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The CakeML Project

A functional programming language 
A verified compiler 
Verified applications 
Theorem proving technology 
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Formal Verification: Two 
Extremes

Full functional correctness

Rich security properties

Interactive

1,000s of lines

Not necessarily mainstream

Bug finding

Simple security properties

Automatic

C, Java & ASM

1,000,000 of lines
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The CakeML Language
“The CakeML language is designed to be both easy 
to program in and easy to reason about formally”

i.e. with almost everything else: 
✓  higher-order functions 
✓  mutual recursion and polymorphism 
✓  datatypes and (nested) pattern matching 
✓  references and (user-defined) exceptions 
✓  modules, signatures, abstract types 
✓  polymorphic/byte arrays/vectors, FFI calls 
?   right-to-left evaluation, prefers curried style

Reality: CakeML, the language ≅ Standard ML without functors

Design:
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The CakeML Language
“The CakeML language is designed to be both easy 
to program in and easy to reason about formally”

was originally

i.e. with almost everything else: 
✓  higher-order functions 
✓  mutual recursion and polymorphism 
✓  datatypes and (nested) pattern matching 
✓  references and (user-defined) exceptions 
✓  modules, signatures, abstract types 
✓  polymorphic/byte arrays/vectors, FFI calls 
?   right-to-left evaluation, prefers curried style

Reality: CakeML, the language ≅ Standard ML without functors

Design:

It is still clean, but not always simple.

Significant effort wrt 
the semantics
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The CakeML Compiler
Compiler transformations

source syntax

source AST

LanguagesValues
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no modules

no cons names

no declarations

exhaustive
pat. matches

no pat. match

3
2
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s

ClosLang:
last language
with closures
(has multi-arg

closures)

Infer types, exit if fail

Eliminate modules
Replace constructor 
names with numbers
Reduce declarations to
exps; introduce global vars
Make patterns exhaustive

Compile pattern matches
to nested Ifs and Lets
Rephrase language

Track where closure values
flow; annotate program

Fuse function calls/apps
into multi-arg calls/apps

Introduce C-style fast
calls wherever possible
Remove deadcode
Prepare for closure conv.

Perform closure conv.
Inline small functions
Fold constants and
shrink Lets
Split over-sized functions
into many small functions
Compile global vars into a
dynamically resized array
Optimise Let-expressions
Switch to imperative style

Remove deadcode

Combine adjacent
memory allocations
Remove data abstraction
Simplify program

Select target instructions
Perform SSA-like renaming

Force two-reg code (if req.)

Reduce caller-saved vars

Allocate register names
Concretise stack
Implement GC primitive
Turn stack access into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code
Delete no-ops (Tick, Skip)
Encode program as
concrete machine code

BVL: 
functional
language 
without

closures

only 1 global,
handle in call

DataLang:
imperative
language

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language 

with array-like 
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Move nullary constructor 
patterns upwards

https://cakeml.org 

Compile and optimise 
(12 ILs)

Lex/parse/infer typesconcrete syntax

untyped AST

Select instructions, 
resolve labels 

generic assembly

bytes

string

x86/ARM/MIPS/RISC V
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generic assembly

bytes

string

x86/ARM/MIPS/RISC V

All implemented 
in HOL 

(a pure, total 
functional PL)
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Dimensions of Compiler Verification
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Dimensions of Compiler Verification

source code

abstract syntax

intermediate language

bytecode

machine code

how far compiler goes

compiler
algorithm

implementation
in ML

implementation
in machine code

interface with the
underlying system

the thing that is verified

Our verification will cover the full
spectrum of both dimensions.
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Ecosystem

Proof-producing synthesis

Verified parsing Verified type inference

Proof-producing verification-condition generation

Also: x86 implementation with read-eval-print-loop

HOL functions CakeML AST

Verified compiler backend

CakeML AST machine code

ASCII CakeML AST CakeML AST typeable yes/no

CakeML AST Characteristic Formula i.e. a ‘verification condition’



Unix-style utilities

Input stream Processing Output stream

Stateful Stateful

Pure or stateful



Applications
Unix-style utilities

• cat
• sort
• grep

• bootstrapped compiler

Standard library for CakeML:

• module: char I/O stdin/stdout

• module: reading command-line arguments
• standard modules: lists, vectors, arrays, strings, characters, etc. 

• module: reading of files

• diff+patch

Johannes Pohjola



(length [] = 0) ∧
(length (h::t) = 1 + length t)

⊢∀x y. length (x++y) = length x + length y

Induct_on `x` THEN SRW_TAC [] []

Programming in HOL Or Isabelle/HOL or 
Coq or …

Theorem

Proof

EVAL (`length [1;2;3]`) = (⊢length [1;2;3] = 3)

Secure 
evaluation 12



(compile conf std_in = …)

⊢∀conf p. good_init init init’ conf ⇒
sem init p = sem_x86 init’ (compile conf p)

[13 IL semantics, > 100,000 lop]

Programming in HOL

Theorem

Proof

EVAL (`compile … “val x = …“`) =
 (⊢compile … “val x = …“ = 0x48,0x39 …)

Secure 
evaluation

~15,000 loc
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(compile conf std_in = …)

⊢∀conf p. good_init init init’ conf ⇒
sem init p = sem_x86 init’ (compile conf p)

[13 IL semantics, > 100,000 lop]

Programming in HOL

Theorem

Proof

EVAL (`compile … “val x = …“`) =
 (⊢compile … “val x = …“ = 0x48,0x39 …)

Secure 
evaluation

~15,000 loc

Slow: 
15 minutes to 2 days
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Myreen & Owens, ICFP ’12

fun length [] = 0
    | length (h::t) = 1 + length t

` length (x++y) + v )
9v1v2.length x + v1 ^ length y + v2 ^ v = v1 + v2

For Fast Execution: 
HOL to CakeML

CakeML 
semantics
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CFML: Characteristic Formulae for ML

“CFML can be used to verify  
Caml programs using  

the Coq proof assistant.”

Arthur Charguéraud

Arthur’s PhD topic

We want CF for CakeML
Arthur’s student Armaël Guéneau → Chalmers visit 



What is CF?
Verification conditions for ML programs.

For standard Hoare logic:

P ⇒ wp(c,Q)
It suffices to show: To prove:

{ P } c { Q }

For Caml programs:

cf e H Q
It suffices to show: To prove:

“ { H } e { Q } ”

cf is a function similar to wp.  
It produces a verification condition (higher-order sep. logic).



Weaknesses of Arthur’s CFML for Caml

CFML: The cf function is defined in OCaml (i.e. outside of Coq)

CFML: Soundness proved mostly outside of Coq (pen and paper).
CFML: Soundness proved w.r.t. idealise semantics of OCaml.

CFML: does not support I/O or exceptions.



Aims with CakeML CF

CFML: The cf function is defined in OCaml (i.e. outside of Coq)

CFML: Soundness proved mostly outside of Coq (pen and paper).
CFML: Soundness proved w.r.t. idealise semantics of OCaml.
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Aims with CakeML CF

CFML: The cf function is defined in OCaml (i.e. outside of Coq)

CFML: Soundness proved mostly outside of Coq (pen and paper).
CFML: Soundness proved w.r.t. idealise semantics of OCaml.

CFML: does not support I/O or exceptions.

CakeML CF: defines cf as a function in the logic

CakeML CF: soundness proved in the logic w.r.t. CakeML semantics

CakeML CF: supports all CakeML language features 
                     (incl. I/O and exceptions)

Weakness of CakeML CF: clunkier values (deep embedding), tactics etc.



Soundness thm

Moreover, as detailed in Section 3, we could extend the approach to handle new
language features that are not supported by CFML.

The soundness theorem, which justifies proving properties about a charac-
teristic formula to give equivalent properties about the program itself, is stated
as follows. If the characteristic formula for the deeply embedded expression e
(and environment env) holds for some shallowly embedded pre-condition H
and shallowly embedded post-condition Q , i.e., cf e env H Q , then, starting
from a state satisfying H , e is guaranteed to successfully evaluate in CakeML’s
functional big-step semantics [20], and reach a new state st 0 and value v sat-
isfying Q . Here state to set converts a CakeML state into a representation to
which one can apply separation logic connectives, and split asserts disjoint union:
split s (s1,s2) () s1 [ s2 = s ^ s1 \ s2 = ;.

` cf e env H Q )
8 st .
H (state to set st) )
9 st 0 hf hg v ck .
evaluate (st with clock := ck) env [e] = (st 0,Rval [v ]) ^
split (state to set st 0) (hf ,hg) ^ Q v hf

This mechanised proof eliminates the last bits of paper proof that need to
be trusted in CFML. Section 2 details the main steps leading to the proof.

We extend the CF framework introduced in CFML to handle two new language
features: exceptions, and I/O through CakeML’s foreign-function interface (FFI).
These extensions are proved sound with respect to the CakeML semantics, and
neatly make our framework able to handle all features of the CakeML program-
ming language.1

The extension which adds support for I/O is implemented by carefully modi-
fying the state to set function, shown in the soundness theorem above. We mod-
ified the state to set function so that it makes visible the state of the FFI in
the pre- and post-conditions. There were numerous tricky details to get right in
the definition of state to set because the design goal was to make I/O reasoning
local in the style of separation logic. Our support for I/O is local in that the
proof for a piece of code which only uses, say, the print-to-stdout FFI ports does
not impose any assumptions on the behaviour, state, or even existence of other
FFI ports, e.g., ports for reading-from-stdin. In the spirit of separation logic,
our framework allows combining di↵erent assertions about the FFI using CF’s
equivalent to the separation logic frame rule. Section 3 provides details on how
we modified state to set to make the FFI available in CF proofs.

Support for exceptions is implemented by making the post-conditions di↵er-
entiate whether the result is a normal return with a value or a value raised as
an exception. The new framework is able to reason about exception handling

1 CakeML’s module system is also supported in our CF framework, but supporting
modules did not require extending the original ideas of CFML.

6

(Version before support for exceptions was added.)

semantics 
of CakeML 

source

CF generated proof obligation 

CakeML semantics state



I/O semantics in CakeML (FFI)

so we left the type of the rest of the world as a type variable ✓, and we only
require that the user provide some oracle function s.oracle that describes how the
outside world will react to any FFI call. The FFI state has a s.final event field
that indicates whether the outside world has stopped the process (e.g., due to a
call to exit). The FFI state also keeps a list of all calls to the FFI (s.io events):
each event records the name of the FFI port3 that was called, and a list of byte
pairs, where map fst of that list is the input to the FFI call and map snd of the
list is the state of the array on return from the FFI call.

✓ ffi_state =
<| oracle : (string ! ✓ ! byte list ! ✓ oracle_result);
� state : ✓;
final event : (final_event option);
io events : (io_event list) |>

final_event = Final event string (byte list) ffi_outcome

ffi_outcome = FFI diverged | FFI failed
io_event = IO event string ((byte ⇥ byte) list)

✓ oracle_result = Oracle return ✓ (byte list) | Oracle diverge | Oracle fail

Fig. 7: The type for an FFI state in the CakeML operational semantics.

We enable reasoning about I/O in CF by modifying the state to set function
to expose an image of the FFI state as part of the set representation that the
separation logic connectives operate over.

The role of the state to set function is to split the state into parts that can be
separated using separating conjunction (⇤). For example, a CakeML state s1 with
references at locations 0, 1 and 2 becomes the following. Note that state to set
can only produce one Mem l _ for each location l in the store.

state to set s1 = { Mem 0 val0; Mem 1 val1; Mem 2 val2; . . . }
We can use p ⇤ q = (� s. 9 u v . split s (u,v) ^ p u ^ q v) to separate between as-
sertions such as the following. Here Loc l is the value of a reference in the
CakeML semantics (Figure 5), and Refv, Varray, and W8array are constructors
of the value type for store values.

r  v = (� s. 9 loc. r = Loc loc ^ s = { Mem loc (Refv v) } )
array r vs = (� s. 9 loc. r = Loc loc ^ s = { Mem loc (Varray vs) } )
byte array r bs = (� s. 9 loc. r = Loc loc ^ s = { Mem loc (W8array bs) } )

With these definitions it follows from (r1  v1 ⇤ r2  v2 ⇤ . . . ) (state to set s)
that r1 6= r2 and that updates to reference r1 do not a↵ect r2  v2 ⇤ . . . .

3 We have recently switched to using strings for port names, while numbers were used
previously [26] for FFI port names. Johannes Åman Pohjola made this improvement.

14

The CakeML state carries an oracle (with a type variable):
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I/O continued

Moreover, as detailed in Section 3, we could extend the approach to handle new
language features that are not supported by CFML.

The soundness theorem, which justifies proving properties about a charac-
teristic formula to give equivalent properties about the program itself, is stated
as follows. If the characteristic formula for the deeply embedded expression e
(and environment env) holds for some shallowly embedded pre-condition H
and shallowly embedded post-condition Q , i.e., cf e env H Q , then, starting
from a state satisfying H , e is guaranteed to successfully evaluate in CakeML’s
functional big-step semantics [20], and reach a new state st 0 and value v sat-
isfying Q . Here state to set converts a CakeML state into a representation to
which one can apply separation logic connectives, and split asserts disjoint union:
split s (s1,s2) () s1 [ s2 = s ^ s1 \ s2 = ;.

` cf e env H Q )
8 st .
H (state to set st) )
9 st 0 hf hg v ck .
evaluate (st with clock := ck) env [e] = (st 0,Rval [v ]) ^
split (state to set st 0) (hf ,hg) ^ Q v hf

This mechanised proof eliminates the last bits of paper proof that need to
be trusted in CFML. Section 2 details the main steps leading to the proof.

We extend the CF framework introduced in CFML to handle two new language
features: exceptions, and I/O through CakeML’s foreign-function interface (FFI).
These extensions are proved sound with respect to the CakeML semantics, and
neatly make our framework able to handle all features of the CakeML program-
ming language.1

The extension which adds support for I/O is implemented by carefully modi-
fying the state to set function, shown in the soundness theorem above. We mod-
ified the state to set function so that it makes visible the state of the FFI in
the pre- and post-conditions. There were numerous tricky details to get right in
the definition of state to set because the design goal was to make I/O reasoning
local in the style of separation logic. Our support for I/O is local in that the
proof for a piece of code which only uses, say, the print-to-stdout FFI ports does
not impose any assumptions on the behaviour, state, or even existence of other
FFI ports, e.g., ports for reading-from-stdin. In the spirit of separation logic,
our framework allows combining di↵erent assertions about the FFI using CF’s
equivalent to the separation logic frame rule. Section 3 provides details on how
we modified state to set to make the FFI available in CF proofs.

Support for exceptions is implemented by making the post-conditions di↵er-
entiate whether the result is a normal return with a value or a value raised as
an exception. The new framework is able to reason about exception handling

1 CakeML’s module system is also supported in our CF framework, but supporting
modules did not require extending the original ideas of CFML.
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Reminder about the soundness theorem:

Make state_to_set include a partitioned image of the FFI state 
so that we can write:  

– the update function u in each partition respects the FFI’s oracle function5.

The FFI-enabled definition of state to set maps CakeML states to the union
of the parts of the state that describe the references and the partitioned parts
of the FFI state. If the partition for the FFI state is well-defined, then the FFI
state is split into a set of FFI part elements, where each such element carries:

– s, the projected view of the state of this partition
– u, the update function for the partition
– ns, the FFI port names associated with the partition
– ts, a list of all previous I/O events for these names.
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With these we can make assertions about I/O. For example, the follow-

ing asserts that the projected FFI state must have a part that is described
by FFI part s1 u1 [n], and a disjoint part that is described by FFI part s2 u2 ns.

(IO s1 u1 [n] ⇤ IO s2 u2 ns ⇤ . . . ) (state to set pp st)

Using such statements in their pre- and post-conditions, the user may express
strong specifications concisely.

The following proof obligation is generated every time the cf function is
applied to the abstract syntax for an FFI expression. This proof obligation can
be read as follows: pre-condition H must imply that there is a byte array and
I/O partition in the state. The I/O partition must include the name of the called
FFI entry point. Furthermore, the result of running the next-state function from
the FFI partition, i.e., u, must successfully return a new state s 0 and this state
and the updated byte array must imply the desired post-condition Q . FFI calls
return unit value.

cf pp (App (FFI name) [array ]) env =
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5 Our use of projection functions and updates at both a concrete and abstract view
of the state bears some resemblance to lenses [21]. Note however that lenses must
have get and putback functions. Our set up lacks the putback functions, i.e., we only
project in one direction. Our initial formalisation had a putback function, but we
decided to simplify the definitions and arrived at the current solution with only a
get function, which we call proj .
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Spec for part of cat

` FILENAME fnm fnv ^ numOpenFDs fs < 255 )
{|CATFS fs ⇤ STDOUT out |}
cat1 v · [fnv ]

{|POST
(� u.
99 content .
hUNIT () ui ⇤ halist lookup fs.files fnm = Some contenti ⇤
CATFS fs ⇤ STDOUT (out @ content))

(� e.
hBadFileName exn ei ⇤ h¬inFS fname fnm fsi ⇤ CATFS fs ⇤
STDOUT out)|}

Fig. 9: A specification for cat1, which outputs the contents of a file on standard
out, or raises an exception if the file could not be found.

` FILENAME fnm fnmv ^ numOpenFDs fs < 255 )
{|CATFS fs ⇤ STDOUT out |}
cat1 v · [fnmv ]

{|POSTv u.
hUNIT () ui ⇤ CATFS fs ⇤
STDOUT (out @ catfile string fs fnm)|}

Fig. 10: A specification for cat1exn, which will not raise the BadFileName excep-
tion.

first one is trivially solved using the appropriate tactic. The second one requires
proving that the post-condition of cat1 entails the post-condition of cat1exn,
for the value case. This is true, using a lemma proving that inFS fname fnm fs
holds if the file could be found with some content in the file system. The last
goal finally requires proving that the file system fs is unchanged in the exception
case. Knowing ¬inFS fname fnm fs, this is proved by unfolding catfile string.

4 Interoperating with the CakeML translator

We prove an equivalence result between the theorems produced by the translator,
and a particular shape of CF specifications.

Called on a function succ of type int ! int, the translator will produce
a CakeML program succ ml, and the following theorems. The theorems state
that: running the succ ml program results in an environment, succ env, in which
looking up the variable “succ” yields a value succ v, and finally that this value
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by evaluation  
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correctness

Theorem: ⊢ compiler-x86 implements compiler  
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To a compiler application
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 fun main u = 
    let 
      val cl = Commandline.arguments () 
    in 
      case compiler_x64 cl (read_all [])  of 
        (c, e) => (print_app_list c; print_err e) 
    end

  `cl ≠ [] ∧ EVERY validArg cl ∧ LENGTH (FLAT cl) + LENGTH cl ≤ 256 ⇒ 
   app (p:'ffi ffi_proj) ^(fetch_v "main" st) 
     [Conv NONE []] 
     (STDOUT out * STDERR err * (STDIN inp F * COMMANDLINE cl)) 
     (POSTv uv. &UNIT_TYPE () uv * 
      STDOUT (out ++ (FLAT (MAP explode 
                             (append (FST(compiler_x64 (TL(MAP implode cl)) 
                                     inp)))))) * 
      STDERR (err ++ explode (SND(compiler_x64 (TL(MAP implode cl)) inp))) * 
      (STDIN "" T * COMMANDLINE cl))`, 
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