
A framework for verifying Conflict-free
Replicated Data Types (CRDTs)

Dominic Mulligan
Joint work with Victor Gomes, Martin Kleppmann, and Alastair Beresford

S-REPLS 6, University College London, May 2017
1



Distributed systems: quick introduction

Distributed systems characterised by:

• A number of nodes/processes
• Potentially widely geographically distributed
• Performing local processing
• Passing messages back and forth across a network

Implicit shared global state

2



Distributed systems: quick introduction

Distributed systems characterised by:

• A number of nodes/processes
• Potentially widely geographically distributed
• Performing local processing
• Passing messages back and forth across a network

Implicit shared global state

2



Strong consistency

Strong consistency model:

• Used in e.g. in relational databases
• Tries to make system behave like a single machine

May be costly to achieve:

• Hundreds of thousands, or millions of replicas
• Replicas may be widely separated, or network slow

or not desired: e.g. in calendar applications

3



Strong consistency

Strong consistency model:

• Used in e.g. in relational databases
• Tries to make system behave like a single machine

May be costly to achieve:

• Hundreds of thousands, or millions of replicas
• Replicas may be widely separated, or network slow

or not desired: e.g. in calendar applications

3



Relaxed consistency models

Observations motivate relaxed consistency models

Popular alternative is eventual consistency

Used in many NoSQL distributed database systems

Informally:

1. If no changes are made to some component of shared
global state

2. Eventually all replicas will converge to some consensus on
value of that component

4



Relaxed consistency models

Observations motivate relaxed consistency models

Popular alternative is eventual consistency

Used in many NoSQL distributed database systems

Informally:

1. If no changes are made to some component of shared
global state

2. Eventually all replicas will converge to some consensus on
value of that component

4



Eventual consistency

Eventual consistency is very weak consistency model!

Model:

• makes no guarantees in case where updates never cease,
• and does not constrain return value of intermediate reads

5



Eventual consistency

Eventual consistency is very weak consistency model!

Model:

• makes no guarantees in case where updates never cease,
• and does not constrain return value of intermediate reads

5



Trade-offs

Range of consistency models exists because of a tradeoff:

Performance vs. guarantees offered by model

Possible to find intermediate models:

• Obtain stronger guarantees than those provided by
eventual consistency

• Without inheriting the inherent costs of strong consistency

One such consistency model is strong eventual consistency

6



Trade-offs

Range of consistency models exists because of a tradeoff:

Performance vs. guarantees offered by model

Possible to find intermediate models:

• Obtain stronger guarantees than those provided by
eventual consistency

• Without inheriting the inherent costs of strong consistency

One such consistency model is strong eventual consistency

6



Trade-offs

Range of consistency models exists because of a tradeoff:

Performance vs. guarantees offered by model

Possible to find intermediate models:

• Obtain stronger guarantees than those provided by
eventual consistency

• Without inheriting the inherent costs of strong consistency

One such consistency model is strong eventual consistency

6



Strong eventual consistency

Strong eventual consistency (Shapiro, 2011) has:

• Performance and fault-tolerance characteristics similar to
eventual consistency

• Provides stronger guarantees

A system satisfying strong eventual consistency must satisfy:

• Correct replicas that have received same updates have
same state,

• Update delivered at a replica is eventually delivered to all
replicas,

• All executions must terminate

First property (‘convergence’) most important

7



Strong eventual consistency

Strong eventual consistency (Shapiro, 2011) has:

• Performance and fault-tolerance characteristics similar to
eventual consistency

• Provides stronger guarantees

A system satisfying strong eventual consistency must satisfy:

• Correct replicas that have received same updates have
same state,

• Update delivered at a replica is eventually delivered to all
replicas,

• All executions must terminate

First property (‘convergence’) most important

7



Strong eventual consistency

Strong eventual consistency (Shapiro, 2011) has:

• Performance and fault-tolerance characteristics similar to
eventual consistency

• Provides stronger guarantees

A system satisfying strong eventual consistency must satisfy:

• Correct replicas that have received same updates have
same state,

• Update delivered at a replica is eventually delivered to all
replicas,

• All executions must terminate

First property (‘convergence’) most important

7



Conflict Free Replicated Datatypes (CRDTs)

Achieving consensus in SEC:

• Typically requires conflict resolution policy
• Simple policies cause data loss, complex ones are error
prone

Observation:

• Some operations naturally commutative
• Concurrent operations can therefore be applied in any
order

Generalise this to other data structures and operations

CRDTs = replicated data types with commutative (concurrent)
operations

8



Conflict Free Replicated Datatypes (CRDTs)

Achieving consensus in SEC:

• Typically requires conflict resolution policy
• Simple policies cause data loss, complex ones are error
prone

Observation:

• Some operations naturally commutative
• Concurrent operations can therefore be applied in any
order

Generalise this to other data structures and operations

CRDTs = replicated data types with commutative (concurrent)
operations

8



Conflict Free Replicated Datatypes (CRDTs)

Achieving consensus in SEC:

• Typically requires conflict resolution policy
• Simple policies cause data loss, complex ones are error
prone

Observation:

• Some operations naturally commutative
• Concurrent operations can therefore be applied in any
order

Generalise this to other data structures and operations

CRDTs = replicated data types with commutative (concurrent)
operations

8



Three families of CRDT

Three different types of CRDT are known:

• Operation based CRDTs: construct operations so they are
commutative

• State based CRDTs: broadcast entire state of replica when it
changes

• Delta-CRDTs: broadcast changes to states, not entire states

Operation based CRDTs require stronger network behaviour

We consider operation based CRDTs in this work

9



Three families of CRDT

Three different types of CRDT are known:

• Operation based CRDTs: construct operations so they are
commutative

• State based CRDTs: broadcast entire state of replica when it
changes

• Delta-CRDTs: broadcast changes to states, not entire states

Operation based CRDTs require stronger network behaviour

We consider operation based CRDTs in this work

9



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof

• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



More verification?

Rest of talk: overview of another distributed systems
verification project

We use Isabelle/HOL to provide a mechanical proof of
correctness

But why should you trust our proof?

11



Diagnosing bugs in previous proofs

Relied on high-level axioms stated in terms of data structure,
and operations on it

But reasoning about data structure is hard, and unintuitive

(It’s why there’s a mechanical proof in the first place...)

Wrong axioms are therefore hard to spot

Need to think of all possible network behaviours to spot them

Claim: need end-to-end verification to ensure correctness

Ensure required properties hold in all network executions

12



Diagnosing bugs in previous proofs

Relied on high-level axioms stated in terms of data structure,
and operations on it

But reasoning about data structure is hard, and unintuitive

(It’s why there’s a mechanical proof in the first place...)

Wrong axioms are therefore hard to spot

Need to think of all possible network behaviours to spot them

Claim: need end-to-end verification to ensure correctness

Ensure required properties hold in all network executions

12



Diagnosing bugs in previous proofs

Relied on high-level axioms stated in terms of data structure,
and operations on it

But reasoning about data structure is hard, and unintuitive

(It’s why there’s a mechanical proof in the first place...)

Wrong axioms are therefore hard to spot

Need to think of all possible network behaviours to spot them

Claim: need end-to-end verification to ensure correctness

Ensure required properties hold in all network executions

12



Our contributions: a framework for verifying CRDTs

We develop a stratified proof framework for CRDTs

We have three different ‘components’:

• A network model
• An abstract convergence theorem
• Implementations of concrete CRDTs

Piecing all three together gives a concrete convergence theorem
for the CRDT

Two components are reusable

13



Our contributions: a framework for verifying CRDTs

We develop a stratified proof framework for CRDTs

We have three different ‘components’:

• A network model
• An abstract convergence theorem
• Implementations of concrete CRDTs

Piecing all three together gives a concrete convergence theorem
for the CRDT

Two components are reusable

13



Our contributions: a framework for verifying CRDTs

We develop a stratified proof framework for CRDTs

We have three different ‘components’:

• A network model
• An abstract convergence theorem
• Implementations of concrete CRDTs

Piecing all three together gives a concrete convergence theorem
for the CRDT

Two components are reusable

13



Our contributions: modelling the network

In one component, we:

• Model a standard class of networks, axiomatically
• Our axioms are easy to defend, only 5 of them
• Use standard broadcast/deliver event model for network
• Contents of messages are abstract

By working axiomatically:

• Reason about all possible network behaviours
• Eliminate corner cases that may invalidate proofs

14



Our contributions: modelling the network

In one component, we:

• Model a standard class of networks, axiomatically
• Our axioms are easy to defend, only 5 of them
• Use standard broadcast/deliver event model for network
• Contents of messages are abstract

By working axiomatically:

• Reason about all possible network behaviours
• Eliminate corner cases that may invalidate proofs

14



Our contributions: abstract convergence

In another component, we:

Parameterise our work with a strict partial order on abstract
‘events’ called happens before

Parameterise by a method of lifting ‘events’ to ‘state
transformers’

For two lists of events xs and ys, if we assume:

• Concurrent events in both xs and ys commute
• All events in xs and ys respect the happens before relation

Then: applying the state transformers in both xs and ys to the
same initial state gives the same final state

15



Our contributions: abstract convergence

In another component, we:

Parameterise our work with a strict partial order on abstract
‘events’ called happens before

Parameterise by a method of lifting ‘events’ to ‘state
transformers’

For two lists of events xs and ys, if we assume:

• Concurrent events in both xs and ys commute
• All events in xs and ys respect the happens before relation

Then: applying the state transformers in both xs and ys to the
same initial state gives the same final state

15



Our contributions: abstract convergence

In another component, we:

Parameterise our work with a strict partial order on abstract
‘events’ called happens before

Parameterise by a method of lifting ‘events’ to ‘state
transformers’

For two lists of events xs and ys, if we assume:

• Concurrent events in both xs and ys commute
• All events in xs and ys respect the happens before relation

Then: applying the state transformers in both xs and ys to the
same initial state gives the same final state

15



Our contributions: abstract convergence

In another component, we:

Parameterise our work with a strict partial order on abstract
‘events’ called happens before

Parameterise by a method of lifting ‘events’ to ‘state
transformers’

For two lists of events xs and ys, if we assume:

• Concurrent events in both xs and ys commute
• All events in xs and ys respect the happens before relation

Then: applying the state transformers in both xs and ys to the
same initial state gives the same final state

15



Our contributions: Replicated Growable Array

In a final component, we:

• Formalise the Replicated Growable Array (RGA) CRDT
• “the reason why the RGA actually works has been a bit of a
mystery”

• Show operations commute with themselves, and with each
other, under assumptions

• Work in terms of insert/delete messages with concrete
elements to insert into array

16



Composing components

We compose:

• Our network model has an associated concrete happens
before relation

• Given in terms of broadcast and deliver events
• This relation is a strict partial order

We can then replace the parameter in our abstract theorem
with this relation

17



Composing components

We compose:

• Our network model has an associated concrete happens
before relation

• Given in terms of broadcast and deliver events
• This relation is a strict partial order

We can then replace the parameter in our abstract theorem
with this relation

17



Composing components

As a corollary of abstract theorem, obtain a concrete
convergence theorem for CRDT

Assuming two finite lists of deliver events, with insert/delete
messages

Such that the messages delivered are the same (but not
necessarily in same order)

Then applying these insert/delete operations to an initial state
yields the same list

Convergence, from definition of strong eventual consistency

18



Composing components

As a corollary of abstract theorem, obtain a concrete
convergence theorem for CRDT

Assuming two finite lists of deliver events, with insert/delete
messages

Such that the messages delivered are the same (but not
necessarily in same order)

Then applying these insert/delete operations to an initial state
yields the same list

Convergence, from definition of strong eventual consistency

18



Composing components

As a corollary of abstract theorem, obtain a concrete
convergence theorem for CRDT

Assuming two finite lists of deliver events, with insert/delete
messages

Such that the messages delivered are the same (but not
necessarily in same order)

Then applying these insert/delete operations to an initial state
yields the same list

Convergence, from definition of strong eventual consistency

18



Composing components

As a corollary of abstract theorem, obtain a concrete
convergence theorem for CRDT

Assuming two finite lists of deliver events, with insert/delete
messages

Such that the messages delivered are the same (but not
necessarily in same order)

Then applying these insert/delete operations to an initial state
yields the same list

Convergence, from definition of strong eventual consistency

18



Composing components

As a corollary of abstract theorem, obtain a concrete
convergence theorem for CRDT

Assuming two finite lists of deliver events, with insert/delete
messages

Such that the messages delivered are the same (but not
necessarily in same order)

Then applying these insert/delete operations to an initial state
yields the same list

Convergence, from definition of strong eventual consistency

18



A note

Abstract convergence theorem does not mention:

• Network,
• Concrete CRDT implementation

Purely a theorem about orders, and lists of ordered elements

Claim: this theorem is ‘essence’ of CRDT convergence

If true, other CRDTs should be verifiable using it

1. Observed-removed set
2. Distributed increment-decrement counter

19



A note

Abstract convergence theorem does not mention:

• Network,
• Concrete CRDT implementation

Purely a theorem about orders, and lists of ordered elements

Claim: this theorem is ‘essence’ of CRDT convergence

If true, other CRDTs should be verifiable using it

1. Observed-removed set
2. Distributed increment-decrement counter

19



A note

Abstract convergence theorem does not mention:

• Network,
• Concrete CRDT implementation

Purely a theorem about orders, and lists of ordered elements

Claim: this theorem is ‘essence’ of CRDT convergence

If true, other CRDTs should be verifiable using it

1. Observed-removed set
2. Distributed increment-decrement counter

19



A note

Abstract convergence theorem does not mention:

• Network,
• Concrete CRDT implementation

Purely a theorem about orders, and lists of ordered elements

Claim: this theorem is ‘essence’ of CRDT convergence

If true, other CRDTs should be verifiable using it

1. Observed-removed set
2. Distributed increment-decrement counter

19



Conclusions

Distributed algorithms hard to verify

Many mistakes in previous proofs of distributed algorithms

Even those checked by machine!

Must use end-to-end verification for confidence

Developed a framework for end-to-end verification of CRDTs

Verified RGA, ORSet, and counter CRDT implementations as
examples

20



Conclusions

Distributed algorithms hard to verify

Many mistakes in previous proofs of distributed algorithms

Even those checked by machine!

Must use end-to-end verification for confidence

Developed a framework for end-to-end verification of CRDTs

Verified RGA, ORSet, and counter CRDT implementations as
examples

20



Conclusions

Distributed algorithms hard to verify

Many mistakes in previous proofs of distributed algorithms

Even those checked by machine!

Must use end-to-end verification for confidence

Developed a framework for end-to-end verification of CRDTs

Verified RGA, ORSet, and counter CRDT implementations as
examples

20



Our network axioms

Write histi for local (totally ordered) history of node i

Write m @i n for local message ordering at node i

Write midm for message identifier of message m

All events are either a Broadcast or a Delivery of message

21



Delivery has a cause

Deliver m ∈ histi −→ ∃j. Broadcast m ∈ histj

22



Deliver locally

Broadcast m ∈ histi −→ Broadcast m @i Deliver m

23



Message identifiers unique

Broadcast m ∈ histi ∧
Broadcast n ∈ histj ∧

midm = midn −→ m = n ∧ i = j

24



Causal networks

Write hb m n for happens before relation, defined by:

Broadcast m @i Deliver n

hb m n

Deliver m @i Broadcast n

hb m n

hb m n hb n o

hb m o

25



Causality

Deliver m ∈ histj ∧ hb n m −→ Deliver n @j Deliver m

26


