.
Luckily, Coq’s ability to work with dependent types and combine programs and propo-

sitions about them in the same language, as we’ve already witnessed in the previous
1In addition to being a science of rewriting, as we have already covered in Chapter 4.
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chapters, makes it possible to define mathematical structures with a necessary degree
of rigour and describe their properties precisely by means of stating them as types (i.e.,
propositions) of the appropriate implementation’s parameters. Therefore, any faithful
instance of an abstract mathematical structure implemented this way, would be enforced
to provide not just the carrier and implementations of the declared operations but also
proofs of propositions that constrain these operations and the carrier.
In this chapter we will learn how to encode common algebraic data structures in Coq

in a way very similar to how data structures are encoded in languages like C (with a bit
of Haskell-ish type class-like machinery), so the representation, unlike the one in C or
Haskell, would allow for flexible and generic reasoning about the structures’ properties.
In the process, we will meet some old friends from the course of abstract algebra—partial
commutative monoids, and implement them using Coq’s native constructs: dependent
records and canonical structures.
As usual, we will require a number of Ssreflect package imported.

From mathcomp
Require Import ssreflect ssrbool ssrnat eqtype ssrfun.

We will also require to execute a number of Vernacular commands simplifying the
handling of implicit datatype arguments.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

7.1 Encoding partial commutative monoids
We will be using partial commutative monoids (PCMs) as an illustrative example of a
simple algebraic data structure, a subject of encoding and formalization. A PCM is
defined as an algebraic structure with a carrier set U, abstract binary “join” operation •
and a unit element 1.2 The join operation is required to be associative and commutative,
and for the unit element the left and right identity equalities should hold. Moreover,
partiality means that the operation • might be undefined for some pairs of elements a
and b (and in this case it is denoted as a • b = ⊥). PCMs are fairly ubiquitous: in
particular, natural numbers with addition and multiplication, sets with a disjoin union,
partially-defined functions with a point-wise union, are all PCM instances. Furthermore,
partial commutative monoids are omnipresent in program verification [43], as they capture
exactly the properties of heaps, as well as the effect of programs that can be executed
in parallel [44]. Therefore, it is useful to have PCMs formalized as a structure, so they
could be employed for future reasoning.

2Sometimes also referred to as an identity or neutral element.
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7.1.1 Describing algebraic data structures via dependent records

Module PCMDef.
In Section 3.6 of Chapter 3 we have already seen a use of a dependent pair type,

exemplified by the Coq’s definition of the universal quantification.
Print ex.

Inductive ex (A : Type) (P : A → Prop) : Prop :=
ex intro : ∀ x : A, P x → ex P

The only constructor ex intro of the predicate ex, whose type is a dependent function
type, is a way to encode a Σ-type of a dependent pair, such that its second component’s
type depends on the value of the first one. More specifically, the result of the existen-
tial quantification’s encoding in Coq is a dependent pair (Σx : A, P x), such that the
proposition in the second component is determined by the value of the first component x.
Coq provides an alternative way to encode iterated dependent pairs via the mechanism

of dependent records, also allowing one to give names to the subsequent components.
Dependent records are defined using the Record command. Getting back to our PCM
example, we illustrate the use of dependent records by the following definition of the
abstract PCM structure.
Record mixin of (T : Type) := Mixin {

valid op : T → bool;
join op : T → T → T ;
unit op : T ;
: commutative join op;
: associative join op;
: left id unit op join op;
: ∀ x y, valid op (join op x y) → valid op x ;
: valid op unit op

}.

mixin of is defined
mixin of rect is defined
mixin of ind is defined
mixin of rec is defined
valid op is defined
join op is defined
unit op is defined
The syntax of Coq’s dependent records is reminiscent to the one of records in C.

Following Ssreflect’s naming pattern [20], we call the record type (defined in a dedicated
module for the reasons explained further) mixin of and its only constructor Mixin. The
reasons for such naming convention will be explained soon, and for now let us discuss
the definition. The PCM record type is parametrized over the carrier type T, which
determines the carrier set of a PCM. It then lists three named fields: join op describes an
implementation of the PCM’s binary operation, unit op defines the unit element, finally,
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the valid op predicate determines whether a particular element of the carrier set T is
valid or not, and, thus, serves as a way to express the partiality of the join op operation
(the result is undefined, whenever the corresponding value of T is non-valid). Next, the
PCM record lists five unnamed PCM properties, which should be satisfied whenever the
record is instantiated and are defined using the standard propositions from Ssreflect’s
ssrfun module (see Section 6.4.1). In particular, the PCM type definition requires the
operation to be commutative and associative. It also states that if a • b 6= ⊥ then a 6= ⊥
(the same statement about b can be proved by commutativity), and that the unit element
is a valid one.
Notice that in the definition of the mixin of record type, the types of some of the later

fields (e.g., any of the properties) depend on the values of fields declared earlier (e.g.,
unit op and join op), which makes mixin of to be a truly dependent type.
Upon describing the record, a number of auxiliary definitions have been generated by

Coq automatically. Along with the usual recursion and induction principles, the system
also generated three getters, valid op, join op and unit op for the record’s named fields.
That is, similarly to Haskell’s syntax, given an instance of a PCM, one can extract, for
example, its operation, via the following getter function.
Check valid op.

valid op
: ∀ T : Type, mixin of T → T → bool

Coq supports the syntax for anonymous record fields (via the underscore ), so getters
for them are not generated. We have decided to make the property fields of mixin of to
be anonymous, since they will usually appear only in the proofs, where the structure is
going to be decomposed by case analysis anyway, as we will soon see.
We can now prove a number of facts about the structure, very much in the spirit of

the facts that are being proven in the algebra course. For instance, the following lemma
states that unit op is also the right unit, in addition to it being the left unit, as encoded
by the structure’s definition.
Lemma r unit T (pcm: mixin of T ) (t: T ) : (join op pcm t (unit op pcm)) = t.
Proof.
case: pcm⇒ join unit Hc Hlu /=.

T : Type
t : T
join : T → T → T
unit : T
Hc : commutative join
Hlu : left id unit join
============================
join t unit = t
The first line of the proof demonstrates that dependent records in Coq are actually just

product types in disguise, so the proofs about them should be done by case analysis. In
this particular case, we decompose the pcm argument of the lemma into its components,
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replacing those of no interest with wildcards . The join and unit, therefore, bind the
operation and the identity element, whereas Hc and Hlu are the commutativity and
left-unit properties, named explicitly in the scope of the proof. The trailing Ssreflect’s
simplification tactical /= replaces the calls to the getters in the goal (e.g., join op pcm)
by the bound identifiers. The proof can be now accomplished by a series of rewritings by
the Hc and Hlu hypotheses.
by rewrite Hc Hlu.
Qed.

7.1.2 An alternative definition
In the previous section we have seen how to define the algebraic structure of PCMs using
Coq’s dependent record mechanism. The same PCM structure could be alternatively
defined using the familiar syntax for inductive types, as a datatype with precisely one
constructor:
Inductive mixin of’ (T : Type) :=
Mixin’ (valid op: T → bool) (join op : T → T → T ) (unit op: T ) of
commutative join op &
associative join op &
left id unit op join op &
∀ x y, valid op (join op x y) → valid op x &
valid op unit op.

Although this definition seems more principled and is closer to what we have seen
in previous chapters, the record notation is more convenient in this case, as it defined
getters automatically as well as allows one to express inheritance between data structures
by means of the coercion operator :> operator [20].3

7.1.3 Packaging the structure from mixins

Section Packing.
By now, we have defined a structure of a PCM “interface” in a form of a set of the

components (i.e., the carrier set and operations on it) and their properties. However, it
might be the case that the same carrier set (which we represented by the type parameter
T ), should be given properties from other algebraic data structures (e.g., lattices), which
are essentially orthogonal to those of a PCM. Moreover, at some point one might be
interested in implementing the proper inheritance of the PCM structure with respect to
the carrier type T. More precisely, if the type T comes with some additional operations,
they should be available from it, even if it’s seen as being “wrapped” into the PCM
structure. That said, if T is proven to be a PCM, one should be able to use this fact as
well as the functions, defined on T separately.
These two problems, namely, (a) combining together several structures into one, and (b)

implementing inheritance and proper mix-in composition, can be done in Coq using the
description pattern, known as “packed classes” [20]. The idea of the approach is to define

3In the next section will show a different way to encode implicit inheritance, though.
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a “wrapper” record type, which would “pack” several mix-ins together, similar to how it
is done in object-oriented languages with implicit trait composition, e.g., Scala [47].4

Structure pack type : Type := Pack {type : Type; : mixin of type}.
The dependent data structure pack type declares two fields: the field type of type

Type, which described the carrier type of the PCM instance, and the actual PCM struc-
ture (without an explicit name given) of type (mixin of type). That is, in order to
construct an instance of pack type, one will have to provide both arguments: the carrier
set and a PCM structure for it.
Next, we specify that the field type of the pack type should be also considered as a

coercion, that is, whenever we have a value of type pack type, whose field type is some
T, it can be implicitly seen as an element of type T. The coercion is specified locally,
so it will work only in the scope of the current section (i.e., Packing) by using Coq’s
Local Coercion command. We address the reader to Chapter 18 of the Coq Reference
Manual [10] for more details of the implicit coercions.
Local Coercion type : pack type >-> Sortclass.
The >-> simply specifies the fact of the coercion, whereas Sortclass is an abstract

class of sorts, so the whole command postulates that whenever an instance of pack type
should be coerced into an element of an arbitrary sort, it should be done via referring to
is type field.
Next, in the same section, we provide a number of abbreviations to simplify the work

with the PCM packed structure and prepare it to be exported by clients.
Variable cT : pack type.
Definition pcm struct : mixin of cT :=

let: Pack c := cT return mixin of cT in c.
The function pcm struct extracts the PCM structure from the “packed” instance. No-

tice the use of dependent pattern matching in the let:-statement with the explicit return-
statement, so Coq would be able to refine the result of the whole expression basing on
the dependent type of the c component of the data structure cT, which is being scruti-
nized. With the help of this definition, we can now define three aliases for the PCM’s
key components, “lifted” to the packed data structure.
Definition valid := valid op pcm struct.
Definition join := join op pcm struct.
Definition unit := unit op pcm struct.
End Packing.
Now, as the packaging mechanism and the aliases are properly defined, we come to the

last step of the PCM package description: preparing the batch of definitions, notations
and facts to be exported to the client. Following the pattern of nesting modules, presented
in Section 2.6, we put all the entities to be exported into the inner module Exports.
Module Exports.
Notation pcm := pack type.

4Using this mechanism will, however, afford us a greater degree of flexibility, as it is up to the Coq
programmer to define the resolution policy of the combined record’s members, rather than to rely on
an implicit mechanism of field linearization.
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Notation PCMMixin := Mixin.
Notation PCM T m := (@Pack T m).
Notation "x \+ y" := (join x y) (at level 43, left associativity).
Notation valid := valid.
Notation Unit := unit.
We will have to define the coercion from the PCM structure with respect to its type

field once again, as the previous one was defined locally for the section Packing, and,
hence, is invisible in this submodule.
Coercion type : pack type >-> Sortclass.

7.2 Properties of partial commutative monoids
Before we close the Exports module of the PCMDef package, it makes sense to supply
as many properties to the clients, as it will be necessary for them to build the reasoning
involving PCMs. In the traditions of proper encapsulation, requiring to expose only the
relevant and as abstract as possible elements of the interface to its clients, it is undesirable
for users of the pcm datatype to perform any sort of analysis on the structure of the
mixin of datatype, as it will lead to rather tedious and cumbersome proofs, which will
first become a subject of massive changes, once we decide to change the implementation
of the PCM mixin structure.
This is why in this section we supply a number of properties of PCM elements and op-

erations, derived from its structure, which we observe to be enough to build the reasoning
with arbitrary PCM instances.
Section PCMLemmas.
Variable U : pcm.
For instance, the following lemma re-establishes the commutativity of the \+ operation:

Lemma joinC (x y : U ) : x \+ y = y \+ x.
Proof.
by case: U x y⇒ tp [v j z Cj *]; apply Cj.
Qed.
Notice that in order to make the proof to go through, we had to “push” the PCM

elements x and y to be the assumption of the goal before case-analysing on U. This is
due to the fact that the structure of U affects the type of x and y, therefore destructing
it by means of case would change the representation of x and y as well, doing some
rewriting and simplifications. Therefore, when U is being decomposed, all values, whose
type depends on it (i.e., x and y) should be in the scope of decomposition. The naming
pattern ∗ helped us to give automatic names to all remaining assumptions, appearing
from decomposition of U ’s second component before moving it to the context before
finishing the proof by applying the commutativity “field” Cj.
Lemma joinA (x y z : U ) : x \+ (y \+ z) = x \+ y \+ z.
Proof.
by case: U x y z⇒tp [v j z Cj Aj *]; apply: Aj.
Qed.
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Exercise 7.1 (PCM laws). Prove the rest of the PCM laws.
Lemma joinAC (x y z : U ) : x \+ y \+ z = x \+ z \+ y.
Lemma joinCA (x y z : U ) : x \+ (y \+ z) = y \+ (x \+ z).
Lemma validL (x y : U ) : valid (x \+ y) → valid x.
Lemma validR (x y : U ) : valid (x \+ y) → valid y.
Lemma unitL (x : U ) : (@Unit U ) \+ x = x.
Lemma unitR (x : U ) : x \+ (@Unit U ) = x.
Lemma valid unit : valid (@Unit U ).

End PCMLemmas.
End Exports.
End PCMDef.
Export PCMDef.Exports.

7.3 Implementing inheritance hierarchies
By packaging an arbitrary type T into one record with the PCM structure in Section 7.1.3
and supplying it with a specific implicit coercion, we have already achieved some degree of
inheritance: any element of a PCM can be also perceived by the system in an appropriate
context, as an element of its carrier type.
In this section, we will go even further and show how to build hierarchies of mathe-

matical structures using the same way of encoding inheritance. We will use a cancellative
PCM as a running example.
Module CancelPCM.
PCMs with cancellation extend ordinary PCMs with an extra property, that states

that the equality a • b = a • c for any a, b and c, whenever a • b is defined, implies
b = c. We express such property via an additional mixin record type, parametrized over
an arbitrary PCM U.
Record mixin of (U : pcm) := Mixin {

: ∀ a b c: U, valid (a \+ b) → a \+ b = a \+ c → b = c
}.
Notice that the validity of the sum a \+ c is not imposed, as it can be proven from

propositional equality and the validity of a \+ b.
We continue the definition by describing the standard packaging data structure.

Structure pack type : Type := Pack {pcmT : pcm; : mixin of pcmT}.
Module Exports.
Notation cancel pcm := pack type.
Notation CancelPCMMixin := Mixin.
Notation CancelPCM T m:= (@Pack T m).
There is a tiny twist in the definition of the specific coercion, though, as now we it

specifies that the instance of the packed data structure, describing the cancellative PCM,
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can be seen as an instance of the underlying PCM. The coercions are transitive, which
means that the same instance can be coerced even further to U ’s carrier type T.
Coercion pcmT : pack type >-> pcm.
We finish the definition of the cancellative PCM by providing its only important law,

which is a direct consequence of the newly added property.
Lemma cancel (U : cancel pcm) (x y z : U ):
valid (x \+ y) → x \+ y = x \+ z → y = z.

Proof.
by case: U x y z⇒Up [Hc] x y z ; apply: Hc.
Qed.
End Exports.
End CancelPCM.
Export CancelPCM.Exports.
The proof of the following lemma, combining commutativity and cancellativity, demon-

strates how the properties of a cancellative PCM work in combination with the properties
of its base PCM structure.
Lemma cancelC (U : cancel pcm) (x y z : U ) :
valid (y \+ x \+ z) → y \+ x = x \+ z → y = z.

Proof.
by move/validL; rewrite ![y \+ ]joinC ; apply: cancel.
Qed.

7.4 Instantiation and canonical structures
Now, as we have defined a PCM structure along with its specialized version, a cancella-
tive PCM, it is time to see how to instantiate these abstract definitions with concrete
datatypes, i.e., prove the latter ones to be instances of a PCM.

7.4.1 Defining arbitrary PCM instances
Natural numbers form a PCM, in particular, with addition as a join operation and zero
as a unit element. The validity predicate is constant true, because the addition of two
natural numbers is again a valid natural number. Therefore, we can instantiate the PCM
structure for nat as follows, first by constructing the appropriate mixin.
Definition natPCMMixin :=
PCMMixin addnC addnA add0n (fun x y ⇒ @id true) (erefl ).
The constructor PCMMixin, defined in Section 7.1.3 is invoked with five parameters,

all of which correspond to the properties, ensured by the PCM definition. The rest of
the arguments, namely, the validity predicate, the join operation and the zero element
are implicit and are soundly inferred by Coq’s type inference engine from the types of
lemmas, provided as propositional arguments. For instance, the first argument addnC,
whose type is commutative addn makes it possible to infer that the join operation is the
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addition. In the same spirit, the third argument, add0n makes it unambiguous that the
unit element is zero.
After defining the PCM mixin, we can instantiate the PCM packed class for nat by

the following definition:
Definition NatPCM := PCM nat natPCMMixin.
This definition will indeed work, although, being somewhat unsatisfactory. For ex-

ample, assume we want to prove the following lemma for natural numbers treated as
elements of a PCM, which should trivially follow from the PCM properties of nat with
addition and zero:

Lemma add perm (a b c : nat) : a \+ (b \+ c) = a \+ (c \+ b).

The term "a" has type "nat" while it is expected to have type "PCMDef.type ?135".
This error is due to the fact that Coq is unable to recognize natural numbers to be

elements of the corresponding PCM, and one possible way to fix it is to declare the
parameters of the lemma add perm, a, b and c to be of type NatPCM rather than nat.
This is still awkward: it means that the lemmas cannot be just applied to mere natural
numbers, instead they need to be coerced to the NatPCM type explicitly whenever we
need to apply this lemma. Coq suggests a better solution to this problem by providing a
mechanism of canonical structures as a flexible way to specify how exactly each concrete
datatype should be embedded into an abstract mathematical structure [57].
The Vernacular syntax for defining canonical structures is similar to the one of def-

initions and makes use of the Canonical command.5 The following definition defines
natPCM to be a canonical instance of the PCM structure for natural numbers.
Canonical natPCM := PCM nat natPCMMixin.
To see what kind of effect it takes, we will print all canonical projections, currently

available in the context of the module.
Print Canonical Projections.

...
nat ← PCMDef.type ( natPCM )
pred of mem ← topred ( memPredType )
pred of simpl ← topred ( simplPredType )
sig ← sub sort ( sig subType )
number ← sub sort ( number subType )
...
The displayed list enumerates all canonical projections that specify, which implicit

canonical instances are currently available and will be picked implicitly for appropriate
types (on the left of the arrow ←). That is, for example, whenever an instance of nat is
available, but in fact it should be treated as the type field of the PCM structure (with all
getters typed properly), the canonical instance natPCM will be automatically picked by

5The command Canonical Structure serves the same purpose.
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Coq for such embedding. In other words, the machinery of canonical structures allows us
to define the policy for finding an appropriate dictionary of functions and propositions
for an arbitrary concrete datatype, whenever it is supposed to have them. In fact, upon
declaring the canonical structure natPCM, the canonical projections are registered by Coq
for all named fields of the record PCM, which is precisely just the type field, since PCM’s
second component of type (mixin of type) was left unnamed (see the definition of the
record pack type on page 102).
The mechanism of defining canonical structures for concrete data types is reminiscent

of the resolution of type class constraints in Haskell [64]. However, unlike Haskell, where
the resolution algorithm for type class instances is hard-coded, in the case of Coq one
can actually program the way the canonical instances are resolved.6 This leads to a
very powerful technique to automate the process of theorem proving by encoding the
way to find and apply necessary lemmas, whenever it is required. These techniques
are, however, outside of the scope of this course, so we direct the interested reader to
the relevant research papers that describe the patterns of programming with canonical
structures [19, 25, 37].
Similarly to the way we have defined a canonical instance of PCM for nat, we can

define a canonical instance of a PCM with cancellativity. In order to instantiate it, we
will, however, need to prove the following lemma, which states that the addition on
natural numbers is indeed cancellative, so this fact will be used as an argument for the
CancelPCMMixin constructor.
Lemma cancelNat : ∀ a b c: nat, true → a + b = a + c → b = c.
Proof.
move⇒ a b c; elim: a=>// n /( is true true) Hn H.
by apply: Hn; rewrite !addSn in H ; move/eq add S : H.
Qed.
Notice the first assumption true of the lemma. Here it serves as a placeholder for the

general validity hypothesis valid (a \+ b), which is always true in the case of natural
numbers.
Definition cancelNatPCMMixin := CancelPCMMixin cancelNat.
Canonical cancelNatPCM := CancelPCM natPCM cancelNatPCMMixin.
Let us now see the canonical instances in action, so we can prove a number of lemmas

about natural numbers employing the general PCM machinery.
Section PCMExamples.

Variables a b c: nat.
Goal a \+ (b \+ c) = c \+ (b \+ a).
by rewrite joinA [c \+ ]joinC [b \+ ]joinC.
Qed.
The next goal is proved by using the combined machinery of PCM and CancelPCM.

Goal c \+ a = a \+ b → c = b.
6In addition to canonical structures, Coq also provides mechanism of type classes, which are even more
reminiscent of the ones from Haskell, and, similar to the latter ones, do not provide a way to program
the resolution policy [59].
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by rewrite [c \+ ]joinC ; apply: cancel.
Qed.
It might look a bit cumbersome, though, to write the PCM join operation \+ instead

of the boolean addition when specifying the facts about natural numbers (even though
they are treated as elements of the appropriate PCM). Unfortunately, it is not trivial to
encode the mechanism, which will perform such conversion implicitly. Even though Coq
is capable of figuring out what PCM is necessary for a particular type (if the necessary
canonical instance is defined), e.g., when seeing (a b : nat) being used, it infers the
natPCM, alas, it’s not powerful enough to infer that by writing the addition function +
on natural numbers, we mean the PCM’s join. However, if necessary, in most of the
cases the conversion like this can be done by manual rewriting using the following trivial
“conversion” lemma.
Lemma addn join (x y: nat): x + y = x \+ y.
Proof. by []. Qed.
End PCMExamples.

Exercise 7.2 (Partially ordered sets). A partially ordered set order is a pair (T,v), such
that T is a set and v is a (propositional) relation on T , such that

1. ∀x ∈ T, x v x (reflexivity);

2. ∀x, y ∈ T, x v y ∧ y v x =⇒ x = y (antisymmetry);

3. ∀x, y, z ∈ T, x v y ∧ y v z =⇒ x v z (transitivity).

Implement a data structure for partially-ordered sets using mixins and packed classes.
Prove the following laws:

Lemma poset refl (x : T ) : x v x.
Lemma poset asym (x y : T ) : x v y → y v x → x = y.
Lemma poset trans (y x z : T ) : x v y → y v z → x v z.

Exercise 7.3 (Canonical instances of partially ordered sets). Provide canonical instances
of partially ordered sets for the following types:

• nat with ≤ as a partial order;

• prod, whose components are partially-ordered sets;

• functions A → B, whose codomain (range) B is a partially ordered set.

In order to provide a canonical instance for functions, you will need to assume and
make use of the following axiom of functional extensionality:
Axiom fext : ∀ A (B : A → Type) (f1 f2 : ∀ x, B x),

(∀ x, f1 x = f2 x) → f1 = f2.
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7.4.2 Types with decidable equalities
When working with Ssreflect and its libraries, one will always come across multiple canon-
ical instances of a particularly important dependent record type—a structure with de-
cidable equality. As it has been already demonstrated in Section 5.3.2, for concrete
datatypes, which enjoy the decidable boolean equality (==), the “switch” to Coq’s propo-
sitional equality and back can be done seamlessly by means of using the view lemma eqP,
leveraging the reflect predicate instance of the form reflect (b1 = b2 ) (b1 == b2 ). Let
us now show how the decidable equality is defined and instantiated.
The module eqtype of Ssreflect’s standard library provides a definition of the equality

mixin and packaged class of the familiar shape, which, after some simplifications, boil to
the following ones:

Module Equality.

Definition axiom T (e : rel T ) := ∀ x y, reflect (x = y) (e x y).

Structure mixin of T := Mixin {op : rel T ; : axiom op}.
Structure type := Pack {sort; : mixin of sort}.

...

Notation EqMixin := Mixin.
Notation EqType T m := Pack T m.

End Equality.
That is, the mixin for equality is a dependent record, whose first field is a relation

op on a particular carrier type T (defined internally as a function T × T → bool),
and the second argument is a proof of the definition axiom, which postulates that the
relation is in fact equivalent to propositional equality (which is established by means of
inhabiting the reflect predicate instance). Therefore, in order to make a relation op to
be a decidable equality on T, one needs to prove that, in fact, it is equivalent to the
standard, propositional equality.
Subsequently, Ssreflect libraries deliver the canonical instances of the decidable equality

structure to all commonly used concrete datatypes. For example, the decidable equal-
ity for natural numbers is implemented in the ssrnat module by the following recursive
function:7

Fixpoint eqn m n {struct m} :=
match m, n with
| 0, 0 ⇒ true
| m’.+1, n’.+1 ⇒ eqn m’ n’
| , ⇒ false

7Coq’s {struct n} annotation explicitly specifies, which of the two arguments should be considered by
the system as a decreasing one, so the recursion would be well-founded and eqn would terminate.
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end.
The following lemma ensures that eqn correctly reflects the propositional equality.

Lemma eqnP : Equality.axiom eqn.
Proof.
move⇒ n m; apply: (iffP idP) ⇒ [ | ← ]; last by elim n.
by elim: n m ⇒ [ | n IHn] [| m ] //= /IHn →.
Qed.
Finally, the following two definitions establish the canonical instance of the decidable
equality for nat, which can be used whenever ssrnat is imported.

Canonical nat eqMixin := EqMixin eqnP.
Canonical nat eqType := EqType nat nat eqMixin.



8 Case Study: Program Verification in
Hoare Type Theory

In this chapter, we will consider a fairly large case study that makes use of most of Coq’s
features as a programming language with dependent types and as a framework to build
proofs and reason about mathematical theories.
Programming language practitioners usually elaborate on the dichotomy between declar-

ative and imperative languages, emphasizing the fact that a program written in a declar-
ative language is pretty much documenting itself, as it already specifies the result of a
computation. Therefore, logic and constraint programming languages (such as Prolog [36]
or Ciao [28]) as well as data definition/manipulation languages (e.g., SQL), whose pro-
grams are just sets of constraints/logical clauses or queries describing the desired result,
are naturally considered to be declarative. Very often, pure functional programming
languages (e.g., Haskell) are considered as declarative as well. The reason for this is
the referential transparency property, which ensures that programs in such languages are
in fact effect-free expressions, evaluating to some result (similar to mathematical func-
tions) or diverging. Therefore, such programs, whose outcome is only a value, but not
some side effect (e.g., output to a file), can be replaced safely by their result, if it is
computable. This possibility provides a convenient way of reasoning algebraically about
such programs by means of equality rewritings—precisely what we were observing and
leveraging in Chapters 4 and 6 of this course in the context of Coq taken as a functional
programming language.
That said, pure functional programs tend to be considered to be good specifications for

themselves. Of course, the term “specification” (or simply, “spec”) is overloaded and in
some context it might mean the result of the program, its effect or some of the program’s
algebraic properties. While a functional program is already a good description of its result
(due to referential transparency), its algebraic properties (e.g., some equalities that hold
over it) are usually a subject of separate statements, which should be proved [4]. Good
examples of such properties are the commutativity and cancellation properties, which we
proved for natural numbers with addition, considered as an instance of PCM on page 107
of Chapter 7. Another classical series of examples, which we did not focus on in this
course, are properties of list functions, such as appending and reversal (e.g., that the list
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reversal is an inverse to itself).1
The situation is different when it comes to imperative programs, whose outcome is typ-

ically their side-effect and is achieved by means of manipulating mutable state, throwing
an exception or performing input/output. While some of the modern programming lan-
guages (e.g., Scala, OCaml) allow one to mix imperative and declarative programming
styles, it is significantly harder to reason about such programs, as now they cannot be
simply replaced by their results: one should also take into account the effect of their
execution (i.e., changes in the mutable state). A very distinct approach to incorporat-
ing both imperative and declarative programming is taken by Haskell, in which effectful
programs can always be distinguished from pure ones by means of enforcing the former
ones to have very specific types [49]—the idea we will elaborate more on a bit further.
In the following sections of this chapter, we will learn how Coq can be used to give

specifications to imperative programs, written in a domain-specific language, similar to C,
but in fact being a subset of Coq itself. Moreover, we will observe how the familiar proof
construction machinery can be used to establish the correctness of these specifications,
therefore, providing a way to verify a program by means of checking, whether it satisfies a
given spec. In particular, we will learn how the effects of state-manipulating programs can
be specified via dependent types, and the specifications of separate effectful programs can
be composed, therefore allowing us to structure the reasoning in a modular way, similarly
to mathematics, where one needs to prove a theorem only once and then can just rely on
its statement, so it can be employed in the proofs of other facts.

8.1 Imperative programs and their specifications
The first attempts to specify the behaviour of state-manipulating imperative programs
with assignments originated in late ’60s and are due to Tony Hoare and Robert Floyd [18,
29], who considered programs in a simple imperative language with mutable variables (but
without pointers or procedures) and suggested to give a specification to a program c in the
form of a triple {P} c {Q}, where P and Q are logical propositions, describing the values of
the mutable variables and possible relations between them. P and Q are usually referred
to as assertions; more specifically, P is called precondition of c (or just “pre”), whereas Q
is called postcondition (or simply “post”). The triple {P} c {Q} is traditionally referred
to as Hoare triple.2 Its intuitive semantics can be expressed as follows: “if right before
the program c is executed the state of mutable variables is described by the proposition
P , then, if c terminates, the resulting state satisfies the proposition Q”.

1A common anti-pattern in dependently-typed languages and Coq in particular is to encode such alge-
braic properties into the definitions of the datatypes and functions themselves (a canonical example
of such approach are length-indexed lists). While this approach looks appealing, as it demonstrates
the power of dependent types to capture certain properties of datatypes and functions on them, it
is inherently non-scalable, as there will be always another property of interest, which has not been
foreseen by a designer of the datatype/function, so it will have to be encoded as an external fact
anyway. This is why we advocate the approach, in which datatypes and functions are defined as close
to the way they would be defined by a programmer as possible, and all necessary properties of them
are proved separately.

2The initial syntax for the triples used by Hoare was P {c} Q. The notation {P} c {Q}, which is used
now consistently, is due to Niklaus Wirth and emphasizes the comment-like nature of the assertions
in the syntax reminiscent to the one of Pascal.
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The reservation on termination of the program c is important. In fact, while the Hoare
triples in their simple form make sense only for terminating programs, it is possible to
specify non-terminating programs as well. This is due to the fact that the semantics of
a Hoare triple implies that a non-terminating program can be given any postcondition,
as one won’t be able to check it anyway, because the program will never reach the final
state.3 Such interpretation of a Hoare triple “modulo termination” is referred to as partial
correctness, and in this chapter we will focus on it. It is possible to give to a Hoare
triple {P} c {Q} a different interpretation, which would deliver a stronger property: “if
right before the program c is executed the state of mutable variables is described by
a proposition P , then c terminates and the resulting state satisfies the proposition Q”.
Such property is called total correctness and requires tracking some sort of “fuel” for the
program in the assertions, so it could run further. We do not consider total correctness
in this course and instead refer the reader to the relevant research results on Hoare-style
specifications with resource bounds [16].

8.1.1 Specifying and verifying programs in a Hoare logic
The original Hoare logic worked over a very simplistic imperative language with loops,
conditional operators and assignments. This is how one can specify a program, which
just assigns 3 to a specific variable named x:

{true} x := 3 {x = 3}

That is, the program’s precondition doesn’t make any specific assumptions, which is
expressed by the proposition true; the postcondition ensures that the value of a mutable
variable x is equal to three.
The formalism, which allows us to validate particular Hoare triples for specific programs

is called program logic (or, equivalently, Hoare logic).
Intuitively, logic in general is a formal system, which consists of axioms (propositions,

whose inhabitance is postulated) and inference rules, which allow one to construct proofs
of larger propositions out of proofs of small ones. This is very much of the spirit of
Chapter 3, where we were focusing on a particular formalism—propositional logic. Its
inference rules were encoded by means of Coq’s datatype constructors. For instance, in
order to construct a proof of conjunction (i.e., inhabit a proposition of type A ∧ B), one
should have provided a proof of a proposition A and a proposition B and then apply the
only conjunction’s constructor conj, as described in Section 3.4. The logicians, however,
prefer to write inference rules as “something with a bar”, rather than as constructors.
Therefore, an inference rule for conjunction introduction in the constructive logic looks
as follows:

A B

A ∧B
(∧-Intro)

3This intuition is consistent with the one, enforced by Coq’s termination checker, which allows only
terminating programs to be written, since non-terminating program can be given any type and
therefore compromise the consistency of the whole underlying logical framework of CIC.
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That is, the rule (∧-Intro) is just a paraphrase of the conj constructor, which speci-
fies how an instance of conjunction can be created. Similarly, the disjunction or has two
inference rules, for each of its constructors. The elimination rules are converses of the
introduction rules and formalize the intuition behind the case analysis. An alternative
example of an inference rule for a proposition encoded by means of Coq’s datatype con-
structor is the definition of the predicate for beautiful numbers beautiful from Section 6.3.
There, the constructor b sum serves as an inference rule that, given the proofs that n’ is
beautiful and m’ is beautiful, constructs the proof of the fact that their sum is beautiful.4
Hoare logic also suggests a number of axioms and inference rules that specify which

Hoare triple can in fact be inferred. We postpone the description of their encoding by
means of Coq’s datatypes till Section 8.4 of this chapter and so far demonstrate some of
them in the logical notation “with a bar”. For example, the Hoare triple for a variable
assignment is formed by the following rule:

{Q[e/x]} x := e {Q} (Assign)

The rule (Assign) is in fact an axiom (since it does not assume anything, i.e., does not
take any arguments), which states that if a proposition Q is valid after substituting all
occurrences of x in it with e (which is denoted by [e/x]), then it is a valid postcondition
for the assignment x := e.
The inference rule for sequential composition is actually a constructor, which takes the

proofs of Hoare triples for c1 and c2 and then delivers a composed program c1; c2 as well
as the proof for the corresponding Hoare triple, ensuring that the postcondition of c1
matches the precondition of c2.

{P} c1 {R} {R} c2 {Q}
{P} c1; c2 {Q}

(Seq)

The rule (Seq) is in fact too “tight”, as it requires the two composed program agree
exactly on their post-/preconditions. In order to relax this restriction, on can use the rule
of consequence, which makes it possible to strengthen the precondition and weaken the
postcondition of a program. Intuitively, such rule is adequate, since the program that is
fine to be run in a precondition P ′, can be equivalently run in a stronger precondition P
(i.e., the one that implies P ′). Conversely, if the program terminates in a postcondition
Q′, it would not hurt to weaken this postcondition to Q, such that Q′ implies Q.

P =⇒ P ′ {P ′} c {Q′} Q′ =⇒ Q

{P} c {Q}
(Conseq)

4Actually, some courses on Coq introduce datatype constructors exactly from this perspective—as a
programming counterpart of the introduction rules for particular kinds of logical propositions [53].
We came to the same analogy by starting from an opposite side and exploring the datatypes in the
programming perspective first.
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With this respect, we can make the analogy between Hoare triples and function types
of the form A → B, such that the rule of consequence of a Hoare triple corresponds to
subtyping of function types, where the precondition P is analogous to an argument type
A and the postcondition Q is analogous to a result type B. Similarly to the functions with
subtyping, Hoare triples are covariant with respect to consequence in their postcondition
and contravariant in the precondition [52, Chapter 15]. This is the reason why, when
establishing a specification, one should strive to infer the weakest precondition and the
strongest postcondition to get the tightest possible (i.e., the most precise) spec, which can
be later weakened using the (Conseq) rule.
The observed similarity between functions and commands in a Hoare logic should serve

as an indicator that, perhaps, it would be a good idea to implement the Hoare logic in a
form of a type system. Getting a bit ahead of ourselves, this is exactly what is going to
happen soon in this chapter (as the title of the chapter suggests).
At this point, we can already see a simple paper-and-pencil proof of a program that

manipulates mutable variables. In the Hoare logic tradition, since most of the programs
are typically compositions of small programs, the proofs of specifications are written
to follow the structure of the program, so the first assertion corresponds to the overall
precondition, the last one is the overall postcondition, and the intermediate assertions
correspond to R from the rule (Seq) modulo weakening via the rule of consequence
(Conseq). Let us prove the following Hoare-style specification for a program that swaps
the values of two variables x and y.

{x = a ∧ y = b} t := x; x := y; y := t {x = b ∧ y = a}

The variables a and b are called logical and are used in order to name unspecified
values, which are a subject of manipulation in the program, and their identity should be
preserved. The logical variables are implicitly universally quantified over in the scope of
the whole Hoare triple they appear, but usually the quantifiers are omitted, so, in fact,
the specification above should have been read as follows.

∀ a b, {x = a ∧ y = b} t := x; x := y; y := t {x = b ∧ y = a}

This universal quantification should give some hints that converting Hoare triples into
types will, presumably, require to make some use of dependent types in order to express
value-polymorphism, similarly to how the universal quantification has been previously
used in Coq. Let us see a proof sketch of the above stated specification with explanations
of the rules applied after each assertion.

{x = a ∧ y = b} The precondition
t := x;

{x = a ∧ y = b ∧ t = a} by (Assign) and equality
x := y;

{x = b ∧ y = b ∧ t = a} by (Assign) and equality
y := t

{x = b ∧ y = a} by (Assign) equality and weakening via (Conseq)

The list of program constructs and inference rules for them would be incomplete without
conditional operators and loops.
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{P ∧ e} c1 {Q} {P ∧ ¬e} c2 {Q}
{P} if e then c1 else c2 {Q}

(Cond)

{I ∧ e} c {I}
{I} while e do c {I ∧ ¬e}

(While)

The inference rule for a conditional statement should be intuitively clear and reminds
of a typing rule for conditional expressions in Haskell or OCaml, which requires both
branches of the statement to have the same type (and here, equivalently, to satisfy the
same postcondition). The rule (While) for the loops is more interesting, as it makes use
of the proposition I, which is called loop invariant. Whenever the body of the cycle is
entered, the invariant should hold (as well as the condition e, since the iteration has just
started). Upon finishing, the body c should restore the invariant, so the next iteration
would start in a consistent state again. Generally, it takes a human prover’s intuition to
come up with a non-trivial resource invariant for a loop, so it can be used in the rest of the
program. Inference of the best loop invariant is an undecidable problem in general and it
has a deep relation to type inference with polymorphically-recursive functions [27]. This
should not be very surprising, since every loop can be encoded as a recursive function,
and, since, as we have already started guessing, Hoare triples are reminiscent of types,
automatic inferring of loop invariants would correspond to type inference for recursive
functions. In the subsequent sections we will see examples of looping/recursive programs
with loop invariants and exercise in establishing some of them.

8.1.2 Adequacy of a Hoare logic
The original Hoare logic is often referred to as axiomatic semantics of imperative pro-
grams. This term is only partially accurate, as it implies that the Hoare triples describe
precisely what is the program and how it behaves. Even though Hoare logic can be seen
as a program semantics as a way to describe the program’s behaviour, it is usually not
the only semantics, which imperative programs are given. In particular, it does not say
how a program should be executed—a question answered by operational semantics [67,
Chapter 2]. Rather, Hoare logic allows one to make statements about the effect the pro-
gram takes to the mutable state, and, what is more important, construct finite proofs
of these statements. With this respect, Hoare logic serves the same purpose as type
systems in many programming languages—determine statically (i.e., without executing
the program), whether the program is well-behaved or not. In other words, it serves as
an “approximation” of another, more low-level semantics of a program. This intuition is
also implied by the very definition of a hoare triple on page 112, which relies to the fact
that a program can be executed.
That said, in order to use a Hoare logic for specifying and verifying a program’s be-

haviour, a soundness result should be first established. In the case of a program logic,
soundness means the logic rules allow one to infer only those statements that do not
contradict the definition of a Hoare triple (page 112). This result can be proven in many
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different ways, and the nature of the proof usually depends on the underlying opera-
tional/denotational semantics, which is typically not questioned, being self-obvious, and
defines precisely what does it mean for a program to be executed. Traditional ways of
proving soundness of a program logic are reminiscent to the approaches for establishing
soundness of type systems [52, 68]. Of course, all program logics discussed in this chapter
have been proven to be sound with respect to some reasonable operational/denotational
semantics.

8.2 Basics of Separation Logic
The original Hoare logic has many limitations. It works only with mutable variables
and does not admit procedures or first-order code. But its most severe shortcoming
becomes evident when it comes to specifying programs that manipulate pointers, i.e., the
most interesting imperative cases of imperative code. In the presence of pointers and a
heap, mutable variables become somewhat redundant, so for now by local variables we
will be assuming immutable, once-assigned variables, akin to those bound by the let-
expression. Such variables can, of course, have pointers as their values. Let us first enrich
the imperative programming language of interest to account for the presence of heap and
pointers. We will be using the syntax x ::= e to denote the assignment of a value e
to the pointer bound by x. Similarly, the syntax !e stands for dereferencing a pointer,
whose address is a value obtained by evaluating a pure expression e. We will assume that
every program returns a value as a result (and the result of a pointer assignment is of
type unit). To account for this, we will be using the syntax x <- c1; c2 (pronounced
“bind”) as a generalization of the sequential composition from Section 8.1.1. The bind
first executes the program c1, then binds this result to an immutable variable x and
proceeds to the execution of the program c2, which can possibly make use of the variable
x, so all the occurrences of x in it are replaced by its value before it starts evaluating. If
the result of c1 is not used by c2, we will use the abbreviation c1 ;; c2 to denote this
specific case. Specifications in the simple Hoare logic demonstrated in Section 8.1.1 are
stated over mutable local variables, which are implicitly supposed to be all distinct, as
they have distinct “abstract” names. In a language with a heap and pointers, the state
is no longer a set of mutable variables, but the heap itself, which can be thought of as a
partial map from natural numbers to arbitrary values. In a program, operating with a
heap, two pointer variables, x and y can in fact be aliases, i.e., refer to the same memory
entry, and, therefore, changing a value of a pointer, referenced by x will affect the value,
pointed to by y. Aliasing is an aspect that renders reasoning in the standard Hoare logic
tedious and unbearable. To illustrate the problem, let us consider the following program,
which runs in the assumption that the heap, which is being available to the program, has
only two entries with addresses, referred to by local variables x and y correspondingly,
so the specification states it by means of the “points-to” assertions x 7→ −, where x is
assumed to be a pointer value.

{x 7→ − ∧ y 7→ Y } x ::= 5 {x 7→ 5 ∧ y 7→ Y }

The logical variable Y is of importance, as it is used to state that the value of the
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pointer y remains unchanged after the program has terminated.5 Alas, this specification
is not correct, as the conjunction of the two does not distinguish between the case when
x and y are the same pointer and when they are not, which is precisely the aliasing
problem. It is not difficult to fix the specification for this particular example by adding a
conditional statement (or, equivalently, a disjunction) into the postcondition that would
describe two different outcomes of the execution with respect to the value of y, depending
on the fact whether x and y are aliases or not. However, if a program manipulates with
a large number of pointers, or, even worse, with an array (which is obviously just a
sequential batch of pointers), things will soon go wild, and the conditionals with respect
to equality or non-equality of certain pointers will pollute all the specifications, rendering
them unreadable and eventually useless. This was precisely the reason, why after being
discovered in late ’60s and investigated for a decade, Hoare-style logics were soon almost
dismissed as a specification and verification method, due to the immense complexity of the
reasoning process and overwhelming proof obligations. The situation has changed when in
2002 John C. Reynolds, Peter O’Hearn, Samin Ishtiaq and Hongseok Yang suggested an
alternative way to state Hoare-style assertions about heap-manipulating programs with
pointers [55]. The key idea was to make explicit the fact of disjointness (or, separation)
between different parts of a heap in the pre- and postconditions. This insight made it
possible to reason about disjointness of heaps and absence of aliasing without the need to
emit side conditions about equality of pointers. The resulting formal system received the
name separation logic, and below we consider a number of examples to specify and verify
programs in it. For instance, the program, shown above, which assigns 5 to a pointer x
can now be given the following specification in the separation logic:

{h | h = x 7→ − • y 7→ Y } x ::= 5 {res, h | h = x 7→ 5 • y 7→ Y }

We emphasize the fact that the heaps, being just partial maps from natural numbers
to arbitrary values, are elements of a PCM (Section 7.1) with the operation • taken to be
a disjoint union and the unit element to be an empty heap (denoted empty). The above
assertions therefore ensure that, before the program starts, it operates in a heap h, such
that h is a partial map, consisting of two different pointers, x and y, such that y points
to some universally-quantified value Y , and the content of x is of no importance (which
is denoted by -). The postcondition makes it explicit that only the value of the pointer
x has changed, and the value of y remained the same. The postcondition also mentions
the result res of the whole operations, which is, however, not constrained anyhow, since,
as it has been stated, it is just a value of type unit.6

5We will abuse the terminology and refer to the values and immutable local variables uniformly, as,
unlike the setting of Section 8.1, the latter ones are assumed to be substituted by the former ones
during the evaluation anyway.

6The classical formulation of Separation Logic [55] introduces the logical connective ∗, dubbed separating
conjunction, which allows to describe the split of a heap h into two disjoint parts without mentioning
h explicitly. That is, the assertion P ∗ Q holds for a heap h, if there exist heaps h1 and h2, such that
h = h1 • h2, P is satisfied by h1 and Q is satisfied by h2. We will stick to the “explicit” notation,
though, as it allows for greater flexibility when stating the assertions, mixing both heaps and values.
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8.2.1 Selected rules of Separation Logic
Let us now revise some of the rules of Hoare logic and see how they will look in separation
logic. The rules, stated over the heap, are typically given in the small footprint, meaning
that they are stated with the smallest possible heap and assume that the “rest” of the
heap, which is unaffected by the program specified, can be safely assumed. The rules for
assigning and reading the pointers are natural.

{h | h = x 7→ −} x ::= e {res, h | h = x 7→ e ∧ res = tt} (Write)

{h | h = x 7→ v} !x {res, h | h = x 7→ v ∧ res = v} (Read)

Notice, though, that, unlike the original Hoare logic for mutable variables, the rule
for writing explicitly requires the pointer x to be present in the heap. In other words,
the corresponding memory cell should be already allocated. This is why the traditional
separation logic assumes presence of an allocator, which can allocate new memory cells
and dispose them via the effectful functions alloc() and dealloc(), correspondingly.

{h | h = h′} alloc(v) {res, h | h = res 7→ v • h′} (Alloc)

{h | h = x 7→ − • h′} dealloc(x) {res, h | h = h′} (Dealloc)

For the sake of demonstration, the rules for alloc() and dealloc() are given in a
large footprint that, in contrast with small footprint-like specifications, mentions the
“additional” heap h′ in the pre- and post-conditions, which can be arbitrarily instan-
tiated, emphasizing that it remains unchanged (recall that h′ is implicitly universally-
quantified over, and its scope is the whole triple), so the resulting heap is just being
“increased”/“decreased” by a memory entry that has been allocated/deallocated.7 The
rule for binding is similar to the rule for sequential composition of programs c1 and c2
from the standard Hoare logic, although it specifies that the immutable variables can be
substituted in c2.

{h | P (h)} c1 {res, h | Q(res, h)} {h | Q(x, h)} c2 {res, h | R(res, h)}
{h | P (h)} x← c1; c2 {res, h | R(res, h)}

(Bind)

The predicates P , Q and R in the rule (Bind) are considered to be functions of the
heap and result, correspondingly. This is why for the second program, c2, the predicate
Q in a precondition is instantiated with x, which can occur as a free variable in c2. The
rule of weakening (Conseq) is similar to the one from Hoare logic modulo the technical
details on how to weaken heap/result parametrized functions, so we omit it here as an
intuitive one. The rule for conditional operator is the same one as in Section 8.1.1, and,
hence, is omitted as well. In order to support procedures in separation logic, we need to
consider two additional rules—for function invocation and returning a value.

7The classical separation logic provides a so-called frame rule, which allows for the switch between the
two flavours of footprint by attaching/removing the additional heap h′. In our reasoning we will be
assuming it implicitly.
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{h | P (h)} ret e {res, h | P (h) ∧ res = e} (Return)

∀x, {h | P (x, h)} f(x) {res, h | Q(x, res, h)} ∈ Γ
Γ ` ∀x, {h | P (x, h)} f(x) {res, h | Q(x, res, h)}

(Hyp)

Γ ` ∀x, {h | P (x, h)} f(x) {res, h | Q(x, res, h)}
Γ ` {h | P (e, h)} f(e) {res, h | Q(e, res, h)}

(App)

The rule for returning simply constraints the dedicated variable res to be equal to
the expression e. The rule (Hyp) (for “hypothesis”) introduces the assumption context
Γ that contains specifications of available “library” functions (bearing the reminiscence
with the typing context in typing relations [52, Chapter 9]) and until now was assumed
to be empty. Notice that, similarly to dependently-typed functions, in the rule (Hyp)
the pre- and postcondition in the spec of the assumed function can depend on the value
of its argument x. The rule (App) accounts for the function application and instantiates
all occurrences of x with the argument expression e. Finally, sometimes we might be able
to infer two different specifications about the same program. In this case we should be
able to combine them into one, which is stronger, and this is what the rule of conjunction
(Conj) serves for:

{h | P (h)} c {res, h | Q1(res, h)} {h | P (h)} c {res, h | Q2(res, h)}
{h | P (h)} c {res, h | Q1(res, h) ∧Q2(res, h)}

(Conj)

8.2.2 Representing loops as recursive functions
It is well-known in a programming language folklore that every imperative loop can be
rewritten as a function, which is tail-recursive, i.e., it performs the call of itself only as
the very last statement in some possible execution branches and doesn’t call itself at
all in all other branches. Therefore, recursive functions in general are a more expressive
mechanism, as they also allow one to write non-tail recursive programs, in which recursive
calls occur in any position.8 Therefore, an imperative program of the form

while (e) do c

can be rewritten using a recursive function, defined via the in-place fixpoint operator as

(fix f (x : bool). if x then c;; f(e’) else ret tt)(e)

That is, the function f is defined with an argument of the bool type and is immediately
invoked. If the condition argument x is satisfied, the body c is executed and the function
calls itself recursively with a new argument e′; otherwise the function just returns a unit

8Although, such programs can be made tail-recursive via the continuation-passing style transformation
(CPS) [15]. They can be also converted into imperative loops via the subsequent transformation,
known as defunctionalization [54].
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result. For the first time, the function is invoked with some initial argument e. Given this
relation between imperative loops and effectful recursive functions, we won’t be providing
a rule for loops in separation logic at all, and rather provide one for recursive definitions.

Γ,∀x, {h | P (x, h)} f(x) {res, h | Q(x, res, h)} ` {h | P (x, h)} c {res, h | Q(x, res, h)}
Γ ` ∀y, {h | P (y, h)} (fix f(x).c)(y) {res, h | Q(y, res, h)}

(Fix)

The premise of the rule (Fix) already assumes the specification of a function f (i.e.,
its loop invariant) in the context Γ and requires one to verify its body c for the same
specification, similarly to how recursive functions in some programming languages (e.g.,
Scala [46, § 4.1]) require explicit type annotations to be type-checked. In the remainder
of this chapter we will be always implementing imperative loops via effectful recursive
functions, whose specifications are stated explicitly, so the rule above would be directly
applicable.

8.2.3 Verifying heap-manipulating programs
Let us now see how a simple imperative program with conditionals and recursion would
be verified in a version of separation logic that we presented here. A subject of our exper-
iment will be an efficient imperative implementation of a factorial-computing function,
which accumulates the factorial value in a specific variable, while decreasing its argument
in a loop, and returns the value of the accumulator when the iteration variable becomes
zero. In the pseudocode, the fact program is implemented as follows:

fun fact (N : nat): nat = {
n <-- alloc(N);
acc <-- alloc(1);
res <--

(fix loop (_ : unit).
a’ <-- !acc;
n’ <-- !n;
if n’ == 0 then ret a’
else acc ::= a’ * n’;;

n ::= n’ - 1;;
loop(tt)

)(tt);
dealloc(n);;
dealloc(acc);;
ret res

}

The function fact first allocates two pointers, n and acc for the iteration variable
and the accumulator, correspondingly. It will then initiate the loop, implemented by
the recursive function loop, that reads the values of n and acc into local immutable
variables n’ and a’, correspondingly and then checks whether n’ is zero, in which case
it returns the value of the accumulator. Otherwise it stores into the accumulator the old
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value multiplied by n’, decrements n and re-iterates. After the loop terminates, the two
pointers are deallocated and the main function returns the result. Our goal for the rest
of this section will be to verify this program semi-formally, using the rules for separation
logic presented above, against its functional specification. In other words, we will have to
check that the program fact returns precisely the factorial of its argument value N . To
give such specification to fact, we define two auxiliary mathematical functions, f and
Finv:

f(N) =̂ if N = N ′ + 1 then N × f(N ′) else 1
Finv(n, acc, N, h) =̂ ∃n′, a′, (h = n 7→ n′ • acc 7→ a′) ∧ (f(n′)× a′ = f(N))

It is not difficult to see that f defines exactly the factorial function as one would define
it in a pure functional language (not very efficiently, though, but in the most declarative
form). The second function Finv is in fact a predicate, which we will use to give the loop
invariant to the loop function loop. Now, the function fact can be given the following
specification in separation logic, stating that it does not leak memory and its result is
the factorial of its argument N .

{h | h = empty} fact(N) {res, h | h = empty ∧ res = f(N)}
In the course of the proof of the above stated spec of fact, in order to apply the rule

(Fix), we pose the specification of loop (in an implicit assumption context Γ from the
rules) to be the following one. The specification states that the body of the loop preserves
the invariant Finv, and, moreover its result is the factorial of N .

{h | Finv(n, acc, N, h)} loop(tt) {res, h | Finv(n, acc, N, h) ∧ res = f(N)}
Below, we demonstrate a proof sketch of verification of the body of fact against its

specification by systematically applying all of the presented logic rules.

{h | h = empty} (by precondition)
n <-- alloc(N);
{h | h = n 7→ N} (by (Alloc) and PCM properties)
acc <-- alloc(1);
{h | h = n 7→ N • acc 7→ 1} (by (Alloc))
{h | Finv(n, acc, N, h)} (by definition of Finv and (Conseq))
res <--
(fix loop (_ : unit).

{h | Finv(n, acc, N, h)} (precondition)
a’ <-- !acc;

{h | ∃n′, (h = n 7→ n′ • acc 7→ a′) ∧ (f(n′)× a′ = f(N))} (Finv, (Read) and (Conj))
n’ <-- !n;

{h | (h = n 7→ n′ • acc 7→ a′) ∧ (f(n′)× a′ = f(N))} ((Read) and (Conj))
if n’ == 0 then ret a’

{res, h | (h = n 7→ 0 • acc 7→ f(N)) ∧ (res = f(N))} (defn. f , (=) and (Return))
{res, h | Finv(n, acc, N, h) ∧ (res = f(N))} (defn. of Finv)

else



8.3 Specifying effectful computations using types 123

{h | (h = n 7→ n′ • acc 7→ a′) ∧ (f(n′)× a′ = f(N))} (by (Cond))
acc ::= a’ * n’;;

{h | (h = n 7→ n′ • acc 7→ a′ × n′) ∧ (f(n′)× a′ = f(N))} (by (Write))
n ::= n’ - 1;;

{h | (h = n 7→ n′ − 1 • acc 7→ a′ × n′) ∧ (f(n′)× a′ = f(N))} (by (Write))
{h | (h = n 7→ n′ − 1 • acc 7→ a′ × n′) ∧ (f(n′ − 1)× a′ × n′ = f(N))} (by defn. of f)
{h | Finv(n, acc, N, h)} (by defn. of f)

loop(tt)
{res, h | Finv(n, acc, N, h) ∧ (res = f(N))} (by assumption and (Fix))
)(tt);

{h | Finv(n, acc, N, h) ∧ (res = f(N))} (by (Bind))
{h | (h = n 7→ − • acc 7→ −) ∧ (res = f(N))} (by defn. of f)
dealloc(n);;
{h | (h = acc 7→ −) ∧ (res = f(N))} (by (Dealloc))
dealloc(acc);;
{h | (h = empty) ∧ (res = f(N))} (by (Dealloc))
ret res
{res, h | (h = empty) ∧ (res = f(N))} (by (Ret))

Probably, the most tricky parts of the proof, which indeed require a human prover’s
insight, are (a) “decomposition” of the loop invariant Finv at the beginning of the loop,
when it falls into the components, constraining the values of n and acc in the heap
and (b) the “re-composition” of the same invariant immediately before the recursive call
of loop in order to ensure its precondition. The latter is possible because of algebraic
properties of the factorial function f , namely the fact that for any n, if n > 0 then
f(n) × a = f(n − 1) × n × a, the insight we have used in order to “re-distribute” the
values between the two pointers, n and acc so the invariant Finv could be restored.
It should be clear by this moment, that, even though the proof is proportional to the
size of the program, it has combined some mathematical reasoning with a machinery of
consistent rule application, until the postcondition has been reached, which, when done
by a human solely, might be an error-prone procedure. Nevertheless, this proof process is
very reminiscent to the proofs that we have seen so far in Coq, when one gradually applies
the lemmas, assumptions and performs rewritings until the final goal is proved. This is
why using Coq seems like a good idea to mechanize the process of proofs in separation
logic, so one can be sure that there is nothing missed during the reasoning process and the
specification is certainly correct. Employing Coq for this purpose is indeed our ultimate
goal and the topic of this chapter. However, before we reach that point, let us recall that
in a nutshell Coq is in fact a functional programming language and make yet another
short detour to the world of pure functional programming, to see how effects might be
specified by means of types.

8.3 Specifying effectful computations using types
In imperative programs there is a significant distinction between expressions and pro-
grams (or commands). While the former ones are pure, i.e., will always evaluate to the
same result, by which they can be safely replaced, the latter ones are effectful, as their
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result and the ultimate outcome may produce some irreversible effect (e.g., mutating
references, throwing exceptions, performing output or reading from input), which one
should account for. Hoare logics, and, in particular, separation logic focus on specifying
effectful programs taking expressions for granted and assuming their referential trans-
parency, which makes it not entirely straightforward to embed such reasoning into the
purely functional setting of the Coq framework. It has been a long-standing problem
for the functional programming community to reconcile the pure expressions, enjoying
referential transparency, with effectful computations, until Eugenio Moggi suggested to
use the mechanism of monads to separate the results of computations from the possible
effects they can produce [40], and Philip Wadler popularized this idea with a large num-
ber of examples [63], as it was adopted in the same time by the Haskell programming
language. There is a countless number of tutorials written and available on the Web that
are targeted to help building the intuition about the “monad magic”. Although grasping
some essence of monadic computations is desirable for understanding how verification of
the imperative programs can be structured in Coq, providing the reader with yet another
“monad tutorial” is not the task of this course. Luckily, in order to proceed to the ver-
ification in separation logic, which is the topic of this chapter, we need only very basic
intuition on what monads are, and how they are typically used to capture the essence of
computations and their effects.

8.3.1 On monads and computations
While presenting rules for Hoare and separation logic, we have seen a number of operators,
allowing to construct larger programs from smaller ones: conditionals, loops, binding, etc.
However, only two of the connectives are inherent to imperative programming and make
it distinct from the programming with pure functions:

• Binding (i.e., a program of the form x ← c1; c2) is a way to specify that the effect
of the computation c1 takes place strictly before the computation c2 is executed.
Following its name this program constructor also performs binding of the (pure)
result of the first computation, so it can be substituted to all occurrences of x in
the second command, c2. In this sense, binding is different from expressions of the
form let x = e1 in e2, omnipresent in functional programs, as the latter ones
might allow for both strict and lazy evaluation of the right-hand side expression
e1 depending on a semantics of the language (e.g., call-by-value in Standard ML
vs. call-by-need in Haskell). This flexibility does not affect the result of a pure
program (modulo divergence), since e1 and e2 are expressions, and, hence, are
pure. However, in the case of computations, the order should be fixed and this is
what the binding construct serves for.

• Returning a value is a command constructor (which we typeset as ret), which allows
one to embed a pure expression into the realm of computations. Again, intuitively,
this is explained by the fact that expressions and commands should be distinguished
semantically,9 but sometimes an expression should be treated as a command (with

9Although some mainstream languages prefer to blur the distinction between commands and expressions
in order to save on syntax [46], at the price of losing the ability to differentiate statically between the
effectful and pure code.
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a trivial effect or none of it at all), whose result is the very same expression.

These two connectives, allowing one to construct the programs by means of binding and
embedding expressions into them are captured precisely by the Monad interface, expressed,
for instance, in Haskell via the following type class:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

The signature specifies that each instance of Monad m is parametrized by one type
and requires two functions to be implemented. The »= function is pronounced as bind
and describes how a particular monad instance combines two computations, such that
the second one, whose type is m b, may depend on the value of result of the first one,
whose type is m a. The result of the overall computation is then the one of the second
component, namely, m b. The function return specifies how to provide a “default” value
for an effectful computation, i.e., how to “pair” a value of type a with an “effect” entity
in order to receive an element of m a. In this specification, the type m serves as a generic
placeholder of the effect, whose nature is captured by the monad. As it has been already
pointed out, such effect might be a mutable state, exceptions, explicit control, concurrency
or input/output (all captured by specific instances of monads in Haskell [48]), as well as
the fact of program non-termination (i.e., divergence), which Haskell deliberately does
not capture. In a more informal language, the monadic type m indicates that in the
program “something fishy is going on, besides the result being computed”, so this type
serves as a mechanism, which is used by the type checker to make sure that only programs
with the same effect are composed together by means of binding (hence the type of the
bind operator in the Monad type class). This is an important insight, which will be
directly used in the design of the verification methodology of imperative programs using
dependent types, as we will see in Section 8.4.

8.3.2 Monadic do-notation
Since composing effectful/monadic computations is a very common operation in Haskell,
the language provides a convenient do-notation to write programs in a monadic style,
such that the invocation of the bind function in the expression of the form c1 »= (\x
-> c2), where x might occur in c2, can be written as {do x <- c1; c2}. For example,
the program below is composed of several computations within the IO monad, which
indicates that the possible effect of the program, which has IO in its type, can be reading
from input or writing into the output stream [49].
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main = do putStrLn "Enter a character"
c <- getChar
putStrLn $ "\nThe character was: " ++ [c]
return ()

The computations involved in the program, are represented, in particular, by the Haskell
commands (i.e., monadically-typed function call) putStrLn "Enter a character", which
prints a string to the output stream, and the call to getChar, which reads a caracter from
the input stream. All these computations are bound using the <- syntax and do-notation,
and the last one returns an embedded unit value (), so the type of the whole program
main is inferred to be IO ().

8.4 Elements of Hoare Type Theory
At this point we have acquired a number of important insights that should lead us to the
idea of implementing verification of effectful imperative programs in Coq:

• Hoare specifications in separation logic behave like types of the computations they
specify, which is witnessed by the rules of weakening (Conseq), function and
application specification inference (Hyp) and (App) and recursive functions (Fix)
(Section 8.2.1). Moreover, since pre- and postconditions can depend on the values
of logical universally-quantified variables as well as on the values of the command’s
arguments, Hoare-style specs are in fact instances of dependent types.

• Hoare triples in separation logic specify effectful computations that are composed
using the binding mechanism, with pure expressions being injected into them by
means of “wrapping” them with a ret operator. This makes Hoare triples behave
exactly like instances of monads from functional programming, whose composition
is described by, e.g., the Monad type class from Haskell.

• Effectful computations can take effects, which should be accounted for in their
specifications. The effects (or observation of an effectful state) are due to some
dedicated operations, such as pointer assignment, pointer reading, allocation or
deallocation. These operations come with dedicated specifications, similarly to how
operations putStrLn and getChar in Haskell are typed with respect to the IO
monad, whose state they modify.

• Another important effect, which has no explicit handling in the mainstream pro-
gramming languages like Haskell, but should be dealt with in the context of pure,
strongly-normalizing language of Coq, is divergence. We cannot allow one to have
potentially non-terminating computations as expressions in Coq (i.e., those imple-
mented by means of the general recursion operator fix from Section 8.2.2), but we
can afford having a monadic type of computations such that they might possibly
diverge if they are executed (and, even though, they will not be executed within
Coq, they can still be type-checked, and, hence, verified). Therefore, monadic en-
coding of the fixpoint operator provides a way to escape the termination-checking
conundrum and encode nonterminating programs in Coq.



8.4 Elements of Hoare Type Theory 127

All these observation resulted in a series of works on Hoare Type Theory (or just HTT),
which defines a notion of an indexed Hoare monad (or, Hoare type) as a mechanism
to encode Hoare-style specifications as dependent types and reduce the verification of
effectful progress to proving propositions in Coq [41–43]. In the rest of this chapter we
will consider a number of important concepts of HTT, so the necessary modules should be
imported from the library folder htt, which contains the compiled files (see Section 1.3.3
for the instructions on obtaining and building HTT from the sources).

From mathcomp
Require Import ssreflect ssrbool ssrnat eqtype seq ssrfun.
From fcsl
Require Import prelude pred pcm unionmap heap.
From HTT
Require Import stmod stsep stlog stlogR.

Module HTT.

Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.

8.4.1 The Hoare monad
The Hoare monad (also dubbed as Hoare type), which is a type of result-returning effectful
computations with pre- and postconditions is represented in HTT by the type STsep,
which is, in fact, just a notation for a more general but less tractable type STspec, whose
details we do not present here, as they are quite technical and are not necessary in order
to verify programs in HTT.10 The Hoare type is usually specified using the HTT-provided
notation as {x1 x2 ...}, STsep (p, q), where p and q are the predicates, corresponding to
the pre and postcondition with p being of type heap → Prop and q of type A → heap →
Prop, such that A is the type of the result of the command being specified. The identifiers
x1, x2 etc. bind the logical variables that are assumed to be universally quantified and can
appear freely in p and q, similarly to the free variables in the specifications in Hoare logics
(Section 8.1). For example, the alloc function has the following (simplified compared to
the original one) small footprint specification in the STsep-notation:

alloc : ∀ (A : Type) (v : A),
STsep (fun h ⇒ h = Unit,

[vfun (res : ptr) h ⇒ h = res :-> v])

That is, alloc is a procedure, which starts in an empty heap Unit and whose argument
v of type A becomes referenced by the pointer (which is also the alloc’s result) in the
resulting singleton-pointer heap. The notation x :-> y corresponds to the points-to
assertion x 7→ y in the mathematical representation of separation logic, and [vfun x ⇒
...] notation accounts for the fact that the computation can throw an exception [42], the
possibility we do not discuss in this course.

10A curious reader can take a look at the definitions in the module stmod of the HTT library.
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8.4.2 Structuring program verification in HTT
Let us now consider how the examples from Section 8.2 can be given specifications and
verified in Coq. The program on page 118, which modifies a pointer x and keeps a
different pointer y intact can be given the following spec:

Program Definition alter x A (x : ptr) (v : A):
{y (Y : nat)},
STsep (fun h ⇒ exists B (w : B), h = x :-> w \+ y :-> Y,

[vfun ( : unit) h ⇒ h = x :-> v \+ y :-> Y ]) :=
Do (x ::= v).
The Coq command Program Definition is similar to the standard definition Definition

except for the fact that it allows the expression being defined to have a type, some of
whose components haven’t yet been type-checked and remain to be filled by the program-
mer, similarly to Agda’s incremental development [58]. That is, based on the expression
itself (Do (x ::= v)), Coq will infer the most general type that the expression can be al-
lowed to have, and then it becomes a programmer’s obligation to show that the declared
type is actually a specialization of the inferred type. In the context of HTT, the type,
inferred by Coq based on the definition, can be seen as a specification with the weakest
pre and strongest postconditions, which can then be weakened via the (Conseq) rule.
The program itself is wrapped into the Do-notation, which is provided by the HTT li-
brary and indicates that the computations inside always deal with the STsep type, similar
to the Haskell’s treatment of do-notation. The type of the program alter x is specified
explicitly via the STsep-notation. There are two logical variables: the pointer y and the
value Y of type nat, which is referenced by y. The precondition states the existence of
some type B and value w, such that x points to it. The postcondition specifies that the
result is of type unit (and, therefore, is unconstrained), and the content of the pointer x
became v, while the content of the pointer y remained unchanged. Notice that we make
explicit use of the PCM notation (Section 7.1) for the empty heap, which is paraphrased
as Unit and for the disjoint union of heaps, which is expressed through the join operator
\+. After stating the definition, Coq generates a series of obligations to prove in order
to establish the defined program well-typed with respect to the stated type.
alter x has type-checked, generating 1 obligation(s)
Solving obligations automatically...
1 obligation remaining
Obligation 1 of alter x:
∀ (A : Type) (x : ptr) (v : A),
conseq (x ::= v)
(logvar

(fun y : ptr ⇒
logvar
(fun Y : nat ⇒
binarify
(fun h : heap ⇒ exists (B : Type) (w : B), h = x :-> w \+ y :-> Y )
[vfun h ⇒ h = x :-> v \+ y :-> Y ]))).

The statement looks rather convoluted due to a number of type definitions and no-
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tations used and essentially postulates that from the proposition, corresponding to the
specification inferred by Coq from the program definition, we should be able to prove the
specification that we have declared explicitly. Instead of explaining each component of
the goal, we will proceed directly to the proof and will build the necessary intuition as we
go. The proof mode for each of the remaining obligations is activated by the Vernacular
command Next Obligation, which automatically moves some of the assumptions to the
context.
Next Obligation.

A : Type
x : ptr
v : A
============================
conseq (x ::= v)
(logvar

(fun y : ptr ⇒
logvar
(fun Y : nat ⇒
binarify
(fun h : heap ⇒
exists (B : Type) (w : B), h = x :-> w \+ y :-> Y )
[vfun h ⇒ h = x :-> v \+ y :-> Y ])))

A usual first step in every HTT proof, which deals with a spec with logical variables is
to “pull them out”, so they would just become simple assumptions in the goal, allowing
one to get rid of the logvar and binarify calls in the goal.11 This is what is done by
applying the lemma ghR to the goal.
apply: ghR.

A : Type
x : ptr
v : A
============================
∀ (i : heap) (x0 : ptr × nat),
(exists (B : Type) (w : B), i = x :-> w \+ x0.1 :-> x0.2) →
valid i → verify i (x ::= v) [vfun h ⇒ h = x :-> v \+ x0.1 :-> x0.2]
We can now move a number of assumptions, arising from the “brushed” specification,

to the context, along with some rewriting by equality and simplifications.
11In fact, the proper handling of the logical variables is surprisingly tricky in a type-based encoding,

which is what HTT delivers. It is due to the fact that the same variables can appear in both pre- and
postconditions. Earlier implementations of HTT used binary postconditions for this purpose [42, 43],
which was a cause of some code duplication in specifications and made the spec look differently from
those that someone familiar with the standard Hoare logic would expect. Current implementation
uses an encoding with recursive notations to circumvent the code duplication problem. This encoding
is a source of the observed occurrences of logvar and binarify definitions in the goal.
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move⇒h1 [y Y ][B][w]->{h1} /=.

...
B : Type
w : B
============================
verify (x :-> w \+ y :-> Y ) (x ::= v) [vfun h ⇒ h = x :-> v \+ y :-> Y ]
The resulting goal is stated using the verify-notation, which means that in this partic-

ular case, in the heap of the shape x :-> w \+ y :-> Y we need to be able to prove that
the result and the produced heap of the command x ::= v satisfy the predicate [vfun
h ⇒ h = x :-> v \+ y :-> Y ]. This goal can be proved using one of the numerous ver-
ify-lemmas that HTT provides (try executing Search (verify ) to see the full list),
however in this particular case the program and the goal are so simple and are obviously
correct that the statement can be proved by means of proof automation, implemented in
HTT by a brute-force tactic heval, which just tries a number of verify-lemmas applicable
in this case modulo the shape of the heap.
by heval.
Qed.

8.4.3 Verifying the factorial procedure mechanically
Proving an assignment for two non-aliased pointers was a simple exercise, so now we can
proceed to a more interesting program, which features loops and conditional expressions,
namely, imperative implementation of the factorial function. Our specification and veri-
fication process will follow precisely the story of Section 8.2.3. We start by defining the
factorial in the most declarative way—as a pure recursive function in Coq itself.
Fixpoint fact pure n := if n is n’.+1 then n × (fact pure n’) else 1.
Next, we define the loop invariant fact inv, which constraints the heap shape and the

values of the involved pointers, n and acc, mimicking precisely the definition of Finv:
Definition fact inv (n acc : ptr) (N : nat) h : Prop :=
exists n’ a’ : nat,
[/\ h = n :-> n’ \+ acc :-> a’ &

(fact pure n’) × a’ = fact pure N ].
To show how separation logic, in general and its particular implementation in HTT,

allows one to build the reasoning compositionally (i.e., by building the proofs about
large programs from the facts about their components), we will first provide and prove a
specification for the internal factorial loop, which, in fact, performs all of the interesting
computations, so the rest of the “main” function only takes care of allocation/deallocation
of the pointers n and acc. The loop will be just a function, taking an argument of the
type unit and ensuring the invariant fact inv in its pre- and postcondition, as defined by
the following type fact tp, parametrized by the pointers n and acc.
Definition fact tp n acc :=
unit → {N},

STsep (fact inv n acc N,
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[vfun (res : nat) h ⇒ fact inv n acc N h ∧ res = fact pure N ]).
The type fact tp ensures additionally that the resulting value is in fact a factorial of

N, which is expressed by the conjunct res = fact pure N. The definition of the factorial
“accumulator” loop is then represented as a recursive function, taking as arguments the
two pointers, n and acc, and also a unit value. The body of the function is defined
using the monadic fixpoint operator Fix, whose semantics is similar to the semantics of
the classical Y-combinator, defined usually by the equation Y f = f (Y f ), where f is
a fixpoint operator argument that should be thought of as a recursive function being
defined. Similarly, the fixpoint operator Fix, provided by HTT, takes as arguments a
function, which is going to be called recursively (loop, in this case), its argument and
body. The named function (i.e., loop) can be then called from the body recursively. In
the similar spirit, one can define nested loops in HTT as nested calls of the fixpoint
operator.
Program Definition fact acc (n acc : ptr): fact tp n acc :=
Fix (fun (loop : fact tp n acc) ( : unit) ⇒
Do (a1 < −− read nat acc;

n’ < −− read nat n;
if n’ == 0 then ret a1
else acc ::= a1 × n’ ;;

n ::= n’ - 1;;
loop tt)).

The body of the accumulator loop function reproduces precisely the factorial imple-
mentation in pseudocode from page 121. It first reads the values of the pointers acc and
n into the local variables a1 and n’. Notice that the binding of the local immutable
variables is represented by the < −− notation, which corresponds to the bind operation
of the Hoare monad STsep. The function then uses Coq’s standard conditional operator
and returns a value of a1 if n’ is zero using the monadic ret operator. In the case of else-
branch, the new values are written to the pointers acc and n, after which the function
recurs. Stating the looping function like this leaves us with one obligation to prove.
Next Obligation.
As in the previous example, we start by transforming the goal, so the logical variable

N, coming from the specification of fact tp would be exposed as an assumption. We
immediately move it to the context along with the initial heap i.
apply: ghR⇒i N.

...
i : heap
N : nat
============================
fact inv n acc N i →
valid i →
verify i
(a1 < −− ! acc;
n’ < −− ! n;
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(if n’ == 0 then ret a1 else acc ::= a1 × n’ ;; n ::= n’ - 1;; loop tt))
[vfun res h ⇒ fact inv n acc N h ∧ res = fact pure N ]

We next case-analyse on the top assumption with the invariant fact inv to acquire the
equality describing the shape of the heap i. We then rewrite i in place and move a number
of hypotheses to the context.
case⇒n’ [a’ ][->{i}] Hi .
Now the goal has the shape verify (n :-> n’ \+ acc :-> a’) ..., which is suitable to be

hit with the automation by means of the heval tactic, progressing the goal to the state
when we should reason about the conditional operator.
heval.

...
n’ : nat
a’ : nat
Hi : fact pure n’ × a’ = fact pure N
============================
verify (n :-> n’ \+ acc :-> a’)
(if n’ == 0 then ret a’ else acc ::= a’ × n’ ;; n ::= n’ - 1;; loop tt)
[vfun res h ⇒ fact inv n acc N h ∧ res = fact pure N ]

The goal, containing a use of the conditional operator, is natural to be proved on case
analysis on the condition n’ == 0.
case X : (n’ == 0).
Now, the first goal has the form
...
Hi : fact pure n’ × a’ = fact pure N
X : (n’ == 0) = true
============================
verify (n :-> n’ \+ acc :-> a’) (ret a’)
[vfun res h ⇒ fact inv n acc N h ∧ res = fact pure N ]

To prove it, we will need one of the numerous val-lemmas, delivered as a part of HTT
libraries and directly corresponding to the rules of separation logic (Section 8.2.1). The
general recipe on acquiring intuition for the lemmas applicable for each particular verify-
goal is to make use of Ssreflect’s Search machinery. For instance, in this particular case,
given that the command to be verified (i.e., the second argument of verify) is ret a’, let
us try the following query.
Search (verify ) (ret ).
The request results report, in particular, on the following lemma found:

val ret
∀ (A : Type) (v : A) (i : heapPCM ) (r : cont A),
(valid i → r (Val v) i) → verify i (ret v) r
The lemma has a statement in its conclusion, which seems like it can be unified with

our goal, so we proceed by applying it.
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- apply: val ret=>/= .
The remaining part of the proof of this goal has absolutely nothing to do with program

verification and separation logic and accounts to combining a number of arithmetical facts
in the goal via the hypotheses Hi and X. We proceed by first turning boolean equality in
X into propositional via the view eqP and then substituting all occurrences of n’ in the
goal and other assumptions via Coq’s tactic subst. The rest of the proof is by providing
existential witnesses and rewriting 1 × a’ to a’ in Hi.
move/eqP: X⇒Z ; subst n’.
split; first by exists 0, a’=>//.
by rewrite mul1n in Hi.
The second goal requires satisfying the specification of a sequence of assignments, which

can be done automatically using the heval tactic.
heval.

loop : fact tp n acc
...
Hi : fact pure n’ × a’ = fact pure N
X : (n’ == 0) = false
============================
verify (n :-> (n’ - 1) \+ acc :-> (a’ × n’)) (loop tt)
[vfun res h ⇒ fact inv n acc N h ∧ res = fact pure N ]

The next step is somewhat less obvious, as we need to prove the specification of the
recursive call to loop, whose spec is also stored in our assumption context. Before we can
apply a lemma, which is an analogue of the (App), we need to instantiate the logical
variables of loop’s specification (which is described by the type fact tp). The spec fact tp
features only one logical variable, namely N, so we provide it using the HTT lemma
gh ex.12

apply: (gh ex N ).
Now to verify the call to loop, we can apply the lemma val doR, corresponding to the

rule (App), which will replace the goal by the precondition from the spec fact tp n acc.
In HTT there are several lemmas tackling this kind of a goal, all different in the way they
treat the postconditions, so in other cases it is recommended to run Search "val do" to
see the full list and chose the most appropriate one.
apply: val doR=>// .

...
Hi : fact pure n’ × a’ = fact pure N
X : (n’ == 0) = false
============================
fact inv n acc N (n :-> (n’ - 1) \+ acc :-> (a’ × n’))

12In a case of several logical variables, the lemma should have been applied the corresponding number
of times with appropriate arguments.
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As in the case of the previous goal, the remaining proof is focused on proving a state-
ment about a heap and natural numbers, so we just present its proof below without
elaborating on the details, as they are standard and mostly appeal to propositional rea-
soning (Chapter 3) and rewriting by lemmas from Ssreflect’s ssrnat module.
exists (n’-1), (a’ × n’); split=>//=.
rewrite -Hi=>{Hi}; rewrite [a’ × ]mulnC mulnA [ × n’ ]mulnC.
by case: n’ X=>//= n’ ; rewrite subn1 -pred Sn.
Qed.
We can now implement the main body of the factorial function, which allocates the

necessary pointers, calls the accumulator loop and then frees the memory.
Program Definition fact (N : nat) :
STsep ([Pred h | h = Unit],

[vfun res h ⇒ res = fact pure N ∧ h = Unit]) :=
Do (n < −− alloc N ;

acc < −− alloc 1;
res < −− fact acc n acc tt;
dealloc n;;
dealloc acc;;
ret res).

The specification of fact explicitly states that its execution starts and terminates in
the empty heap; it also constraints its result to be a factorial of N.
Next Obligation.
Since the spec of fact does not have any logical variables (its postcondition only men-

tions its argument N ), there is no need to make use of the ghR lemma. However, the
current goal is somewhat obscure, so to clarify it let us unfold the definition of conseq
(which simply states that the consequence between the inferred type of the program and
the stated spec should be proved) and simplify the goal.
rewrite /conseq =>/=.

N : nat
============================
∀ i : heap,
i = Unit →
verify i
(n < −− alloc N ;
acc < −− alloc 1;
res < −− fact acc n acc tt; dealloc n;; dealloc acc;; ret res)
(fun (y : ans nat) (m : heap) ⇒
i = Unit → [vfun res h ⇒ res = fact pure N ∧ h = Unit] y m)

Next, we can rewrite the equality on the heap (which is Unit) and proceed by two runs
of the heval tactic, which will take care of the allocated pointers yielding new assumptions
n and acc, arising from the implicit application of the (Bind) rule.
move⇒ →.
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heval⇒n; heval⇒acc; rewrite joinC unitR.
We have now came to the point when the function fact acc, which we have previously

verified, is going to be invoked, so we need to make use of what corresponds to the rule
(App) again. In this case, however, the tactic val doR will not work immediately, so we
will first need to reduce the program to be verified from the binding command to a mere
function call by means of HTT’s bnd seq lemma, which tackles the binding combined
with a call to a user-defined function, and this is exactly our case. Next, we instantiate
the fact acc specification’s logical variable N by applying gh ex and proceed with the
application of val doR.
apply: bnd seq=>/=; apply: (gh ex N ); apply: val doR=>//.
The first of the resulting two goals is an obligation arising from the need to prove

fact acc’s precondition.
- by exists N, 1; rewrite muln1.
The second goal is the remainder of the program’s body, which performs deallocation,

so the proof for it is accomplished mostly by applying heval tactic.
by move⇒ [[n’ ][a’ ][->] ->] ; heval.
Qed.

Exercise 8.1 (Swapping two values). Implement in HTT a function that takes as argu-
ments two pointers, x and y, which point to natural numbers, and swaps their values.
Reflect this effect in the function’s specification and verify it.
Hint: Instead of reading the value of a pointer into a variable t using the t < −− !p
notation, you might need to specify the type of the expected value explicitly by using the
“de-sugared” version of the command t < −− read T p, where T is the expected type.
This way, the proof will be more straightforward.

Exercise 8.2. Try to redo the exercise 8.1 without using the automation provided by the
heval tactic. The goal of this exercise is to explore the library of HTT lemmas, mimicking
the rules of the separation logic. You can always display the whole list of the available
lemmas by running the command Search (verify ) and then refine the query for
specific programs (e.g., read or write).

Exercise 8.3 (Fibonacci numbers). Figure 8.1 presents the pseudocode listing of an
efficient imperative implementation of the function fib that computes the N th Fibonacci
number. Your task will be to prove its correctness with respect to the “pure” function
fib pure (which you should define in plain Coq) as well as the fact that it starts and ends
in an empty heap.
Hint: What is the loop invariant of the recursive computation defined by means of the
loop function?
Hint: Try to decompose the reasoning into verification of several code pieces as in the
factorial example and then composing them together in the “main” function.
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fun fib (N : nat): nat = {
if N == 0 then ret 0
else if N == 1 then ret 1
else n <-- alloc 2;

x <-- alloc 1;
y <-- alloc 1;
res <--

(fix loop (_ : unit).
n’ <-- !n;
y’ <-- !y;
if n’ == N then ret y’
else tmp <-- !x;

x ::= y’;;
x’ <-- !x;
y ::= x’ + tmp;;
n ::= n’ + 1;;
loop(tt))(tt).

dealloc n;;
dealloc x;;
dealloc y;;
ret res

}

Figure 8.1: An imperative procedure computing the Nth Fibonacci number.

8.5 On shallow and deep embeddings
A noteworthy trait of HTT’s approach to verification of effectful programs is its use of
shallow embedding of the imperative language into the programming language of Coq.
In fact, the imperative programs that we have written, e.g., the factorial procedure, are
mere Coq programs, written in Coq syntax with a number of HTT-specific notations.
Moreover, the Hoare triples, by means of which we have provided the specifications to
the heap-manipulating programs are nothing but specific types defined in Coq. This is
what makes the way effectful programs encoded shallow: the new programming language
of imperative programs and their Hoare-style specifications has been defined as a subset
of Coq programming language, so most of the Coq’s infrastructure for parsing, type-
checking, name binding and computations could be reused off the shelf. In particular,
shallow embedding made it possible to represent the variables in imperative programs
as Coq’s variables, make use of Coq’s conditional operator and provide specifications to
higher-order procedures without going into the need to design a higher-order version of a
separation logic first (since the specifications in HTT are just types of monadically-typed
expressions). Furthermore, shallow embedding provided us with a benefit of reusing Coq’s
name binding machinery, so we could avoid the problem of name capturing by means us-
ing the approach known as Higher-Order Abstract Syntax [51], representing immutable
variables by Coq’s native variables (disguised by the binding notation < −−). To
summarize, shallow embedding is an approach of implementing programming languages
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(not necessarily in Coq) characterized by representation of the language of interest (usu-
ally called a domain-specific language or DSL) as a subset of another general-purpose
host language, so the programs in the former one are simply the programs in the lat-
ter one. The idea of shallow embedding originated in early ’60s with the beginning of
the era of the Lisp programming language [26], which, thanks to its macro-expansion
system, serves as a powerful platform to implement DSLs by means of shallow embed-
ding (such DSLs are sometimes called internal or embedded). Shallow embedding in the
world of practical programming is advocated for a high speed of language prototyping
and the ability to re-use most of the host language infrastructure. An alternative ap-
proach of implementing and encoding programming languages in general and in Coq in
particular is called deep embedding, and amounts to the implementation of a language
of interest from scratch, essentially, writing its parser, interpreter and type-checker in
a general-purpose language. In practice, deep embedding is preferable when the overall
performance of the implemented language runtime is of more interest than the speed of
DSL implementation, since then a lot of intermediate abstractions, which are artefacts
of the host language, can be avoided. In the world of mechanized program verification,
both approaches, deep and shallow embedding, have their own strengths and weaknesses.
Although implementations of deeply embedded languages and calculi naturally tend to be
more verbose, design choices in them are usually simpler to explain and motivate. More-
over, the deep embedding approach makes the problem of name binding to be explicit,
so it would be appreciated as an important aspect in the design and reasoning about
programming languages [2, 6, 65]. We believe, these are the reasons why this approach is
typically chosen as a preferable one when teaching program specification and verification
in Coq [53]. Importantly, deep embedding gives the programming language implementor
the full control over its syntax and semantics.13 In particular, the expressivity limits of
a defined logic or a type system are not limited by expressivity of Coq’s (or any other
host language’s) type system. Deep embedding makes it much more straightforward to
reason about pairs of programs by means of defining the relations as propositions on
pairs of syntactic trees, which are implemented as elements of corresponding datatypes.
This point, which we deliberately chose not to discuss in detail in this course, becomes
crucial when one needs to reason about the correctness of program transformations and
optimizing compilers [1]. In contrast, the choice of shallow embedding, while sparing
one the labor of implementing the parser, name binder and type checker, may limit the
expressivity of the logical calculus or a type system to be defined. In the case of HTT,
for instance, it amounts to the impossibility of specifying programs that store effectful
functions and their specifications into a heap.14 In the past decade Coq has been used in
a large number of projects targeting formalization of logics and type systems of various
programming languages and proving their soundness, with most of them preferring the
deep embedding approach to the shallow one. We believe that the explanation of this
phenomenon is the fact that it is much more straightforward to define semantics of a
deeply-embedded “featherweight” calculus [33] and prove soundness of its type system or
program logic, given that it is the ultimate goal of the research project. However, in order
to use the implemented framework to specify and verify realistic programs, a significant
implementation effort is required to extend the deep implementation beyond the “core
13This observation is reminiscent to the reasons of using deep embedding in the practical world.
14This limitation can be, however, overcome by postulating necessary axioms on top of CIC.
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language”, which makes shallow embedding more preferable in this case—a reason why
this way has been chosen by HTT.

8.6 Soundness of Hoare Type Theory
Because of shallow embedding, every valid Coq program is also a valid HTT program.
However, as it has been hinted at the beginning of Section 8.4, imperative programs
written in HTT cannot be simply executed, as, due to presence of general loops and
recursion, they simply may not terminate. At this point, a reader may wonder, what
good is verification of programs that cannot be run and what is it that we have verified?
To answer this question, let us revise how the soundness of a Hoare logic is defined.
HTT takes definition of a Hoare triple (or, rather, a Hoare type, since in HTT specs are
types) from page 112 literally but implements it not via an operational semantics, i.e.,
defining how a program should be run, but using a denotational semantics [67, Chapter 5],
i.e., defining what a program is. The HTT library comes with a module stmod that
defines denotational semantics of HTT commands15 and Hoare triples, defined as types.
Each command is represented by a function, which is sometimes referred to as a state
transformer, in the sense that it takes a particular heap and transforms it to another
heap, also returning some result. The denotational semantics of HTT commands in
terms of state-transforming functions makes it also possible to define what is a semantics
of a program resulting from the use of the Fix operator (Section 8.4.3).16 The semantics
of Hoare types {h | P (h)} − {res, h | Q(res, h)} is defined as sets of state transforming
functions, taking a heap satisfying P to the result and heap satisfying Q. Therefore, the
semantic account of the verification (which is implemented by means of type-checking in
Coq) is checking that semantics of a particular HTT program (i.e., a state-transforming
function) lies within the semantics of its type as a set. If execution of programs verified
in HTT is of interest, it can be implemented by means of extraction of HTT commands
into programs in an external language, which supports general recursion natively (e.g.,
Haskell). In fact, such extraction has been implemented in the first release of HTT [42],
but was not ported to the latest release.

8.7 Specifying and verifying programs with linked lists
We conclude this chapter with a tour de force of separation logic in HTT by considering
specification and verification of programs operating with single-linked lists. Unlike the
factorial example, an implementation of single-linked lists truly relies on pointers, and
specifying such datatypes and programs is an area where separation logic shines. On the
surface, a single-linked list can be represented by a pointer, which points to its head.
15I.e., monadic values constructed by means of the write/alloc/dealloc/read/return commands and stan-

dard Coq connectives, such as conditional expression or pattern matching.
16In fact, a standard construction from the domain theory is used, namely, employing Knaster-Tarski

theorem on a lattice of monotone functions. This subject is, however, outside of the scope of this
course, so we redirect the reader to the relevant literature: Glynn Winskel’s book for the theoretical
construction [67, Chapters 8–10] or Adam Chlipala’s manuscript covering a similar implementation [7,
§ 7.2].
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Definition llist (T : Type) := ptr.
Section LList.
Variable T : Type.
Notation llist := (llist T ).
However, in order to specify and prove interesting facts about imperative lists, similarly

to the previous examples, we need to establish a connection between what is stored in
a list heap and a purely mathematical sequence of elements. This is done using the
recursive predicate lseg, which relates two pointers, p and q, pointing correspondingly to
the head and to the tail of the list and a logical sequence xs of elements stored in the
list.
Fixpoint lseg (p q : ptr) (xs : seq T ): Pred heap :=
if xs is x ::xt then
[Pred h | exists r h’,

h = p :-> x \+ (p .+ 1 :-> r \+ h’) ∧ h’ \In lseg r q xt]
else [Pred h | p = q ∧ h = Unit].
The notation [Pred h | ...] is just an abbreviation for a function of type heap → Prop,

where h is assumed to be of the type heap. The notation h \In f is a synonym for f h
assuming f is a predicate of type heap → Prop. The following lemma lseg null states a
fact, which is almost obvious: given that the heap h, corresponding to a linked list, is a
valid one (according to its notion of validity as a PCM) and the head pointer of a list
structure is null, then its tail pointer is null as well, and the overall list is empty.
Lemma lseg null xs q h :

valid h → h \In lseg null q xs →
[/\ q = null, xs = [::] & h = Unit].

Proof.
case: xs=>[|x xs] D /= H ; first by case: H=><- →.
case: H D⇒r [h’ ][->] .

...
r : ptr
h’ : heap
============================
valid (null :-> x \+ (null.+1 :-> r \+ h’)) →
[/\ q = null, x :: xs = [::] & null :-> x \+ (null.+1 :-> r \+ h’) = Unit]
In the process of the proof we are forced to use the validity of a heap in order to derive a

contradiction. In the case of heap’s validity, one of the requirements is that every pointer
in it is not null. We can make it explicit by rewriting the top assumption with one of
the numerous HTT lemmas about heap validity (use the Search machinery to find the
others).
rewrite validPtUn.

...
============================
[&& null != null, valid (null.+1 :-> r \+ h’)
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& null \notin dom (null.+1 :-> r \+ h’)] →
[/\ q = null, x :: xs = [::] & null :-> x \+ (null.+1 :-> r \+ h’) = Unit]
The conjunct null != null in the top assumption is enough to complete the proof by

implicit discrimination.
done.
Qed.
We can now define a particular case of linked lists—null-terminating lists and prove

the specification of a simple insertion program, which allocates a new memory cell for
an element x and makes it to be a new head of a list pointed by p. The allocation is
performed via the primitive allocb, which allocates a number of subsequent heap pointers
(two in this case, as defined by its second argument) and sets all of them to point to the
value provided.
Definition lseq p := lseg p null.
Program Definition insert p x :
{xs}, STsep (lseq p xs, [vfun y ⇒ lseq y (x ::xs)]) :=
Do (q < −− allocb p 2;

q ::= x ;;
ret q).

Next Obligation.
apply: ghR⇒i xs H ; heval⇒x1 ; rewrite unitR -joinA; heval.
Qed.
Next, we are going to give a specification to the list “beheading”—removing the head

element of a list. For this, we will need a couple of auxiliary lemmas involving the list
heap predicate lseg neq. The first one, lseq null is just a specialization of the previously
proved lseg null.
Lemma lseq null xs h : valid h → h \In lseq null xs → xs = [::] ∧ h = Unit.
Proof. by move⇒D; case/(lseg null D)=> →. Qed.
The next lemma, lseq pos, states that if p is a head of a linked list, defined by a heap

h, is not null, then it can be “beheaded”. That is, there will exist a head value x, a “next”
r and a residual heap h’, such that the heap h’ corresponds to the list’s tail, which is
expressed by Ssreflect’s behead function.
Lemma lseq pos xs p h :

p != null → h \In lseq p xs →
exists x r h’,
[/\ xs = x :: behead xs,

p :-> x \+ (p .+ 1 :-> r \+ h’) = h & h’ \In lseq r (behead xs)].
Proof.
case: xs=>[|x xs] /= H []; first by move⇒E ; rewrite E eq refl in H.
by move⇒y [h’ ][->] H1 ; heval.
Qed.
We can finally define and specify the HTT procedure remove, which removes the current

head of the list and returns the pointer to its next element or null if the list is empty.
Program Definition
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remove p : {xs}, STsep (lseq p xs, [vfun y ⇒ lseq y (behead xs)]) :=
Do (if p == null then ret p

else pnext < −− !(p .+ 1);
dealloc p;;
dealloc p .+ 1;;
ret pnext).

The proof is straightforward and employs both lemmas: lseq null to prove the “null”
case and lseq pos for the case when the list has at least one element.
Next Obligation.
apply: ghR⇒i xs H V ; case: ifP H⇒H1.
- by rewrite (eqP H1 ); case/(lseq null V )=>->->; heval.
case/(lseq pos (negbT H1 ))=>x [q][h][->] ← /= H2.
by heval; rewrite 2!unitL.
Qed.

Exercise 8.4. Define and verify function remove val which is similar to remove, but also
returns the value of the last “head” of the list before removal, in addition to the “next”
pointer. Use Coq’s option type to account for the possibility of an empty list in the
result.

End LList.

Exercise 8.5 (Imperative in-place map). Define, specify and verify the imperative higher-
order function list map that takes as arguments two types, S and T, a function f : T →
S and a head p of a single-linked list, described by a predicate lseq, and changes the list
in place by applying f to each of its elements, while preserving the list’s structure. The
specification should reflect the fact that the new “logical” contents of the single-linked
list are an f map-image of the old content.
Hint: The lemmas lseq null and lseq pos, proved previously, might be useful in the proof
of the established specification.
Hint: A tail-recursive call can be verified via HTT’s val do lemma, reminiscent to the
rule (App). However, the heap it operates with should be “massaged” appropriately via
PCM’s lemmas joinC and joinA.

Exercise 8.6 (In-place list reversal). Let us define the following auxiliary predicates,
where shape rev splits the heap into two disjoint linked lists (by means of the separating
conjunction #).
Definition shape rev T p s := [Pred h | h \In @lseq T p.1 s.1 # @lseq T p.2 s.2].
Then the in-place list reversal is implemented by means of the recursive function reverse
with a loop invariant expressed using the type revT.
Definition revT T : Type :=
∀ p, {ps}, STsep (@shape rev T p ps, [vfun y ⇒ lseq y (rev ps.1 ++ ps.2)]).

Program Definition
reverse T p : {xs}, STsep (@lseq T p xs, [vfun y ⇒ lseq y (rev xs)]) :=
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Do (let: reverse := Fix (fun (reverse : revT T ) p ⇒
Do (if p.1 == null then ret p.2

else xnext < −− !p.1 .+ 1;
p.1 .+ 1 ::= p.2;;
reverse (xnext, p.1)))

in reverse (p, null)).
We invite the reader to conduct the verification of reverse, proving that it satisfies the
given specification.
Hint: It might be a good idea to make use of the previously proved lemmas lseq null
and lseq pos.
Hint: Be careful with the logical values of variables passed to the gh ex lemma before
verifying a recursive call of reverse.
Hint: A verification goal to a function defined via Fix can be reduced via the val doR
lemma or similar ones.
Hint: The shape rev predicate is in fact an existential in disguise: it can be proved by
providing appropriate witnesses.
Hint: Rewriting rev cons, cat rcons and cats0 from the seq library will be useful for
establishing equalities between lists.



9 Conclusion

The goal of this course was to introduce a reader with a background in programming and
abstract algebra to interactive theorem proving in the Coq proof assistant.
Starting from the concepts, familiar from the world of functional programming, such as

higher-order functions, algebraic datatypes and recursion, we have first considered Coq
as a programming language in Chapter 2. The programming language intuition helped
us to move further into the realm of propositional logic and comprehend the way of en-
coding and proving propositions constructively in Chapter 3. At that point a number of
familiar logical connectives came in the new light of Curry-Howard correspondence with
respect to the familiar datatypes. Introducing universal and existential quantification,
though, required to appeal to the dependently-typed part of Coq as a programming lan-
guage, which moved us beyond a simple propositional logic, so we could make statements
over arbitrary entities, not just propositions. At the same point we had the first encounter
with Coq’s proof construction machinery. To unleash the full power of the mathematical
reasoning, in Chapter 4 we learned about the way equality is defined in Coq and how
it is used for proofs by rewriting. In the process we have learned that equality is just
one way to encode a rewriting principle and seen how custom rewriting principles can be
encoded in Coq. It turned out that one of the most useful rewriting principles is the abil-
ity to “switch” in the reasoning between the constructive and computable formulation of
decidable propositions—a trick that working mathematicians perform on the fly in their
minds. In Chapter 5, we have seen how the same switch can be implemented seam-
lessly in Coq using the boolean reflection machinery. With the introduction of boolean
reflection, our journey in the world of interactive theorem proving took a path, paved by
Gonthier’s et al.’s Ssreflect extension, embracing and leveraging the computational power
of Coq as a programming language to the extreme. The motto “let Coq compute a part of
the proof for you, since it’s a programming language after all!”, witnessed by formulation
of boolean functions instead of decidable inductive predicates, has been supplied by a
number of examples in Chapter 6, in which we have also exercised in proofs by induc-
tion of different flavours. Mathematics is a science of abstract structures and facts, and
formalizing such structures and facts is an important component of rigorous reasoning.
In Chapter 7 we have learned how the concepts of records and type classes, familiar
from languages like C and Haskell, can be directly employed, powered by Coq’s depen-
dent types, to encode a variety of mathematical structures from the course of abstract
algebra. Chapter 8 brought all of the presented programming and proving concepts
together and made them to work in concert to tackle a large case study—specifying and
verifying imperative programs in the framework of Hoare Type Theory.
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Future directions
I hope that this short and by all means not exhaustive course on mechanized mathematics
in Coq was helpful in reconciling the reader’s programming expertise and mathematical
background in one solid picture. So, what now?
In the author’s personal experience, fluency in Coq and the ability to operate with a

large vocabulary of facts, lemmas and tactics is a volatile skill, which fades out at an
alarming rate without regular practice in proving and mechanized reasoning. On the
bright side, this is also a skill, which can fill one with a feeling of excitement from a
progressive reasoning process and the rewarding sense of achievement that few human
activities bring.
With this respect, it seems natural to advise the reader to pick a project on her own

and put it to the rails of machine-assisted proving. Sadly, formalizing things just for the
sake of formalization is rarely a pleasant experience, and re-doing someone’s results in
Coq just to “have them in Coq at any price” is not a glorious goal by itself. What is
less obvious is that setting up mathematical reasoning in Coq usually brings some brand
new insights that usually come from directions no one expected. Such insights might be
due to exploding proofs, which are repetitive and full of boilerplate code (seems like a
refactoring opportunity in someone’s math?) or because of the lack of abstraction in a
supposedly abstract concept, which overwhelms its clients with proof obligations, once
being applied to something its designer mathematician didn’t foresee (a case of leaky
abstraction?). Coq combines programming and mathematics in a single framework. I
believe, this must be the point, at which several decades of mastering the humanity’s
programming expertise should pay back and start being useful for producing the genuine
understanding of formally stated facts and proofs about them.
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Fibonacci numbers, 135
fixed-point combinator, 131
forward proof style, 37
four color theorem, 8
frame rule, 119
Frobenius problem, 91

GADT, see generalized algebraic datatypes
Gallina, 10
generalized algebraic datatypes, 54
getters, 100
goal, 31
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gorgeous numbers, 91

halting problem, 16, 71
Haskell, 54, 73, 97, 125
head type, 34
heap, 117
Hoare monad, see Hoare type
Hoare triple, 112
Hoare type, 127
Hoare Type Theory, 127
Hoare/Separation Logic rules

Alloc, 119
App, 120
Assign, 114
Bind, 119
Cond, 116
Conj, 120
Conseq, 114
Dealloc, 119
Fix, 121
Hyp, 120
Read, 119
Return, 120
Seq, 114
While, 116
Write, 119

HTT, see Hoare Type Theory
HTT lemmas, tactics and notations

Do, 128
Fix , 131
STsep, 127
verify, 130
vfun, 127
allocb, 140
bnd seq, 135
ghR, 129, 131
gh ex, 133
hvalidPtUn, 139
ret, 131
val doR, 133
val ret, 132
heval, 130, 132

identity element, see unit element
imperative commands, 124
imperative programming, 111
impredicativity, 48

indexed type families, 54, 62
indices, see datatype indices
inductive predicates, 29
inference rules, see also Hoare/Separation

Logic rules, 113
inheritance, 104
injection, 73
instantiation, 105
interactive proof mode, 13, 31
internal DSL, 136
intuitionistic type theory, 29
IO monad, 125

join operation, 98

large footprint, 119
lattice, 97
left unit, 100
Leibniz equality, 55
let-polymorphism, 50
Lisp, 137
logical variables, 115
loop invariant, 116, 121

Martin-Löf’s type theory, see intuitionis-
tic type theory

Mathematical Components, 6
meta-object protocol, 67
mixins, 99
modules, 26
monads, 124

occurrence selectors, 87
occurrence switch, 61
odd order theorem, see Feit-Thompson

theorem

packaging, 101
packed classes, 101
parameters, see datatype parameters
partial commutative monoid, 98
partial program correctness, 112
partially ordered set, 108
PCM, see partial commutative monoid,

118
Peirce’s law, 46
pigeonhole principle, see Dirichlet’s box

principle
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pointers, 117
points-to assertions, 117
postcondition, 112
precondition, 112
predicativity, 48
program logic, see Hoare logic, 113
program specification, 111
Prolog, 111
Proof General, 9
Prop sort, 29

r-pattern, 60
record types, see dependent records
recursion principle, 18
referential transparency, 111
reflect datatype, 76
reflection, see small-scale reflection
rewriting lemma, 76
rewriting rules, 63
right unit, 100
rule of consequence, 114

Scala, 73, 102
sections, 26
selectors, 82
separating conjunction, 118
Separation Logic, 118
sequential composition, 114
shallow embedding, 136
Sigma-type, see dependent sum
single-linked lists, 138
small footprint, 119
small-scale reflection, 67
Sortclass, 102
soundness of a logic, 116
specification, see program specification
Ssreflect, 7
Ssreflect modules

eqtype, 62, 79, 109
prime, 72
seq, 94
ssrbool, 62, 70, 73
ssreflect, 31, 70
ssrfun, 100
ssrnat, 15, 60, 65, 109

stratification, 48
strong normalization, 83

System F , 30, 35, 48
System Fω, 30

tacticals, see also Coq/Ssreflect tacticals,
35

tactics, see also Coq/Ssreflect tactics, 32
tail recursion, 120
terminators, 82
total program correctness, 112
traits, 102
truth table, 63
type classes, 97
typing context, 120

unification, 54
unit element, 98
universe polymorphism, 49
universes, 48

Vernacular, 11
view hints, 70
view lemma, 68
views, 64, 68, 77

wildcards, 60, 86

Y-combinator, see fixed-point combina-
tor
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