
Automatic Enforcement
of

Expressive Security Policies
using Enclaves

Anitha Gollamudi Stephen Chong
Harvard University

1

OOPSLA’16

Application-level Security

2

Application-level Security

2

x = secret_info
//compute with x
…
x = public_info
output x

Example Programs

3

x = key
//encrypt with x
encrypt(message, x)
x = 0
output x

Encryption

x = key
//sign with x
sign(message, x)
x = 0
output x

Signature

Application-level Security

4

x = secret_info
//compute with x
…
x = public_info
output x

Application-level Security

4

x = secret_info
//compute with x
…
x = public_info
output x

Application-level Security

4

✔
Language-based

Security

x = secret_info
//compute with x
…
x = public_info
output x

Application-level Security

4

✔
Language-based

Security

x = secret_info
//compute with x
…
x = public_info
output x

Real World Scenario: Application running a real machine

x = public_info
output x

✔

Application-level Security

5

Language-based
Security

Operating System

x = secret_info
//compute with x
…

x = public_info
output x

✔

Application-level Security

5

Language-based
Security

Operating System

x = secret_info
//compute with x
…

x = public_info
output x

✔

Application-level Security

5

Language-based
Security

Operating System

x = secret_info
//compute with x
…

x = public_info
output x

✔

Application-level Security

5

Language-based
Security

Operating System

x = secret_info
//compute with x
…

x = public_info
output x

✔✘

Application-level Security

5

Language-based
Security

Operating System

x = secret_info
//compute with x
…

x = public_info
output x

✔✘

Application-level Security

5

Language-based
Security

Operating System

Question: How to enforce application security guarantees
against low-level aGackers?

x = secret_info
//compute with x
…

Our Solution
‣ Extend the Language-

based Security with
hardware protection
mechanisms (Intel
SGX, ARM
TrustZone)

‣ Enforce security
against low-level
aGackers

Application-level Security

6

Operating System

x = secret_info
//compute with x
…
x = public_info
output x

Operating System

Hardware Protection Mechanisms

‣ Intel SGX enables
‣ Applications to build

enclaves: protected
memory containers

‣ Isolated execution
‣ Restricted access

‣ ARM TrustZone

7

x = secret_info
//compute with x
…
x = public_info
output x

Overview of Enclaves
MEMORY

 CODE DATA

secret_info

public_info

8

Program Execution

x = secret_info
//compute with x
…

x = public_info
output x

kill

x = secret_info
//compute with x
…

x = public_info
output x

Overview of Enclaves
MEMORY

 CODE DATA

secret_info

public_info

8

Program Execution

x = secret_info
//compute with x
…

x = public_info
output x

killkill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

Overview of Enclaves
MEMORY

 CODE DATA

secret_info

public_info

9

Program Execution

x = secret_info
//compute with x
…

x = public_info
output x

killkill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

Overview of Enclaves

9

Program

MEMORY

 CODE DATA

secret_info

public_info

Execution

Enclave
Memory

x = secret_info
//compute with x
…

x = public_info
output x

killkill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

Overview of Enclaves
MEMORY

 CODE DATA

secret_info

public_info

10

Program

x = secret_info
//compute with x
…

x = public_info
output x

kill (1)kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

Overview of Enclaves
MEMORY

 CODE DATA

public_info

10

Program Execution

x = public_info
output x

kill (1)kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

Overview of Enclaves
MEMORY

 CODE DATA

public_info

10

Program Execution

x = public_info
output x

kill (1)

Why are enclaves useful for enforcing security?

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

Execution

Overview of Enclaves
MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…

x = public_info
output x

kill

11

Program

Enclave
Memory

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

Execution

Overview of Enclaves
MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…

x = public_info
output x

kill

11

Program

Enclave
Memory

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

Execution

Overview of Enclaves
MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…

x = public_info
output x

kill

11

Program

ACCESS DENIED!

Enclave
Memory

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

Execution

Overview of Enclaves
MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…

x = public_info
output x

kill

11

Program

ACCESS DENIED!

Enclave
Memory

However, enclaves by themselves are insufficient!

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

Execution

Enclaves are Insufficient
MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…

x = public_info
output x

kill

12

Program

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

output xoutput x

Execution

Enclaves are Insufficient
MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…

x = public_info
output x

kill

12

Program

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

output xoutput x

Execution

Enclaves are Insufficient
MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…

x = public_info
output x

kill

12

ProgramExtend the language-based security mechanisms with enclaves!

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info
output x

output xoutput x

IMPE
‣ An expressive formal calculus

‣ Extends a standard imperative calculus with

‣ Enclaves

‣ First-class functions

‣ Security policies

‣ Express application-specific security requirements

13

Security Policies
‣ Confidentiality levels

‣ form a linear order

14

secret

public

T

Security Policies
‣ Confidentiality levels

‣ form a linear order

14

secret

public

T Erased from the system

Security Policies
‣ Confidentiality levels

‣ form a linear order

‣ Erasure policy : change of
confidentiality level during the
program execution

‣ e.g. secret_info :

14

secret

public

T Erased from the system

secret
end

T

Security Policies
‣ Confidentiality levels

‣ form a linear order

‣ Erasure policy : change of
confidentiality level during the
program execution

‣ e.g. secret_info :

14

secret

public

T Erased from the system

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info

output x

secret
end

T

Security Policies
‣ Confidentiality levels

‣ form a linear order

‣ Erasure policy : change of
confidentiality level during the
program execution

‣ e.g. secret_info :

14

secret

public

T Erased from the system

Security policies are enforced w.r.t. a threat model

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info

output x

secret
end

T

15

AOacker Observe
Output

Modify
Non-

Enclave
Memory

Modify
Enclave
Memory

Example

Passive ✔ ✘ ✘ Network
monitoring

Non-
Enclave
Active

✔ ✔ ✘ Malware

15

AOacker Observe
Output

Modify
Non-

Enclave
Memory

Modify
Enclave
Memory

Example

Passive ✔ ✘ ✘ Network
monitoring

Non-
Enclave
Active

✔ ✔ ✘ Malware

Enclave
Active ✔ ✔ ✔ Vulnerabilities

in enclave code

15

AOacker Observe
Output

Modify
Non-

Enclave
Memory

Modify
Enclave
Memory

Example

Passive ✔ ✘ ✘ Network
monitoring

Non-
Enclave
Active

✔ ✔ ✘ Malware

Enclave
Active ✔ ✔ ✔ Vulnerabilities

in enclave code

When is a program secure against these aGackers?

Security
‣ Formally defined as a non-interference property

‣ Public outputs are not influenced by private
inputs

‣ Parameterized by the kind of aGacker

16

Security
‣ Formally defined as a non-interference property

‣ Public outputs are not influenced by private
inputs

‣ Parameterized by the kind of aGacker

16

Security against weaker aGacker ⇏ security against powerful
aGacker

Security Against Passive
AGacker

17

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info

output x

MEMORY

 CODE DATA

secret_info

public_info

✔

x = secret_info
//compute with x
…

x = public_info

kill

set(end)
output x

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info

output x

Security Against Non-enclave
Active AGacker

18

MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…

x = public_info

kill

set(end)
output x

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…

x = public_info

output x

Security Against Non-enclave
Active AGacker

18

MEMORY

 CODE DATA

secret_info

public_info

✘

x = secret_info
//compute with x
…

x = public_info

kill

set(end)
output x

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…
x = public_info

output x

Security Against Non-enclave
Active AGacker

19

MEMORY

 CODE DATA

secret_info

public_info

✘

x = secret_info
//compute with x
…
x = public_info

kill

set(end)
output x

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…
x = public_info

output x

Security Against Non-enclave
Active AGacker

19

MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…
x = public_info

kill

set(end)
output x

✔

Enforcing Security

20

‣ Security Type System

‣ secret information is placed only in enclaves

‣ code that manipulates the secret information is
placed in the same enclave

Enforcing Security

21

‣ Theorem: Well-typed IMPE programs are secure
against

‣ Passive aGacker

‣ Non-enclave active aGacker

Enforcing Security

21

‣ Theorem: Well-typed IMPE programs are secure
against

‣ Passive aGacker

‣ Non-enclave active aGacker

‣ Is the program secure for enclave active aOacker?

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…
x = public_info

MEMORY

 CODE DATA

secret_info

public_info

Security Against Enclave Active
AGacker

22

x = secret_info
//compute with x
…
x = public_info

kill

set(end)

output x
 output x

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…
x = public_info

MEMORY

 CODE DATA

secret_info

public_info

Security Against Enclave Active
AGacker

22

x = secret_info
//compute with x
…
x = public_info

kill

set(end)

output x
 output x

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…
x = public_info

MEMORY

 CODE DATA

secret_info

public_info

Security Against Enclave Active
AGacker

22

x = secret_info
//compute with x
…
x = public_info

kill

set(end)

output x

secret
end

T

 output x

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…
x = public_info

MEMORY

 CODE DATA

secret_info

public_info

Security Against Enclave Active
AGacker

22

‣ Window of vulnerability

x = secret_info
//compute with x
…
x = public_info

kill

set(end)

output x

secret
end

T

 output x

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…
x = public_info

Security Against Enclave Active
AGacker

23

‣ Window of vulnerability

MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…
x = public_info

kill

set(end)

output x

secret
end

T

 output x

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…
x = public_info

enclave {
output secret_info

}

Security Against Enclave Active
AGacker

23

‣ Window of vulnerability

MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…
x = public_info

kill

set(end)

output x
output secret_info

✘

secret
end

T

set(end)

kill

enclave {

}

x = secret_info
//compute with x
…
x = public_info

enclave {
output secret_info

}

Security Against Enclave Active
AGacker

23

‣ Window of vulnerability
‣ Smaller the window, beOer the security

MEMORY

 CODE DATA

secret_info

public_info

x = secret_info
//compute with x
…
x = public_info

kill

set(end)

output x
output secret_info

✘

secret
end

T

Enforcing Security against
Enclave Active AGackers

24

‣ Theorem: Well-typed IMPE programs are secure
against enclave active aGacker

‣ Only for aGacks launched after the enclaves
(containing the data to be erased) are killed

Recap

25

Recap

25

‣ Well-typed IMPE programs are:

‣ Secure against passive aGacker

‣ Secure against non-enclave active aGacker

‣ Partially secure against enclave active aGacker

Recap

25

‣ Well-typed IMPE programs are:

‣ Secure against passive aGacker

‣ Secure against non-enclave active aGacker

‣ Partially secure against enclave active aGacker

How to partition IMPE programs into enclaves

How to Partition Program into
Enclaves?

Trivial solution: Place entire application inside an enclave

26

How to Partition Program into
Enclaves?

Trivial solution: Place entire application inside an enclave

‣ Increases trusted computing base (TCB)

‣ For non-enclave active aGacker

‣ enclave code is assumed to have no vulnerabilities

‣ More enclave code = more assumptions

26

How to Partition Program into
Enclaves?

Trivial solution: Place entire application inside an enclave

‣ Increases trusted computing base (TCB)

‣ For non-enclave active aGacker

‣ enclave code is assumed to have no vulnerabilities

‣ More enclave code = more assumptions

‣ Increases window of vulnerability

‣ Can’t kill an enclave until the end

‣ Data to be erased lives longer

26

How to Partition Program into
Enclaves?

Using multiple enclaves:

‣ Fine-grained partitioning leads to smaller enclaves

‣ Reduces the lifetime of data to be erased

‣ Tedious and error-prone

27

How to Partition Program into
Enclaves?

Using multiple enclaves:

‣ Fine-grained partitioning leads to smaller enclaves

‣ Reduces the lifetime of data to be erased

‣ Tedious and error-prone

27

We can automatically infer enclave placement!

Enclave Inference as Constraint
Satisfaction

28

Enclave Inference as Constraint
Satisfaction

28

Program
w/out

Enclaves

Enclave Inference as Constraint
Satisfaction

28

‣ Sensitive data should be in
some enclave
‣ A killed enclave cannot be

accessed
constraints

Program
w/out

Enclaves

Enclave Inference as Constraint
Satisfaction

28

‣ Sensitive data should be in
some enclave
‣ A killed enclave cannot be

accessed
constraints

Program
w/out

Enclaves
Solver

Enclave Inference as Constraint
Satisfaction

28

‣ Sensitive data should be in
some enclave
‣ A killed enclave cannot be

accessed
constraints

Program
w/out

Enclaves
Solver IMPE Program

Solution is a well-typed IMPE program

Enclave Inference as Constraint
Satisfaction

28

‣ Sensitive data should be in
some enclave
‣ A killed enclave cannot be

accessed
constraints

Program
w/out

Enclaves
Solver IMPE Program

IMPE Program

IMPE Program

Solution is a well-typed IMPE program

Multiple Solutions!

Enclave Inference as Constraint
Optimization

29

‣ Sensitive data should be in
some enclave
‣ A killed enclave cannot be

accessed
constraints

Program
w/out

Enclaves

Solver IMPE Program

Enclave Inference as Constraint
Optimization

29

‣ Sensitive data should be in
some enclave
‣ A killed enclave cannot be

accessed
constraints

Program
w/out

Enclaves

Solver IMPE Program

Objective Function

Example Objective Functions

1. Minimize the TCB

‣ Reduce the number of statements inside enclaves

30

Example Objective Functions

1. Minimize the TCB

‣ Reduce the number of statements inside enclaves

2. Minimize the window of vulnerability

‣ Place code and data in as many different enclaves
as possible

‣ Kill an enclave as soon as possible

30

Summary

31

Summary

1. Strong information-flow guarantees using
hardware protection mechanisms (enclaves)

2. Automatically infer enclave placement in an
application relieving the programmers’ burden

31

