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A functional programming language
A verified compiler
Veritied applications

Theorem proving technology



Full functional correctness
Rich security properties
Interactive

1,000s of lines

Not necessarily mainstream

Bug finding
Simple security properties
Automatic
1,000,000 of lines

C, Java & ASM



Design: “The CakeML language is designed to be both easy
to program in and easy to reason about formally”

Reality: CakeML, the language = Standard ML without functors

o ./\ )

.e. with almost everything else:

v higher-order functions

v mutual recursion and polymorphism

v datatypes and (nested) pattern matching

v references and (user-defined) exceptions

v modules, signatures, abstract types

v polymorphic/byte arrays/vectors, FFI calls

? right-to-left evaluation, prefers curried style
N 4 /
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was originally Significant effort wrt
Design: “The CakeML language # designec the semantics

to program in and easy to reason aboué
It is still cledn, but not always simple.

Reality: CakeML, the language = Standard ML without functors
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Values Languages Compiler transformations

source syntax

Parse concrete syntax
Infer types, exit if fail

Eliminate modules

P
o
no modules D
2 himes wih umbars
P
P
P
P

no cons names
no declarations

exhaustive
pat. matches
no pat. match

)

Reduce declarations to
exps; introduce global vars

Make patterns exhaustive

Move nullary constructor
patterns upwards

Compile pattern matches
to nested Ifs and Lets

Rephrase language
Fuse function calls/apps

into multi-arg calls/apps St ri n g

d Lcx/parse/infer types
calls wherever possible C O n C rete Sy n tax /p / y p

Remove deadcode

ClosLang:
last language
with closures
(has multi-arg

closures)

Prepare for closure conv.

abstract values incl. closures and ref pointers

—

Perform closure conv.

Inline small functions

BVL:
functional
language
without
closures

Fr?ld ch_nstants and
typed AST
Split over-sized functions U n y p e

into many small functions

Compile global vars into a
dynamically resized array v

Optimise Let-expressions

only 1 global,
handle in call
Switch to imperative style

A Compile and optimise

memory allocations

Datalang:
imperative
language

abstract values incl.

ref and code pointers

\VAVRAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVILVAVAVAVAVAVAVIAVAVAV

Y Remove data abstraction
Simplify program ( 1 2 I I_S )
WordLang: Select target instructions
imperative

language with Perform SSA-like renaming

machine words, Force two-reg code (if req.)

assembly lang.

memory and
I a GC primitive Remove deadcode
[}
Q Allocate register names 1 b |
©
3| "> Concretise stack generic assemply
S StackLang: Implement GC primitive
S - .
S |Imperat|ve Turn stack access into v
s language memory acceses
o with array-like .
5 stack and Rename registers to match
E optional GC arch registers/conventions
: Select instructions bytes
§ LabLang: Delete no-ops (Tick, Skip) y
1S

Encode program as

ine code >
(7 N resolve labels x86/ARM/MIPS/RISC V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

i

64-bit 32-bit
words words
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Values

source syntax

abstract values incl.
ref and code pointers

64-bit 32-bit
words words

abstract values incl. closures and ref pointers

machine words and code labels

i

Languages

no modules

no cons names
no declarations

exhaustive
pat. matches
no pat. match

)

ClosLang:
last language
with closures
(has multi-arg

closures)

—

BVL:
functional
language
without
closures

only 1 global,
handle in call

Datalang:
imperative

language

)

WordLang:
imperative
language with
machine words,
memory and
a GC primitive

—

StackLang:
imperative
language
with array-like
stack and
optional GC

LabLang:
assembly lang.

ARMv6 S

<
<
P
P
P
P
P
P
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Compiler transformations

Parse concrete syntax
Infer types, exit if fail

Eliminate modules

Replace constructor
names with numbers

Reduce declarations to
exps; introduce global vars

Make patterns exhaustive

Move nullary constructor
patterns upwards

Compile pattern matches
to nested Ifs and Lets

Rephrase language

Fuse function calls/apps
into multi-arg calls/apps

Track where closure values
flow; annotate program

Introduce C-style fast
calls wherever possible

Remove deadcode
Prepare for closure conv.
Perform closure conv.
Inline small functions

Fold constants and
shrink Lets

Split over-sized functions
into many small functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions
Switch to imperative style
Reduce caller-saved vars

Combine adjacent
memory allocations

Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Remove deadcode
Allocate register names
Concretise stack
Implement GC primitive

Turn stack access into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code
Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

| Crrnme ) Graoon) eson ) (s

All languages communicate with the external world
via a byte-array-based foreign-function interface.

string

>

p———— Lex/parse/infer types

untyped AST

v

Compile and optimise

(12 ILs)

\

Select instructions,
resolve labels

generic assembly

All iImplemented
in HOL

a pure, total
functional PL

bytes

<86/ARM/MIPS/RISC V
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Dimensions of Compiler Veritication



source code

< how far compiler goes )

abstract syntax
intermediate language

bytecode

machine code
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intermediate language

bytecode

machine code

compiler implementation  implementation interface with the
algorithm in ML in machine code  underlying system
A\

( the thing that is veritied )

8




source code

< how far compiler goes )

abstract syntax
intermediate language

bytecode Our verification will cover the full
spectrum of both dimensions.

machine code

compiler implementation  implementation interface with the
algorithm in ML in machine code  underlying system
A\

( the thing that is veritied )

8




Ecosystem

Proof-producing synthesis Verified compiler backend

HOL functions Emdl CakeML AST Emd CakeML AST —>

Verified parsing Verified type inference

el |B — N E NNy — e 'C W38 — typeable yes/no

Proof-producing verification-condition generation

@G g — e P e e ik i.e. a ‘verification condition’

Also: x86 implementation with read-eval-print-loop




Unix-style utilities

g e

Processing Output stream

Pure or stateful




Applications

Unix-style utilities
* cat

* sort Johannes Pohjola
* grep
o diff+patch

* bootstrapped compiler

Standard library for CakeML:

e module: char I/O stdin/stdout
* module: reading of files

* module: reading command-line arguments
* standard modules: lists, vectors, arrays, strings, characters, etc.



Or Isabelle/HOL or
Cog or ...
(length [] = 0) A
(length (h::t) = | + length t)

—Vx Y. length (x++y) = length x + length y
Induct_on x THEN SRW_TAC [] []

EVAL ('length [1;2;3] ) = (~length [I;2;3] = 3)

Secure

evaluation 2



~15.000 loc

(compile conf std_in = ...)

—Vconf p. good init init init’ conf =
.. © o . Theorem
sem init p = sem_x86 init’ (compile conf p)
[13 IL semantics, > 100,000 lop] Proof

EVAL (‘compile ... “val x = ..."") =
(Fcompile ... “val x = ..." = 0x48,0x39 ...)

Secure
evaluation

13



~15.000 loc

(compile conf std_in = ...)

—Vconf p. good _initinit init’ conf = i
sem init p Slow: ile conf p)

15 minutes to 2 days

cs, > 100,000 lop]

EVAL (‘compile ... “val x = ..."") =
(Fcompile ... “val x = ..." = 0x48,0x39 ...)

Secure
evaluation

[13 IL semag

13



fun length [] =0
| length (h::t) = | + length t

= length (z4++y) | v =
Jvivg.length x | v1 N length y |l vo A v = v1 + v9

CakeML

semantics

Myreen & Owens, ICFP °| 2




CFML: Characteristic Formulae for ML
Arthur Charguéraud

“CFML can be used to verify
Caml programs using
the Coq proof assistant.”

Arthur's PhD topic

We want CF for CakeML
Arthur’s student Armaél Guéneau — Chalmers visit



What is CF?

Verification conditions for ML programs.

For standard Hoare logic:

It suffices to show: To prove:
P = wp(c,Q) {P}c{Q}

For Caml programs:
It suffices to show: To prove:

(}cfeHQ “{H}e{Q}”

cf is a function similar to wp.
It produces a verification condition (higher-order sep. logic).



Weaknesses of Arthur’s CFML for Caml

CFML.: The cf function is defined in OCaml (i.e. outside of Coq)

CFML: Soundness proved mostly outside of Coq (pen and paper).
CFML: Soundness proved w.r.t. idealise semantics of OCaml.

CFML.: does not support I/0O or exceptions.



Aims with CakeML CF

CFML.: The cf function is defined in OCaml (i.e. outside of Coq)

CFML: Soundness proved mostly outside of Coq (pen and paper).
CFML: Soundness proved w.r.t. idealise semantics of OCaml.

CFML.: does not support I/0O or exceptions.



Aims with CakeML CF

CFML.: The cf function is defined in OCaml (i.e. outside of Coq)
CakeML CF: defines cf as a function in the logic

CFML: Soundness proved mostly outside of Coq (pen and paper).
CFML: Soundness proved w.r.t. idealise semantics of OCaml.

CakeML CF: soundness proved in the logic w.r.t. CakeML semantics

CFML.: does not support I/0O or exceptions.

CakeML CF: supports all CakeML language features
(incl. 1/0 and exceptions)

Weakness of CakeML CF: clunkier values (deep embedding), tactics etc.



V st.

Soundness thm

2 CF generated proof obligation )

Fcfeenv H QQ = Z CakeML semantics state )

4 :
semantics

of CakeML
source

H (state_to_set st) =

dst’ hy hy v ck.
evaluate (st with clock := ck) env [e] = (st’,Rval [v]) A
split (state_to_set st’) (hs,hy) A Q v hy

(Version before support for exceptions was added.)



/O semantics in CakeML (FFI)

The CakeML state carries an oracle (with a type variable):

0 ffi_state =
<| oracle : (string — 6 — Dbyte list — 6 oracle_result);
ffi_state : O;
final_event : (final_event option);
io_events : (io_event list) |>

final_event = Final_event string (byte list) ffi_outcome
ffi_outcome = FFl_ diverged | FFI_failed
io_event = |O_event string ((byte X byte) list)

0 oracle_result = Oracle_return 6 (byte list) | Oracle_diverge | Oracle_fail



/O semantics in CakeML (FFI)

The CakeML state carries an oracle (with a type variable):

0 ffi_state =
<| oracle : (string — 6 — Dbyte list — 6 oracle_result);
ffi_state : O;
final_event : (final_event option);
io_events : (io_event list) |>

final_event = Final_event string (byte list) ffi_outcome
ffi_outcome = FFl_ diverged | FFI_failed
io_event = |O_event string ((byte X byte) list)

0 oracle_result = Oracle_return 8 (byte 1ist) | Oracle_diverge | Oracle_fail



/O continued

Reminder about the soundness theorem:

—cfeenv H () =
V st.
H (state_to_set st) =
dst" hy hy v ck.
evaluate (st with clock := ck) env [e] = (st’,Rval [v]) A
split (state_to_set st’) (hs,hy) A Q v hy

Make state_to_set include a partitioned image of the FFI state
so that we can write:

(10 s1 uy [n] * 10 s ug ms * ... ) (state_to_set pp st)

where:

10 st uns = (As.dts. s = { FFl_part st u ns ts })



Spec for part of cat

= FILENAME fnm fnv A numOpenFDs fs < 255 =
{|CATFS fs «x STDOUT out|}
catl_v - [fnu]
{{POST
(A u.
3 content.
(UNIT () u) = (alist_lookup fs.files fnm = Some content) x
CATES fs « STDOUT (out @Q content))
(X e.
(BadFileName_exn e) * (—inFS_fname fnm fs) x CATFS fs x
STDOUT out)|}



function in logic (compiler)

type inference

compilation

23
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function in logic (compiler)

Proof-producing

type inference synthesis (ICFP’12)
compilation
D CakeML program ( )
implements compiler ESREETEE:
In the logic
— compiler ( ) = compiler-x86

— vc. (compiler ¢) implements ¢ COMECESS

Theorem: — compiler-x86 implements compiler

23



fun main u =
let
val cl = Commandline.arguments ()
1n
case compiler_x64 cl (read_all []) of
(c, e) => (print_app_list c; print_err e)
end

"cl # [] A EVERY validArg cl A LENGTH (FLAT cl) + LENGTH cl = 256 =
app (p:'ffi ffi_proj) ~(fetch_v "main" st)
[Conv NONE [1]
(STDOUT out * STDERR err *x (STDIN inp F * COMMANDLINE cl))
(POSTv uv. &UNIT TYPE () uv x*
STDOUT (out ++ (FLAT (MAP explode
(append (FST(compiler_x64 (TL(MAP implode cl))
inp)))))) *
STDERR (err ++ explode (SND(compiler_x64 (TL(MAP implode cl)) inp))) x
(STDIN "" T x COMMANDLINE cl)) ,

24
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Upcoming tutorials at
PLDI and ICFP

https://cakeml.org

Goal: Build a tool path for creating fully verified

applications.

Compiler for an ML-like programming language
Mechanically veritied in HOL-4

A tool to support the construction of veritied systems

25
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