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Distributed systems: quick introduction

Distributed systems characterised by:

• A number of nodes/processes
• Potentially widely geographically distributed
• Performing local processing
• Passing messages back and forth across a network

Implicit shared global state
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Strong consistency

Strong consistency model:

• Used in e.g. in relational databases
• Tries to make system behave like a single machine

May be costly to achieve:

• Hundreds of thousands, or millions of replicas
• Replicas may be widely separated, or network slow

or not desired: e.g. in calendar applications
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Relaxed consistency models

Observations motivate relaxed consistency models

Popular alternative is eventual consistency

Used in many NoSQL distributed database systems

Informally:

1. If no changes are made to some component of shared
global state

2. Eventually all replicas will converge to some consensus on
value of that component
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Eventual consistency

Eventual consistency is very weak consistency model!

Model:

• makes no guarantees in case where updates never cease,
• and does not constrain return value of intermediate reads
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Trade-offs

Range of consistency models exists because of a tradeoff:

Performance vs. guarantees offered by model

Possible to find intermediate models:

• Obtain stronger guarantees than those provided by
eventual consistency

• Without inheriting the inherent costs of strong consistency

One such consistency model is strong eventual consistency
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Strong eventual consistency

Strong eventual consistency (Shapiro, 2011) has:

• Performance and fault-tolerance characteristics similar to
eventual consistency

• Provides stronger guarantees

A system satisfying strong eventual consistency must satisfy:

• Correct replicas that have received same updates have
same state,

• Update delivered at a replica is eventually delivered to all
replicas,

• All executions must terminate

First property (‘convergence’) most important
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Conflict Free Replicated Datatypes (CRDTs)

Achieving consensus in SEC:

• Typically requires conflict resolution policy
• Simple policies cause data loss, complex ones are error
prone

Observation:

• Some operations naturally commutative
• Concurrent operations can therefore be applied in any
order

Generalise this to other data structures and operations

CRDTs = replicated data types with commutative (concurrent)
operations
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Three families of CRDT

Three different types of CRDT are known:

• Operation based CRDTs: construct operations so they are
commutative

• State based CRDTs: broadcast entire state of replica when it
changes

• Delta-CRDTs: broadcast changes to states, not entire states

Operation based CRDTs require stronger network behaviour

We consider operation based CRDTs in this work
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Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof

• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



Why is verification necessary here?

Operational Transformation is a closely related technique:

• Algorithms have been presented without any proof
• Hand-written proofs of convergence tend to be long and
complex

• Algorithms have claimed to satisfy TP2 but later shown
incorrect

• In classic formulation of OT, later shown impossible to
achieve TP2

• Several wrong machine checked proofs presented (!)

See also (Fonseca et al):

An Empirical Study on the Correctness of Formally Verified
Distributed Systems

10



More verification?

Rest of talk: overview of another distributed systems
verification project

We use Isabelle/HOL to provide a mechanical proof of
correctness

But why should you trust our proof?
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Diagnosing bugs in previous proofs

Relied on high-level axioms stated in terms of data structure,
and operations on it

But reasoning about data structure is hard, and unintuitive

(It’s why there’s a mechanical proof in the first place...)

Wrong axioms are therefore hard to spot

Need to think of all possible network behaviours to spot them

Claim: need end-to-end verification to ensure correctness

Ensure required properties hold in all network executions
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Our contributions: a framework for verifying CRDTs

We develop a stratified proof framework for CRDTs

We have three different ‘components’:

• A network model
• An abstract convergence theorem
• Implementations of concrete CRDTs

Piecing all three together gives a concrete convergence theorem
for the CRDT

Two components are reusable
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Our contributions: modelling the network

In one component, we:

• Model a standard class of networks, axiomatically
• Our axioms are easy to defend, only 5 of them
• Use standard broadcast/deliver event model for network
• Contents of messages are abstract

By working axiomatically:

• Reason about all possible network behaviours
• Eliminate corner cases that may invalidate proofs
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Our contributions: abstract convergence

In another component, we:

Parameterise our work with a strict partial order on abstract
‘events’ called happens before

Parameterise by a method of lifting ‘events’ to ‘state
transformers’

For two lists of events xs and ys, if we assume:

• Concurrent events in both xs and ys commute
• All events in xs and ys respect the happens before relation

Then: applying the state transformers in both xs and ys to the
same initial state gives the same final state
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Our contributions: Replicated Growable Array

In a final component, we:

• Formalise the Replicated Growable Array (RGA) CRDT
• “the reason why the RGA actually works has been a bit of a
mystery”

• Show operations commute with themselves, and with each
other, under assumptions

• Work in terms of insert/delete messages with concrete
elements to insert into array
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Composing components

We compose:

• Our network model has an associated concrete happens
before relation

• Given in terms of broadcast and deliver events
• This relation is a strict partial order

We can then replace the parameter in our abstract theorem
with this relation
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Composing components

As a corollary of abstract theorem, obtain a concrete
convergence theorem for CRDT

Assuming two finite lists of deliver events, with insert/delete
messages

Such that the messages delivered are the same (but not
necessarily in same order)

Then applying these insert/delete operations to an initial state
yields the same list

Convergence, from definition of strong eventual consistency
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A note

Abstract convergence theorem does not mention:

• Network,
• Concrete CRDT implementation

Purely a theorem about orders, and lists of ordered elements

Claim: this theorem is ‘essence’ of CRDT convergence

If true, other CRDTs should be verifiable using it

1. Observed-removed set
2. Distributed increment-decrement counter

19
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Conclusions

Distributed algorithms hard to verify

Many mistakes in previous proofs of distributed algorithms

Even those checked by machine!

Must use end-to-end verification for confidence

Developed a framework for end-to-end verification of CRDTs

Verified RGA, ORSet, and counter CRDT implementations as
examples
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Our network axioms

Write histi for local (totally ordered) history of node i

Write m @i n for local message ordering at node i

Write midm for message identifier of message m

All events are either a Broadcast or a Delivery of message
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Delivery has a cause

Deliver m ∈ histi −→ ∃j. Broadcast m ∈ histj
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Deliver locally

Broadcast m ∈ histi −→ Broadcast m @i Deliver m
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Message identifiers unique

Broadcast m ∈ histi ∧
Broadcast n ∈ histj ∧

midm = midn −→ m = n ∧ i = j
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Causal networks

Write hb m n for happens before relation, defined by:

Broadcast m @i Deliver n

hb m n

Deliver m @i Broadcast n

hb m n

hb m n hb n o

hb m o
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Causality

Deliver m ∈ histj ∧ hb n m −→ Deliver n @j Deliver m
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